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A general solution is obtained for the self-consistent linearized system of Einstein and Vlasov 
equations describing the evolution of long-wavelength perturbations of gravitational-wave type 
in a two-component Friedmann universe containing an ultrarelativistic ideal fluid and a collision- 
less gas. In contrast to the hydrodynamic approximation first considered by Lifshitz, the kinetic 
picture of the development of perturbations in a statistically nonequilibrium medium includes in 
the general case an infinite set of partial modes. Under the assumption of a local-equilibrium 
nature of the initial stage of the cosmological expansion the conditions of excitation of the partial 
modes at the time when the neutrinos decouple from the primordial radiation-dominated plasma 
are analyzed. It is shown that if the contribution of the gravitons to the space-time curvature is 
ignored the evolution of long gravitational waves in the ultrarelativistic two-component Fried- 
mann universe is described by Lifshitz's classical theory, i.e., in this case the collisionless nature of 
the neutrinos is not manifested. 

1. INTRODUCTION 

The problem of the gravitational stability of cosmologi- 
cal models based on exact solutions of the equations of the 
general theory of relativity was first formulated by Lifshitz' 
and solved for a Friedmann universe with hydrodynamic 
energy-momentum tensor. Subsequently, various authors 
returned frequently to this question from different points of 
view and discussed the evolution of small perturbations on 
the background of a homogeneous and isotropic cosmologi- 
cal model (see, for example, the extensive survey of Lifshitz 
and Khalatnikov2 and the papers of Lukash and Bardeen,3 
which contain a bibliography on this question). Despite a 
long history and an appreciable number of publications, the 
problem of describing the evolution of small perturbations in 
a homogeneous and isotropic universe has still not yet been 
completely resolved for the case when the perturbed state of 
the cosmological medium is not necessarily a statistically 
equilibrium state. In this most general case, the components 
of the matter energy-momentum tensor are specified as qua- 
drature~ of the statistical distribution function. The develop- 
ment of cosmological perturbations is described by the self- 
consistent linearized system of Einstein equations and 
kinetic equations that specify the source of the gravitational 
field. The problem of the gravitational stability of the Fried- 
mann cosmological model is given such a kinetic treatment 
by Zakharov4 and Vishniac,' though their results require to 
be made more precise and complete. 

In the general case, a statistically nonequilibrium medi- 
um is characterized by infinitely many internal degrees of 
freedom and corresponding perturbation modes. The partial 
contribution of such modes to the resulting evolution regime 
of the gravitational perturbations is determined not only by 
the initial conditions but also by the collision integral, which 
specifies the nature of the microscopic interactions. In this 
paper, to simplify the formulation of the problem, we take a 
model of a two-component medium with one component 
completely collisionless and the other "collision dominat- 

ed," i.e., in local thermodynamic equilibrium. Such a model 
adequately describes the early universe, including weakly 
interacting particles (gravitons, neutrinos) and a radiation- 
dominated plasma. 

It should be emphasized that the use of the hydrody- 
namic approximation and, thus Lifshitz's classical results1 
to describe the development of arbitrary perturbations near 
the cosmological singularity is not strictly speaking physi- 
cally justified, since the real universe contains free gravitons 
already at the Planck time. The hydrodynamic approxima- 
tion, which distringuishes the equilibrium degrees of free- 
dom and freezes arbitrarily all the other degrees of freedom, 
essentially castrates the stability problem for the cosmologi- 
cal model as a whole, substituting for it the question of stabil- 
ity with respect to perturbations of a special form. The de- 
generacy of the degrees of freedom due to the hydrodynamic 
approximation is completely lifted in a self-consistent kinet- 
ic theory of perturbations. As one would expect, the system 
of equations for the perturbations in such a theory has an 
infinite set of fundamental solutions, the analysis of which 
ultimately permits a division of the complete set of admissi- 
ble initial data into stability and instability regions. In other 
words, the solution to the problem of the gravitational stabil- 
ity of a given (background) cosmological model depends on 
the kinetic properties of the matter that produces the gravi- 
tational field. 

In the present paper, we consider the evolution of long- 
wavelength perturbations of gravitational-wave type in a 
Friedmann universe containing two components: an ideal 
fluid (without viscosity and elasticity) with equation of state 
p = &/3 and an ultrarelativistic collisionless gas satisfying 
Vlasov's kinetic equation. Analysis of this problem in the 
case when the universe contains just an ideal fluid is con- 
tained in the paper of Lifshitz quoted earlier. 

We recall that the linearized stress tensor of a Pascal 
ideal fluid in a comoving frame reduces to a single scalar- 
the isotropic pressure. On the other hand, an anisotropic 
deformation due to a weak gravitational wave in a homogen- 
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eous and isotropic expanding universe must be described by 
a doubly transverse traceless tensor, so that by virtue of Ein- 
stein's equations such a deformation takes place with con- 
stant pressure and, therefore, constant density of the medi- 
um. Physically, this means that when weak gravitational 
waves propagate in a homogeneous and isotropic universe 
filled with a Pascal ideal fluid the latter changes its shape 
without resistance, restoring thermodynamic equilibrium 
instantaneously; as a result, it has no reaction back on the 
gravitational wave. Therefore, in the hydrodynamic approx- 
imation the linearized Einstein equations for the (small) am- 
plitude of an elementary doubly transvere plane wave of 
each of the two possible polarizations reduce to a second- 
order homogeneous equation with two independent solu- 
tions. As Lifshitz showed in the long-wavelength approxi- 
mation these solutions correspond to an asymptotically 
constant (principal) mode and a singular (decreasing) mode 
of the gravitational waves. 

The detailed picture of the propagation of gravitational 
waves in the two-component medium mentioned above is 
not so elementary by virtue of its nontrivial (compared with 
the case of a Pascal ideal fluid) polarization properties.'' Be- 
cause of the existence of "intrinsic" bulk gravitational radi- 
ation, the collisionless component of the medium may inter- 
act with "incident" gravitational waves, this being reflected 
in the nature of the evolution of small perturbations of tensor 
type. In contrast to Lifshitz's hydrodynamic theory, the sys- 
tem of equations for the perturbations, which contains the 
linearized equations of the gravitational field augmented by 
a kinetic equation, is an integrodifferential system. 
Allowance for the gravitational influence of the anisotropic 
stresses of the collisionless component of the medium, which 
has infinitely many internal degrees of freedom, leads to the 
appearance of an infinite se.t of additional perturbation 
modes that have a kinematic nature and reflect the arbitrari- 
ness in the choice of the initial data for the distribution func- 
tion. The rate of growth of these kinematic perturbation 
modes in the long wavelength approximation is higher the 
greater their anisotropy in the momentum space. We empha- 
size that this conclusion is obtained in the framework of lin- 
ear theory and does not tell US what is the "final" fate of 
perturbations that evolve in accordance with the kinematic 
modes mentioned above. 

The paper is arranged as follows. In Sec. 2, we give the 
necessary expressions that describe the evolution of the 
background cosmological model. In Sec. 3, we obtain the 
linearized system of Einstein-Vlasov equations for perturba- 
tions of gravitational-wave type in a Friedmann universe 
containing an ultrarelativistic ideal fluid and a collisionless 
gas. In Sec. 4, we indicate the key to the construction of a 
general solution of this system in the long-wavelength ap- 
proximation and describe some particular solutions. In the 
fifth and final section, we describe the application of the the- 
ory to the early universe, including a radiation-dominated 
plasma and a gas of ultrarelativistic collisionless neutrinos. 

2. BACKGROUND COSMOLOGICAL MODEL 

In the early stage of cosmological expansion, the evolu- 
tion laws for open, closed, and spatially flat Friedmann mod- 

els are asymptotically the and therefore the back- 
ground geometry can be described by the Einstein-de Sitter 
metric2': 

g&--a2(q)diag{+1; -1; -1; -1) (2-1) 

(xO = 7 > 0; - oo <xl ,  x2, x3 < + a). The scale factor 
a = a(7) of the cosmological model satisfies Einsteins's 
equations: 

'I. a ~ l ( ~ ~ * '  =e J (-8) d p  p i P h ~ ( q , p ;  
Po 

The single-particle distribution function F = F(7 ,  xa ; f ) ,  
describing the collisionless component of the medium 
(which consists of identical particles of mass m)  satisfies the 
condition of constancy along the phase trajectories of the 
particles: 

By virtue of the homogeneity and isotropy of the back- 
ground cosmological model, the corresponding distribution 
function can depend only on the kinetic energy of the parti- 
cles in the comoving frame8: 

F=Fo [a2pipk ( U I U R - ~ ~  I =Fa (q2), (2.8) 

where q denotes the magnitude of the Cartesian vector 
q = [a2pa 1. For an ultrarelativistic (and sufficiently rapidly 
decreasing as q-m) distribution function F, the back- 
ground energy-momentum tensor of the collisionless gas 
(2.6) takes the form 

~ r ( ( ' ~ )  (q) (4uiu,-6:), (2.9) 

where 

0 

Because the tensors (2.4) and (2.9) have the same struc- 
ture, the Einstein equations (2.2) and (2.3) for the back- 
ground metric (2.1) reduce to the cosmological Friedmann 
equations6*' describing the evolution of a conformally flat 
universe effectively containing only a single ultrarelativistic 
ideal fluid with energy density 

e*=e,+eg (2.11) 

(the suffix b stands for background). The solution of these 
equations has the form 

a=aoq; ea=3c'aO2/8nGa4, (2.12) 

where 

where = const is the ratio of the background ener- 
gy densities of the collisionless particles and the ideal fluid. 
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3. SYSTEM OF EQUATIONS FOR TENSOR PERTURBATIONS. 
HYDRODYNAMIC APPROXIMATION 

Let 6gaB = - haB be certain small perturbations of the 
metric of the background space-time corresponding to weak 
gravitational waves in the Einstein-de Sitter universe. We 
represent the spatial dependence of haB in the form of a 
Fourier integral and thus reduce the problem of describing 
tensor perturbations of arbitrary shape to the consideration 
of an elementary doubly transverse plane wave: 

h$= Id8n[v (n; q) nBa+o (n; q) fiBa] e'". (3.1) 

(in what follows, we shall not write out the dependence of the 
Fourier amplitudes of the perturbations on the wave vector 
explicitly and we shall omit the sign of integration over d 3n). 
The Fourier amplitudes v and .C. describe gravitational waves 
of two independent polarizations3) propagating along n: 

It is convenient to replace the conformal time 7 by the 
new time variable Tenq ,  which is proportional to the ratio 
of the distance to the instantaneous horizon to the wave- 
length of the considered perturbation (T a t "'). For pertur- 
batons of tensor type with the polarization (3.2), we have 

At the same time, the deviator of the linearized kinetic stress 
tensor does not vanish in the general case: 

where 

8nG 
O (r;  x) = T;-J drp sin 291 ( 

c a. 
dqq4 f ( r ;  q) 

m2c2a2+ qy 'Ih 

and f = f (r;q) is the Fourier amplitude of the perturbation 6F 
of the background distribution function F, (the amplitude 
decreases sufficiently rapidly as q-+ w ). With regard to the 
function f (r;q), we shall assume in all that follows that it is 
ultrarelativistic, i.e., the decisive contribution to the integral 
over dq in (3.8) is made by the region of integration for which 
q)mca. In accordance with this assumption, the radical 
(mzc2aZ + q2)'I2 in the expression (3.8) can be replaced by the 
magnitude q of the conformal momentum. We emphasize 
that it is pecisely the presence of the shear stresses (3.7) and 
the bulk gravitational radiation associated with them that 
distinguish the collisionless gas from an ideal fluid. 

Taking into account (3.4)-(3.8) and the assumptions 
made above, we can write the system of linearized Vlasov 
and Einstein equations, (2.7) and (2.2)-(2.3), for the tensor 
perturbations with the polarization (3.2) in the form 

d2v dv 
T~ - +2z - + z2v = dx (1-2') O (z; x )  . (3.10) 

d,C2 d7 

The equations for the gravitational waves of the second inde- 
pendent polarization (3.3) can be obtained from (3.4)-(3.10) 
by making the formal substitution 

v-+v; sin 2cp+cos 29; lTBa+Hga, (3.11) 

Thus, the original problem has been reduced to the solution 
of the integro-differential system of equations (3.9) and (3.10) 
and the determination of the anisortopic stresses in the colli- 
sionless component of the medium by means of (3.7). 

Under the conditions a = 0 ,O  =0, the system of equa- 
tions (3.9)-(3.10) describes the evolution of tensor perturba- 
tions in a Friedmann universe containing just an ultrarelati- 
vistic ideal fluid. In the long-wavelength approximation 
( ~ ( l ) ,  Lifshitz obtained the following two hydrodynamic 
modes of gravitational waves: an asymptotically constant 
(principal) mode and one decreasing in the metric propor- 
tional to t -'I2: 

sin T cos T v=@-+a-. (3.12) 
7- T 

It is obvious that if at some time t, near the Planck time 
( t ,  = sec) the dimensionless perturbations of the met- 
ric corresponding to the principal and decreasing modes 
were in order of magnitude equal to E, then in accordance 
with (3.12) these perturbations at t ,  = ~ - ' t ,  must become 
E-'  times greater for the principal mode than for the de- 
creasing one. In other words, beginning with the time t, first- 
order perturbation theory become inapplicable for the de- 
scription of the decreasing mode of the gravitational waves. 
Taking E = we see that the time t, in the evolution of 
the real universe occurs much earlier than the decoupling of 
any of the three species of cosmological neutrino (v, , v, , and 
v,) from the primordial plasma. Therefore, in what follows 
we shall set ED when matching the asymptotic expansions for 
the perturbations at the time of decoupling of the cosmologi- 
cal neutrinos from the radiaton-dominatd plasma. 

4. GENERAL SOLUTION OF THE SYSTEM OF EQUATIONS 
FOR TENSOR PERTURBATIONS IN THE LONG- 
WAVELENGTH APPROXIMATION 

We shall seek solutions of the system of equations (3.9), 
(3. lo), and (3.7) in the form of expansions in powers of the 
small parameter T( 1. First, we write down a solution satisfy- 
ing the requirement v(r)+const#O as 7-0 (here and in 
what follows, we retain as many terms of the expansions as 
are needed for the subsequent matching): 
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a, ( z ;  x )  =3 i z 4  
4 (19a-15)  

As a+, the g mode of (4.1)-(4.3) goes over into Lifshitz's 
hydrodynamic (3 mode. 

The conditional Y ( T ) ~  as 7-0 leads to an infinte set of 
independent solutions that do not have hydrodynamic ana- 
logs. These solutions can be constructed as follows. Let f2 ( x )  
be an arbitrary function. We form the function 

and regard it as the leading term of the expansion of @ (T;x) in 
powers of T. Specification of the function Y (x) fixes the part 
of the initial data corresponding to the kinematic modes of 
long gravitational waves discussed in the Introduction. In 
the general case, this part of the initial data can be represent- 
ed as an infinite set of moments (&, ) (k = 0, 1,2, ...), these 
being the coefficients in the expansion of Y (x) with respect to 
some complete orthonormal system of functions, for exam- 
ple, the system of Legendre polynomials (P, (x) ) : 

By virtue of the definition (4.4) &, = A,, and therefore the 
function Y (x) and, by virtue of perturbation theory, @ (T;x), 
Y(T), and ST i ( r )  are completely characterized by the set of 
independent moments 

A, ,  At, As, .  e . (4.6) 

From the solutions of the basic system of equations corre- 
sponding to these moments we can form two infinite inde- 
pendent linear combinations that will correspond to "emp- 
ty" modes, these being solutions of the main system in the 
calss of generalized functions. The empty modes T, and Y2 
(for which&, = A, = ...Y1 a n d d o  = uk12 = ... =Y2, re- 
spectively) have the form 

0 ( z ;  x )  ='12Y, [6 ( 1 - X )  -6 (1+x)  ] e-'=; (4.7) 
@ ( z ;  x )  =i/2Y2 [6  (1 -2 )  +6 ( l + x )  ] e-'=* (4.8) 

(in Eqs. (4.7) and (4.8), S denotes Dirac's singular function). 
The solutions (4.7) and (4.8) do not correspond to any pertur- 
bations of the gravitational field (metric) and the matter (the 
energy-momentum tensor) by merely characterize the arbi- 
trarinessin the choice of the function @ (7 ;~ ) .  The linear com- 
bination of any solution of the basic system of equations with 
an empty mode leads to a solution physically equivalent to 
the original one. Therefore, the empty modes Yl and Y, 
[or, which is the same thing, the first two moments in the 
series (4.6)] can be eliminated from the following treatment. 

The expansions for v and ST; corresponding to the 
4, modes contain only even or only odd powers of T ac- 
cording as the number k is even or odd. These expansions 
being with terms that increase in proportion to 7k - (k23). 
Thus, k = 3 we have 

7 3 a ( l - x z )  
0 ( z ;  x )  = - A 8 P 8 ( x )  (1 - ixz )  -LNS 

2 
z+ ... ; 

2 (9a+5)  

We also write down the corresponding expansions for the 
first two even A, modes, which we shall need in what fol- 
lows when we do the matching: 

1  1  
1-ixz- - 2 z a +  - ixsz'+ 

2 6 

Finally, we consider solutions of the basic system of 
equations that are not regular at the point T = 0. Then in the 
leading order of the expansion we can ignore the second term 
in the kinetic equation (3.9) compared with the first, after 
which integration of (3.9) gives 

3 a  (xZ-1)  
a, ( z ;  2 )  = 

2 (a+l )  v ( 7 ) .  

Substituting (4.15) in the right-hand side of Eq. (3.10) and 
solving the second-order differential equation then obtained, 
we find the two oscillatory modes 

cos (0 In z )  +az sin (o In z )  ] + . . . ; (4.16) 

where w = 1/2[(27a - 5)/(5a + 5)]'12. Although the formal 
limit a 4  in (4.16) and (4.17) is impossible (the oscillatory 
nature of the solutions of the basic system of equations holds 
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under the additional condition a > 5/27), the modes 9, and 
9, correspond to Lifshitz's decreasing hydrodynamic 9 
mode, which, under the influence of the anisotropic stresses 
of the collisionless component of the medium, changes its 
asymptotic behavior and is "decoupled." 

It is readily seen that the perturbations modes consid- 
ered above, i.e., 3 ,  A , ,  A, , .  . ., g l ,  g 2 ,  exhaust all the 
independent physically significant solutions of the system of 
equations (3.9), (3. lo), and (3.7) in the long-wavelength ap- 
proximation. 

5. MATCHING OF THE SYMPTOTIC EXPANSIONS FOR THE 
PERTURBATIONS AT THE BOUNDARY OF THE 
HYDRODYNAMIC AND KINETIC STAGES OF THE 
EXPANSION 

In this section, we discuss one of the possible astrophys- 
ical applications of the kinetic theory of gravitational-wave 
perturbations developed above. Namely, we ask the follow- 
ing question: In accordance with what law do long gravita- 
tional waves evolve in a Friedmann universe after decou- 
pling of the cosmological neutrinos from the primordial 
plasma if prior to the neutrino decoupling (and with neglect 
of the contribution of the gravitons to the space-time curva- 
ture) the perturbations evolve in accordance with Liftshitz's 
hydrodynamic theory? This question is of interest in connec- 
tion with the current intensive development of the model of a 
neutrino universe. At the same time, Zakharov's original 
conclusion4 that there is definitely a qualitative difference 
from the behavior found by Lifshitz for long-wavelength 
gravitational perturbations in an early Friedmann universe 
containing collisionless particles was obtained without anal- 
ysis of the conditions of excitation of the partial modes and 
must therefore be re-examined. 

We shall assume that the decoupling of all three species 
of cosmological neutrinos from the primordial plasma (it is a 
phase transition of second order) occurs instantaneously and 
simultaneously at the Hubble time t = to = 1 sec. It is not 
difficult to estimate the value of the parameter a at 
t = to + 0 if one knows the relative equilibrium energy densi- 
ties of the photons and the electron-positron and neutrino- 
antineutrino pairs, which make the main contribution to the 
total energy density in the universe at t = to - 0 (we do not 
take into account graviton~!)~: 

In their monograph, Zel'dovich and Novikov7 argue that the 
value of the parameter a at t = to + 0 is close to the value a,, 
determined by 

Assuming that the space-time metric is continuous at 
t = to together with all its derivatives, we conclude on the 
basis of Einstein's equations that the energy-momentum ten- 
sor of matter must also be infinitely differentiable at t = t,. 
Since the perturbation of the metric at t = to - 0 is described 
by Eq. (3.12) (in which 9 = 0), while for t = to + 0 it is a 
linear combination of the partial modes found in the pre- 
vious section, the requirement of analyticity of the metric 

near the phase transition point leads to an infintie system of 
linear algebraic equations for 9 ,  A , ,  A 4 ,  . . ., B 1 ,  g 2 ,  as 
functions of @. Without writing down this system of equa- 
tions, we give its solution directly: 

(in the expression for A: and A,* the results of calculations 
for a = 1 are given after the sign of approximate equality). 
The expressions (5.3) answer our question with regard to the 
regime of evolution of long gravitational waves in a two- 
component ultrarelativistic medium generated by Lifshitz's 
principal mode in the hydrodynamic stage of the evolution. 
As was to be expected, the oscillatory asymptotic behaviors 
(4.16) associated with the influence of the anisotropic stress- 
es of the collisionless component of the medium on the 
damping of the"tails9' of the long-wavelength gravitational 
perturbations do not contribute to the solution (5.3). Note 
also that formal analytic continuation of Lifshitz's general 
solution (3.12) for @#O, D#O would lead to a regime of 
development of long-wavelength perturbations at t = to + 0 
to which all the partial modes given in the previous section 
would contribute. 

Let us consider the structure of the solution (5.3); It is 
readily verified by direct calculation that the anisotropic 
stresses in the collisionless component of the medium corre- 
sponding to the 9 * and A: modes compensate each other 
in the leading (second) order of the expansion in 7. The re- 
sulting discrepancy between the Y * and d: modes in ST; 
of the following (fourth) order is in turn compensated by the 
A,* mode, etc. Overall, the solution (5.3) is such that the 
gravitational wave corresponding to it does not polarize the 
collisionless component of the medium at all, i.e., there is no 
perturbation of the energy-momentum tensor of the matter 
in all orders of the expansion in 7. 

Naturally, the assertion earlier that in the above match- 
ing procedure there is an infinite number of partial perturba- 
tion modes Y *, A:, A,*, . . . and, thus, an infinite number 
of expansion terms of each such mode is not to be understood 
formally. Moreover, from the mathematical point of view 
the condition ST; = 0 for an infinite set of modes Y *, A:, 
A,*, . . . leads to a series that diverges as N+ a, 

this representing the leading term of the expansion of @ (r;x) 
for the combination A *  mode. The divergence of the series 
(5.4) is due to the fact that the increase in the degree of anisot- 
ropy of the partial perturbations A:, A,*, . . . in the mo- 
mentum space is accompained (in the case of equality of the 
initial moments of the distribution function) by a decrease in 
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the absolute magnitudes of these perturbations in the config- 
uration space, i.e., a decrease of the absolute magnitudes of 
the corresponding perturbations of the metric and the devia- 
tor of the kinetic stress tensor. In this situation, the mutual 
compensation of the lowest multipole configuration due to 
the following higher ones can occur only by virtue of a corre- 
sponding growth of the higher moments of the function (5.4). 
We emphasize however that if we are interested in only ob- 
servable quantities (v and 6T:), then the divergence of the 
distribution function in the momentum space will not be 
critical for our treatment, since an arbitrary perturbation 
can with any preassigned degree of accuracy be approximat- 
ed by some finite (sufficiently large) set of partial modes. So 
as not to go beyond the accuracy of the linear perturbation 
theory developed in the present paper, we must restrict our- 
selves in the matching to some finite number of d$ modes 
(k = 4,6, . . . , 2N) and ignore the remaining d;t modes as 
introducing a vanishing (less than quadratic in the leading 
term of the principal mode) contribution to the pertrubation 
of the gravitational field. Obviously, the number N depends 
on the amplitude of Lifshitz's principal mode @. Thus, for 
@ = we have N = 4. 

Thus, with allowance for the assumptions we have 
made we conclude that the required regime of evolution of 
the long gravitational wavesj5.3) in the two-component ra- 
diation-dominated Friedmann universe is described by Lif- 
shitz's hydrodynamic @ mode. A similar conclusion was 
drawn under the same assumptions in Ref. 10 with regard to 
the principal mode of density perturbations. What is the 
physical reason for the fact that in these cases the collision- 
less nature of the particles is in no way manifested? 

To answer this question, we recall that the kinematic 
modes of long-wavelength gravitational perturbations in an 
ultrarelativistic Friedmann universe containing collisionless 
particles do not have hydrodynamic analogs. Since the hy- 
drodynamic approximation is based on the apriori assump- 
tion of local thermodynamic equilibrium," the presence of 
kinematic modes can serve as an indicator-and thier partial 
contribution as a measure of--deviation of the perturbed 
state of the two-component medium from local equilibrium. 

We consider an elementary doubly transverse plane 
wave in a radiation-dominated Friedmann universe at 
t = to - 0 with characteristic spatial scale appreciably ex- 
ceeding the distance to the particle horizon. The hydrody- 
namic nature of such a pertrubation means that in each phy- 
sically small volume of the medium thermodynamic 
equilibrium is established instantaneously. Since there is no 
global statistaical equilibrium, the parameters of the local- 
equilibrium distributions vary appreciably over spatial 
scales of the order of the wavelength of the initial perturba- 
tion. Once the neutrinos become transparent at t = to, they 
cease to exchange energy and momentum with each other 
and the remaining particles (which for some time still form a 
single radiation-dominated plasma); however, an apprecia- 
ble deviation from local thermodynamic equilibrium due to 
the considered long-wavelength perturbation is not to be ex- 
pected immediately after the neutrino decoupling but only 
after a certain time interval which, appreciably exceeds the 
age of the universe and is needed for interaction of the initial- 

ly causally decoupled regions of space-time. In other words, 
the statistical equilibrium within a physically small volume 
is disturbed only when the original long gravitational wave 
"goes below" the particle horizon. This is why, proceeding 
from the assumption of a local-equilibrium nature of the in- 
tial stage of th cosmological expansion and remaining in the 
long-wavelength approximation, we conclude that the par- 
tial contribution of the kinematic modes to the resulting evo- 
lution regime of the perturbations after decoupling of the 
neutrinos from the primordial plasma must be apropriately 
suppressed. The solution (5.3) confirms the general conclu- 
sion and particularizes it, namely, the degree of suppression 
is higher the higher the degree of anisotropy in the momen- 
tum space (thus, the mode makes a contribution to the 
perturbations of the metric tensor and the kinetic stress ten- 
sor of order @; the d,* mode makes one of order @, where 
T( 1, etc.). 

Thus, under the assumption of a hydrodynamic nature 
of the initial stage of the cosmological expansion the kinetic 
theory of perturbations developed in the present paper estab- 
lishes the self-consistency of the hydrodynamic approxima- 
tion for describing long gravitational waves in a Friedmann 
universe after decoupling of the cosmological neutrinos 
from the primordial plasma. The specific features of the be- 
havior of the system of free particles associated with the 
kinematic modes of long-wavelength perturbations are im- 
portant for analyzing the development of perturbations in 
the case when we give up the apriori assumption of an initial 
local thermodynamic equilibrium. The necessity of such a 
step, on the one hand, and its attractiveness, on the other, 
which are due to the pressence near the cosmological singu- 
larity of a collisionless graviton gas and the well-known diffi- 
culties in explaining the required initial spectrum of adiaba- 
tic perturbations,' require a separate study. 
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"In the short-wavelength approximation there is a greater complexity of 
the dispersion relations. For perturbations with characteristic spatial 
scale greater than the distance to the particle horizon in the Friedmann 
universe the corresponding time dependence do not admit separation 
into an amplitude and time part of the phase in the usual eikonal sense. 
Therefore, in the long-wavelength approximation there is no point in 
speaking of dispersion or the phase velocity of propagation of perturba- 
tions. 

"Latin indices take values from 0 to 3, Greek (spatial) from 1 to 3. 
"The operations of raising and lowering of the indices of tensor quantities 

describing perturbations is done by means of the background spatial 
metric ya6 = ~ ~ 6 , ~ .  The Cartesian vectors n, s, and m form a right- 
handed triplet in the three-dimensional tangent space; on the transition 
in this space to a shperical coordinate system we choose as direction of 
the polar axis the direction of the vector n; r--(xa J is the Cartesian 
radius vector, 8 and e, are, respectively the latitude and azimuthal an- 
gles, and x = cos 8. 
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