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A simple approximate method is proposed for the evaluation of path integrals in problems in 
which subbarrier transitions (instantons) play an important role. The method is based on the 
Feynman variational principle, and is a generalization of the quasiclassical approximation. When 
the problem involves a quasiclassical parameter, the method reduces to the approximate evalua- 
tion of Gaussian functional integrals (i.e., functional determinants). For such cases, general for- 
mulas are derived and are suitable for a wide class of potentials. The accuracy of the approxima- 
tion is illustrated by two-well and periodic potentials. In both cases, the level splitting can be 
determined to within a few percent. 

1. INTRODUCTION 

The quasiclassical method of evaluating functional in- 
tegrals is frequently used in field theory. It is valid when 
physical considerations show that the principal contribution 
to a functional integral is due to a particular class of field 
configurations, and the fluctuations around them are small. 
The quasiclassical approach then assumes that the selected 
field configuration around which small fluctuations take 
place will satisfy the equation of motion. On the other hand, 
a typical situation is that where field configurations that are 
natural from the physical point of view do not satisfy the 
equation of motion. For example, in quantum chromodyna- 
mics (QCD), there are good reasons to suppose that instan- 
ton-anti-instanton configurations1.* play an important role 
in vacuum field fluctuations, and the number of instantons 
should be equal to the number of anti-instantons to within 
thermodynamic fluctuations -m since, otherwise, CP-in- 
variance will be strongly violated. Although the instanton 
and the antiinstanton will separately satisfy the QCD equa- 
tion of motion, an arbitrary superposition of these solutions 
is not a solution of the equation of motion. Analogous exam- 
ples can be found in other theories, too (see, for example, Ref. 
3). 

We note that configurations that do not satisfy the 
equation of motion can, in principle, provide a greater con- 
tribution to the functional integral (partition function) than 
classical trajectories that ensure local minimum of action, 
for the simple reason that they have greater entropy (statisti- 
cal weight). Moreover, if we use the language of statistical 

where the action S [p ] is too complicated for precise evalua- 
tion. Let us therefore replace the exact S [ p ]  with the ap- 
proximate action S,[p ] that satisfies the following condi- 
tions: 

1) on a trial field configuration G, which we expect to 
provide the main contribution to (I), the approximate action 
is either identical with or close to the exact action 

2) S1[9 ] "clamps down" the field fluctuations around 
the trial configuration G. In other words, the integral of 
exp( - S,) must be constructed so that the chosen trial con- 
figuration does, in fact, provide the main contribution to it 

3) S,[p] must be sufficiently simple to enable us to 
evaluate the approximate partition function 

The last two requirements mean, in practice, that S1 
must be a positive-definite quadratic form in the deviation 
9-G. 

Let us rewrite the exact partition function (1) in the 
form 

physics, we are always interested in the minimum of free and use the convexity condition 
energy rather than energy (action). 

Thus, we have the relatively general problem of evaluat- ( e - 9  >e-". 

ing the contribution to the functional integral of field config- This provides us with the lower bound for the exact partition 
urations that, generally speaking, are not solutions of the function: 
equations of motion, together with small fluctuations Z>Z, exp { - ( S - S , ) ) ,  
around them. It seems to us that a convenient method that 

(3) 

will enable us to solve this problem, and will provide us with where 

a generalization of the quasiclassical theory, is to us the 
Feynman variational pr in~iple.~ (S -SI>= - Zi ' J D q  ( S [ q ] - S ,  [ q ] )  e-sJQ1. (4) 

Let us briefly recall the principle of this method. Sup- 
pose that we wish to evaluate the functional integral over the It is clear that the exact Z does not depend on the trial con- 
fields figuration @, whereas the approximate expression for Z, giv- 
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en by the right-hand side of the inequality (3), is a function of 
G. Hence, by varying the right-hand side of (3) with respect 
to G, we can find the maximum (3) that corresponds to the 
best approximation. If the approximate action S, depends on 
a number of parameters or functions, the variation must also 
be performed with respect to these quantities if we are to 
obtain the best approximation. 

Relation (3) is actually the first term of a series for Z. 
The accuracy can be improved somewhat by using the fol- 
lowing formula for small S - S,: 

Z=Zi exp (-(S-8,)) exp {'I2 [< (S-Si)2)-<S-S,)2] ). (5)  
If, on the other hand, S - S, is not small, this formula en- 
ables us to estimate the error of a given calculation. We em- 
phasize that, even when this error is large as a result of an 
inadequate choice of S,, the inequality (3) may still be useful 
in that it will provide us with an estimate for the lower bound 
for the exact Z. 

We note that the usual procedure is to evaluate not the 
partition function Z itself, but a quantity divided by the par- 
tition function with the free action So[p ]. This does not inva- 
lidate the variational principle (3); we need only remember 
that Z,  is also divided by the partition function. We also note 
that, in the renormalized field theory, the quantity Z does 
not exist without regularization at high field frequencies. To 
preserve the inequality given by (3), one must then explicitly 
introduce regularization (in fact, the same regularization) 
for both the exact Z and the approximate Z,, for example, 
dimensional, lattice, and so on, regularization. 

We emphasize that the variational principle given by (3) 
is a generalization of the quasiclassical theory in the sense 
that if, as a result of the variation (3) with respect to the trial 
configuration G, it turns out that 6 is a solution of the equa- 
tion of motion, the variational principle will yield the sarae 
answer as the usual quasiclassical theory. We shall demon- 
strate this important point by considering an elementary ex- 
ample involving the evaluation of a one-dimensional inte- 
gral. 

Suppose we have to evaluate the integral 
i - 

2- 5 he-f(", 
- m  

and suppose also that we suspect that the main contribution 
to the integral is provided by the neighborhood of some point 
X. We take the approximate "action" to be f,(x), which satis- 
fies conditions (1)-(3) and is given by 

f i  (5) =f (5) + i/2az (x-5) ', 
where a is the variational parameter. We emphasize that, 
although X is not a priori a "solution of the equation of mo- 
tion" f '(2) = 0, the above logic, nevertheless, forces us to 
take the approximate "action" f,(x) without the linear term 
f '(X)(x - 2). In fact, unless this is done, integration over 
x - X would involve a translation and, essentially, we would 
be evaluating the contribution not of the region around the 
trial point X but around the true saddle in the original inte- 
gral. On the other hand, it is precisely the contribution of the 
region around the more or less arbitrary point X to Z that is 
of interest to us here. 

Let us evaluate 

and 
1 

(f-f )--j d~e-~~(')[f(x)-f i (x)  1 
f - z ,  

This gives us the lower bound for the original integral 2: 

By varying this expression with respect to the parameter a, 
we obtain the best a2 = f "(X) (as expected). The final result, 
therefore, is 

We must now vary this expression with respect to X in order 
to determine the X whose neighborhood provides the main 
contribution to the required integral. It is clear that, iff (x) is 
a "sharp" function, the best X is determined by the solution 
of the "classical equation of motion" f '(X) = 0, and the vari- 
ational principle leads us to the same answer as the saddle- 
point method. 

When the number of degrees of freedom is infinite, the 
variational principle again does not allow the possibility that 
the trial configuration satisfies the equation of motion, but it 
does allow us to estimate the contribution to the partition 
function of more general configurations. We emphasize once 
again that it is not the action (or the energy, in the language 
of statistical physics), but the free energy, that must be mini- 
mized, i.e., the entropy of the configurations must be taken 
into account. In contrast to quasiclassical theory, the vari- 
ational principle is, in fact, suitable for the evaluation of the 
minimum of free energy. 

We note one further advantage of the variational meth- 
od as compared with standard quasiclassical theory. The ba- 
sic technical difficulty in the latter theory is the evaluation of 
the Gaussian integral over small deviations around the cho- 
sen classical motion (functional determinant). As a rule, this 
difficult evaluation is also complicated by the fact that the 
zero modes have to be isolated, and integration over them 
must be performed separately. The variational method, on 
the other hand, provides us with a very effective procedure 
for the approximate evaluation of functional determinants, 
even for external fields 6 ,  for which the exact evaluation of 
the Gaussian integrals is a hopeless task. We consider that 
the development of this procedure is the principal result re- 
ported in the present paper. 

Our aim in this research was to demonstrate the appli- 
cation of the above variational principle to quantum-me- 
chanical problems in which instanton-anti-instanton sub- 
barrier transitions play an essential role. From the point of 
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view of path integrals, quantum mechanics may be looked 
upon as a one-dimensional quantum field theory. The gener- 
alization of the method to the four-dimensional theory, i.e., 
quantum chromodynamics, will be considered elsewhere. 

More specifically, we consider two problems, namely, a 
two-well potential with a high barrier, and a periodic poten- 
tial of the form cos x. In the former case, we are interested in 
the splitting of low-lying levels and, in the second, in the 
width of the first forbidden band. In the limit of high bar- 
riers, the fact that the principle contribution to the path inte- 
gral in these problems gives a tenuous instanton-anti-instan- 
ton gas is well known. The exact quasiclassical answer is also 

It follows that these problems will serve as a good 
check on the validity of the variational method as applied to 
instantons. 

We shall see that even very simple trial action S, will 
lead to quite accurate level splitting and band gap. We shall 
examine two modifications of the variational principle (Secs. 
2 and 3) and derive a number of general formulas that can be 
used for a wide class of potentials in quantum mechanics. 
Our theory is much simpler than the quasiclassical approach 
to the functional integral because the most laborious step in 
this method, namely, the evaluation of the one-instanton de- 
terminant, is no longer necessary. 

2. TWO-WELL PROBLEM. VARIATIONAL PRINCIPLE I 

As a simple illustration of the ideas given in the Intro- 
duction, let us consider the well-known problem5-' of the 
determination of the splitting of low-lying levels in the two- 
well potential: 

V(x) =h (x2-q2) ', o02=8hq2. (6) 

It is well known5-' that the level splitting AE can be ex- 
pressed in terms of the functional integral 

where we have transformed to the Euclidean formulation, 
i.e., to imaginary time. Moreover, to obtain the lowest-level 
shift for T-t UJ , which is equal to half the level splitting AE, 
we have divided by the "free" partition function of the har- 
monic oscillator of frequency w, that corresponds to the ex- 
pansion of the potential ( 6 )  in each of the wells. 

Let us recall how (7) can be evaluated in the quasiclassi- 
cal approach. The equation of motion corresponding to the 
action 

S= 5 dt[i2/2+v(X) I ,  (8) 

has the solution 
xo (t-T) =q th (t-7) 121, (9) 

which is called an instanton, where 7 is the center of the 
instanton. The instanton is a classical subbarrier path in 
imaginary time that corresponds to a transition from the 
left-hand well (x = - 7) to the right-hand well (x = 7). The 
anti-instanton differs from (9) only by the sign of the expres- 

sion, and corresponds to the reverse transition. The classical 
action (8) on the instanton (9) is 

s,='/, ( 2 ~ )  "$=oo3/ia.  ( 10) 

This is the quasiclassical parameter and is assumed to be 
large. Expanding (8) around the instanton (9), and neglecting 
terms higher than the quadratic term in y = x - x,, we ob- 
tain 

The next step is to integrate the numerator in (7) over the 
fluctuations y(t ) with the Gaussian weights (1 I),  and divide 
by the analogous functions integral for the harmonic oscilla- 
tor [see (7)]. Since the quadratic form given by (1 1) clearly 
has a zero mode connected with the translational invariance 
of the instanton (9), i.e., with the possibility of taking the 
instanton center 7 at any time, the Gaussian integral overy(t ) 
diverges, which is reflected in the form of the integral with 
respect to the instanton center 7 (the transformation Jacobi- 
an between integration over the Fourier coefficient of the 
zero mode to integration with respect to the instanton center 
7 is u,(~,/27r)"~). The remaining determinant for the non- 
zero modes to the power - 1/2 can be evaluated exactly for 
this problem (the procedure is quite laborious) and is given 
by 

d = Y E  (12) 

Since the instanton-anti-instanton transitions occur 
many times and at arbitrary instants of time, we obtain the 
following expression for (7) (the factorial factor appears in 
the course of transformation from the ordered integration 
over the centers to integration over the entire region): 

and hence the splitting is given by 

A E = ~ C O ~  ( ~ ~ / 2 n ) ' " e - ~ ~ Y z ,  So=ooS/12h. (1 3) 

Our problem is to reproduce this result approximately with- 
in the framework of the variational approach. Essentially, 
we have to perform an approximate evaluation of the func- 
tional determinant (12). We shall see that our proposed 
method will also be suitable in other problems for which the 
exact evaluation of the determinant is not possible. 

It is clear from physical considerations that the main 
contribution to the functional integral (7) is provided by sub- 
barrier transitions from one well to the other, and vice versa. 
Let x,(t - 7) represent the corresponding path with the cen- 
ter at time 7. We shall not assume that x,(t - 7) will have the 
specific instanton form given by (9). We shall only suppose 
that x,( * UJ ) = f 7. Thus, we take the trial function X(t ) in 
the form 
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This formula describes an alternation of instantons and 
anti-instantons with centers at the points 7 ,  . . . T z N .  TO esti- 
mate the contribution of the configuration (14) to (7), we 
construct the approximate action 

where So is the classical action on the trial path x,, D is the 
parameter to be varied, and W [x - XI is a quadratic form 
that limits the fluctuations around the trial path E. In (15), 
we have neglected fluctuations in the number N of instan- 
tons, and consider only one term for given N (which will also 
be varied). It is well known that this is valid in the "thermo- 
dynamic limit" T+ CO, N-+ CU, N/T = const. We now take 
the functional Win the simplest form: 

This choice is dictated by the fact that, well away from the 
instanton centers, W, gives the correct description of small 
oscillations with frequency w, in one of the wells. At the time 
of the subbarrier transition itself, small oscillations will, of 
course, have other frequencies, so that (1 5) gives us only an 
approximation to the exact action. 

The simplest approach is to use (15) to determine the 
approximate partition functions (divided by the partition 
function for the harmonic oscillator) 

where the integral in the numerator is evaluated by changing 
the variable so that x = X + y, after which it cancels out with 
the denominator. 

In accordance with the variational procedure, we must 
now correct the error introduced by using the approximate 
S, and evaluate 

1 1 
= - J dr, . . . d r N  -(DI-&)~ 1 dye-wru1 

Zi 2Nl 
x{s[r (t, z l . .  . ~zN)+y(t) I-Si[??(tl Z L . .  . ~ ~ ) + y ( t ) l )  , (18) 

where we have shifted the integration variable x = X + y. 
Let us expand S [X + y] in powers ofy. We note that the zero- 
order term in the expansion can be written in the form 
S [Z] = 2NSo because the gas is tenuous (this is controlled by 
the parameter w i / l U  ), the linear term in y is annulled as a 
result of integration with respect toy  with the even weight 
exp[ - WO&)] (independently of whether or not Z satisfies 
the equation of motion), and the quadratic term in y is 

-!- J dt[vl'(z (t)) yz(t) +Q2(t) 1. 
2 

This expression is averaged in (18) over the centers of 

the tenuous instanton gas. Since the particle is mostly found 
in one of the wells, where the frequency is w,, and in the 
tenuous gas all the centers 7, are, on average, at a large dis- 
tance from one another, we have the approximate result 

where 

~ 1 2 - o ,  j -d t [o : -~~~ (xo (t-r) 1 I (20) 
- rn 

Let us now evaluate the second term in braces in (18). 
According to the definition given by (1 5) 

exp {-sl [E (t, T~ . . . 7 2 ~ )  +Y (t) 1) 

~exp{- Wo[5 (t, zl . . . zZN) +y (t) -5 (t, 2,' . . . t2Nf) 1). 
We shall see below that the main contribution to the 

integrals with respect to 7; is provided by regions where the 
centers of the primed (anti)instantons are close to the centers 
of the unprimed (anti)instantons. If we consider the different 
ways of comparing primed and unprimed centers, we find 
that there are 2N! such centers. Expanding the argument of 
the functional W, in powers of 7; - 7, = 6, we obtain 

We thus have a Gaussian integral over the displacements Si . 
We now substitute 

7- J dtI12(t) +o.Y ( t )  1. (22) 

This quantity defines the "sharpness" of the integrals 
over 8, and is large: 

7-02 (Ooa/L) %h,s. 

This enables us to confine (21) to the terms written out in that 
expression. 

Neglecting overlap integrals corresponding to instan- 
tons at different centers, we obtain the following expression 
by shifting the Gaussian integrals over 6, : 

2n 
S , [ Z ( t , r  ...) +y(t)]--ln[(De-a~)2N(T) ] 

The last term in this expression must also be averaged 
over the statistical ensemble, i.e., we must integrate over all 
the 7,. We thus see that the evaluation of (S - S,) now re- 

16 Sov. Phys. JETP 59 (I), January 1984 D. I. D'yakonov and V. Yu. Petrov 16 



duces to integration of a quadratic expression over the fluc- 
tuations y(t ) with a weight equal to an exponential whose 
argument is equal to the harmonic-oscillator action. This 
integration can be performed in an elementary manner, since 

is the harmonic-oscillator propagator: 

Using this, we obtain 

Recalling the expression for Z1/ZO, given by (17), we 
obtain 

where we note that the parameter D introduced above has 
canceled out. Taking the maximum of this expression in N, 
we obtain finally 

where the quantities So, w: and y, all of which are function- 
als of the trial function xo(t ), are given by (8), (20), and (22), 
respectively. 

We must now find the maximum of the right-hand side 
of (25) by performing a variation over the trial subbarrier 
path xo(t ). It is clear, by the way, that, in the quasiclassical 
limit, the maximum is determined by the minimum of the 
action So. We emphasize that the above formula is valid for a 
two-well problem of any profile. 

It is useful to compare (25) with the exact quasiclassical 
formula (13). The factor (y/277)'I2 can be interpreted as the 
determinant of the transformation from integration over the 
zero mode to integration over 7. In (13), this applies to (Sd 
2 ~ ) ' ~ ' .  The exponential factor in (25), which corresponds to 
the determinant for the nonzero modes, represents the 
change in the frequency of small oscillations at the time of 
the instanton transition: according to (20), 0, is, precisely, 
the change in frequency averaged over the transition time. 

Specifically for the potential (6), the maximum is 
reached on the instanton (9). Evaluation of the simple inte- 
grals in (a), (20), and (22) yields the following expressions for 
this case: 

So=ooS/lW, o,'=BiooZ, y=ioO6/10h. 

Substituting these values in (24), we obtain 

The last factor, (e2/10)'I2--,0.86), presents us with a differ- 
ence as compared with the exact formula (13). Thus, (26) 

correctly reproduces all the dependences on the parameters 
of the problem, and the numerical coefficient in this expres- 
sion differs by only 14% from the exact answer. For a peri- 
odic potential, which we shall examine by a somewhat differ- 
ent method in the next section (and which is closer to real 
problems in field theory), the error is smaller still, i.e., only 
about 5%. The difference in accuracy is probably due to the 
presence in the exact quadratic form of the two-level prob- 
lem of an exta discrete level whose contribution is not satis- 
factorily taken into account by the action S,. We draw atten- 
tion to the fact that we did not have to solve the most 
laborious part of the problem, namely, the evaluation of the 
one-instanton determinant. Once the general formula given 
by (15) has been derived, all that remains is to evaluate a few 
simple integrals. 

3. PERIODIC POTENTIAL. VARIATIONAL PRINCIPLE II 

We now consider the quantum mechanics of a particles 
in a periodic potential of the form 

V ( 5 )  ' ( 0 0 2 / 2 A ' )  cos' ax (27) 
in the quasiclassical limit odA '> 1, in which the width of the 
lowest allowed band is exponentially small and can be calcu- 
lated by using the instanton-anti-instanton gas that de- 
scribes tunneling between the wells.' The basic problem here 
is again the evaluation of the one-insanton determinant. We 
note that the solutions of the Schrodinger equation with the 
potential given by (27) are Mathieu functions, and the band 
widths can be found in Ref. 9. The energy of a state in the 
lowest band withquasimomentum 8 ( - < 8 < 77) is given by 

E (8) =oo/2-COB 8400 (oo/nhZ) exp (-2oo/h2). (28) 

On the other hand, this result must also be obtained for 
T+ CQ from the path integral: 

where the quasimomentum is introduced by means of the so- 
called @-term. 

It  is clear from physical considerations that the main 
contribution to the functional integral in (28) should be pro- 
vided by the path in the form of an instanton-antiinstanton 
gas: 

NL N- 

where xo( f: ca ) = f r /U,  but, otherwise, xo(t ) is so far ar- 
bitrary. 

We must now choose the approximate action. We have 
seen that the imprecision of variational principole I, exam- 
ined in the last section, was connected with the fact that the 
quadratic form Web] does not correctly represent small os- 
cillations around the path at the time of the transition. It is 
therefore better to use instead the exact quadratic form of the 
instanton action (1 1): 
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However, because of the absence of zero modes, this action 
does not limit the deviation corresponding to the shift of the 
instanton centers on the path (30). This difficulty can be 
overcome with the aid of a device analagous to the Faddeev- 
Popov method in gauge theory (see, for example, Ref. 5). Let 
us subject the deviation y = x - i to the zero-mode ortho- 
gonality condition by inserting the following "unity" into 
the path integral: 

where +b(t ) is any function that is not orthogonal to the zero 
mode xo. In practice, it is more convenient to smear out the 
6-function with a Gaussian weight and, instead of (32), intro- 
duce 

x erp {- :z-[ dt$ ( t - 9 )  y ]'} . (33) 

i 

After integration over y, this expression is found to be inde- 
pendent of both the parameter q and the specific choice of +b. 

We therefore take the approximate action in the form 

exp (-Sl [Z 1 )  

where W b ]  is given by (31). This expression now restricts 
any small deviation from the trial path X(t,r, . . . ), and in- 
cludes the variational parameter d.  

The simplest thing to do is to use Sl to determine the 
average ( S  - Sl ) : 

X{S[Z( t ,  z.. . )+yl -S l [?( t ,  7 . .  . ) + y ] ) .  (35) 

Let us expand the exact action in terms of the small 
quantity y and recall that the linear term need not be written 
out because it is annulled on integration overy y: 

S[Z+yl &[Z]  + W [ y ]  -i0 (N+-N-). (36) 

Next, consider the second term in the last pair of braces 
in (35). According to (34), we have 

As can be seen, we have expanded the difference X ( t ,  
T' . . . ) - i ( t ,  T . . . ) and have canceled out N+!N-! because 
this is the number of ways of comparing the primed and 
unprimed sets of centers. 

We note that W lv + . . . ] does not contain the depen- 
dence on T' because xo(t - T~ ) are zero modes for this qua- 
dratic form. Integration over T' can be performed in an ele- 
mentary manner if we neglect overlap integrals between 
different instantons. We thus obtain 

d N+t N.. 

exp (-S1) =exp (if3 (N+-N-) ) 

and, if we compare this with (36), we see that, by taking [in 
accordance with (33)!] 

we ensure that the difference S - S,  vanishes before integra- 
tion over y and T ~ .  It is, of course, possible to keep d as the 
parameter to be varied and eventually find the maximum 
with respect to d .  However, the final answer will be the same. 

We see that, in this modification of the variational prin- 
ciple, we have selected a very good approximation for the 
action ((S - S,)  = 0). We now have to pay the price for this 
by having to perform a relatively complicated evaluation of 
2, (we recall that the reverse situation was encountered in 
the case of variational principle I). 

Thus, we must examine the approximate partition func- 
tion. In accordance with the definition give by (34), we have 

where F lv] is a functional of the effective action, averaged 
over the statistical ensemble: 

(41) 
If we were to perform the statistical averaging exactly, and 
then evaluate exactly the integral overy, we would obtain the 
exact quasiclassical answer. Since this is not our problem, we 
exploit once again the convexity property of the exponential, 
and take the average of the action in (41) in the exponential. 
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We obtain 

e x p ( - ~ [ r ~ ) > e x p { - ( ~ [ y ~ )  

where the angle brackets represent averaging over the statis- 
tical ensemble. We shall perform this averaging by using the 
fact that the instanton gas is tenuous: 

where, in the last equation, we have used (20). We thus see 
that the average change in the frequency of oscillations cor- 
responding to the instanton transition w, has appeared once 
again. The second term in (42) can be averaged in a similar 
way, and we obtain the effective action F b ]  in this approxi- 
mation: 

i.e., in this approximation, the effective action is quadratic in 
the deviation y. In the general case, it will contain all powers 
of y. 

The Gaussian integral (40) with the action given by (44) 
can be evaluated in an elementary manner if we transform to 
Fourier components. The result is 

Z, e'ecN+-N-) e-srs, N++N- 
-2 

T "='do 

z N [(  YX ) 1 ~ X P { - ~ J  -OD g 
N++N- q2G(o) -oi2/oo2 

Xln I+- [ T 0 2 + 0 0 2  

Since N / T  is a small parameter for the tenuous gas, we can 
expand the last factor. Recalling (39), we have 

By varying this expression with respect to 7 and $(w), we 
obtain the best value: 

It is clear that the best $(t ) is not at all identical with the 
zero mode xo(t ). The difference between these functions ef- 
fectively corrects the nonzero-mode determinant. Substitut- 
ing (48) in (47), we obtain 

We note that this is literally identical with (24), which was 
deduced from variational principle I (with the exception of 
factorial factors, whose presence is due to the somewhat dif- 
ferent formulation of the problem for the periodic potential). 
To obtain the energy as a function of the quasimomentum 8, 
we can either sum (49) over N, , or find and substitute their 
extremal values. In either case, we obtain 

where So is the action for the classical subbarrier path, and 
the functionals w, and yare, as before, given by (20) and (22). 
Specifically for the potential (27), we have an instanton of the 
form 

Wo 1 $0 (t-z) = - 
h ch oo(t-r) ' 

and hence 
~ ~ = 2 ~ ~ / h ~ ,  oi2=4002, r=8aoS/3h2- 

Substituting these values in (50), and comparing with the 
exact formula (28), we see that our approximate answer 
differs from the exact answer by the factor (e/3)1'2z50.95, 
i.e., the error in the approximate calculation of the deterrni- 
nant is 5%. 

We now see that, in a certain sense, the variational prin- 
ciple I examined in Sec. 2 is the first approximation to vari- 
ational principle I1 of the present section. It is obtained if we 
use (42) in the course of averaging over the statistical ensem- 
ble. Equation (42) can be improved by using a formula such 
as (5) in the averaging process. However, we then lose the 
above result for the lower bound of the partition function. 
We are therefore not entitled to vary again with respect to q 
and $(t), and must use the values obtained from the first 
approximation. On the other hand, since they were chosen 
so as to obtain the best approximation to F b], the numerical 
series in powers of F - F"' should converge quite rapidly. 

We shall not reproduce the details of the calculation, 
and quote only the final formula for the second approxima- 
tion. It is simply related to the level splitting (or the splitting 
of a wide band) in the first approximation: 

f ( a )  = I [oo2-V" (x, ( t )  ) 1. 

The last quantity is the Fourier transform of the change 
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in the frequency of small oscillations around the instanton 
path. The values of AE, obtained in the first and second ap- 
proximation, are listed in the following table as fractions of 
the exact values: 

Two Periodic 
wells potential 

First approximation 0.86 0.95 
Second approximation 0.96 0.991 

The basic aim of the present paper is mcthodolog- 
ical, i.e., to learn how to evaluate the contribution to 
the functional integral due to the neighborhood of in- 
stanton-type paths that do not necessarily satisfy tbe 
equations of motion. We have used the above quantum- 
mechanical problems to verify that the v&riatianst 
principle yields good accuracy as compared with ob- 
served values. The generalization of this method to the 
case of quantum-field theory will be mddered in an- 
other paper. 
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