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The introduction of a random function makes it possible to obtain a hierarchy of equations for the 
relativistic distribution functions of charged particles in an isotropic spatially flat Friedmann 
universe. The hierarchy of equations is used to derive a relativistic kinetic equation taking into 
account the influence of the gravitational field on collisions. In the limit of nonrelativistic veloc- 
ities, the collision integral agrees with the Landau collision integral only if the parameter tall/ 
t (t,,,, is the collision time, and t is the cosmological time) is set equal to zero. It is also shown that 
for a relativistic plasma in the limit tcOll / t 4  the collision integral agrees with the well-known 
Belyaev-Budker integral. The collision integral does not contain divergences at large values of the 
impact parameter, which makes it possible, after replacement of eZ by GmZ, to use the collision 
integral for a nonrelativistic plasma for a neutral gas of gravitating particles. 

INTRODUCTION 

The Coulomb collision integral for a nonrelativistic 
plasma was obtained by Landau,' and for a relativistic plas- 
ma by Belyaev and Budker.' For detailed investigation of the 
processes that takes place in the radiation-dominated stage 
in the expansion of the universe, it is necessary to know colli- 
sion integrals, in particular the Coulomb collision integral 
on the background of the Friedmann metric. A relativistic 
kinetic equation in an arbitrary gravitational field for point 
collisions was obtained by Chern ik~v.~  This equation does 
not take into account the influence of the gravitational field 
on particle collisions, and it is therefore simply a covariant 
generalization of the kinetic equation in the special theory of 
relativity. 

In the present paper, we obtain the Coulomb collision 
integral in a Friedmann universe with allowance for the in- 
fluence of the gravitational field on the collision process. In 
the limit tW1 , / t 4 ,  where twll is the time during which the 
collision takes place and t is the cosmological time, this inte- 
gral goes over into Landau's collision integral (for a nonrela- 
tivistic plasma) or the Belyaev-Budker integral (for a relativ- 
istic plasma). 

Fort,, /t #O, the collision integral for a nonrelativistic 
plasma is not the Landau collision integral. The Maxwell 
distribution function does not make the obtained integral 
vanish. 

Allowance for the expansion of the universe eliminates 

Here, qi are the coordinates, and pi are the covariant mo- 
menta of the particles (i, j, k = 1,2,3,4). The expression (1) is 
a scalar. By means of (I), the current vector of the particles of 
species a can be calculated in accordance with the expression 

The functions qf,, (s) andp!!)(s) in (I ) determine the trajec- 
tory of the I th particle of species a in an eight-dimensional 
phase space and satisfy the equations 

dq:,,/ds=p:,,/m.c, (34  
I h d p i " 4 / d s = i / z a , g j h p ( ~ ~ ~ ~ t ~ +  ( e ~ c ) ~ i A u ( : ) .  (3b) 

An equation for the function N, (q, p) follows from the defin- 
ition (1) of the function N, (q, p) and Eqs. (3): 

Here, Fi, is the electromagnetic field tensor in a plasma; it 
satisfies the system of Maxwell equations 

0 

In the spatially flat Friedmann metric (q4=q) 

dsZ=aZ ( q )  (dq2- (dq')  '- (dq2)  '- ( d q y  '). 

the logarithmic divergence of the collision integral at large 
values of the impact parameters. For a gas of nonrelativistic 

Eqs. (4) and (5) become (a' = da/dq) 

gravitating part:lcles,-this fact is establiihed in Ref. 4. -- azA{ 4n AA, = - Eo ~ ~ < N ~ N . ( P ,  P )  
az 

(5') 

DERIVATION OF THE KINETIC EQUATION 
aq2 0 

aNo a' aN. eo aNa 
To obtain a collision integral in a Friedmann universe, ui -+-~hpk-+ i -Fauk-=O.  (4') 

a q ' a  d p r c  
we use the method of Klimontovich, who in Refs. 5 and 6 

api 

obtained the collision integral ( o f ~ e i ~ a e v  and Budker) for a Here, Ai is the vector potential of the electromagnetic field 
plasma in Minkowski space. (Fik = diAk - dk Ai ), and it satisfies the noncovariant gauge 

We introduce a random function of eight variables for condition 
the particles of species a: 

*a qAmad,=o 
~ . ( q { ¶  pj) - (q+-d,l, (4  B (p{ -hl )  (4 ) . (1) 

1-1 
(qkm is the Minkowski tensor). 
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Equation (5) together with (6) gives Maxwell's equations 
in the special theory of relativity (see Ref. 7). The solution 
with retarded potentials for Ai has the form 

We represent this solution in the form (k = Ikl) 

We substitute (7) in (4): 

Here, 

Laab (q-q' t PI) 

Averaging (8) over the particle trajectories, we obtain 

Here, x denotes the set of all eight variables qi , p j .  

Multiplying (8) by Nb (x') and averaging, we obtain 

The other equation for the second moment is obtained from 
(1 1) by the substitution actb, xctx'. 

We introduce the single-particle, two-particle, three- 
particle, etc., distribution functions: 

(Na(x) )=%fa (x) 7 (124 
(Na(s) Nb (a') )= (nanb-na8ab)fab (2, x') 

+no& I ds'8 (x' -r (s 1 x) )fa (x) (12b) 

and similar relations for the higher moments. Here, xa (six) 
denotes the phase-space trajectory of the particles of species 
a that passes through the phase space point x, and n, is the 
number of particles of species a. 

Substituting (12) in (10) and (11) and noting that 
L ;;(q - q', p') vanishes for q = q', a = b, we obtain a system 
of equations for the relativistic distribution functions 
(nu % 1): 

a 
XLfbd (.(,-qM, p") U" fab (2, z') J b x 8  (D"-w (s"lxl) ) -0. 

 PI 
(14) 

In obtaining (14), we assumed that x' is not on the trajectory 
of the particles of species a that passes through the point x of 
the phase space: x' #x, ( S I X ) .  

To obtain the kinetic equation to terms of second order 
in the interaction, we set 

jab (5, XI) =fa(x)fb(xl) +gab (2, x ' )  t 

f.se (x, x', xu) =fa (2) fb (2') fe (x"). 

The approximate system for f a  (x) and gab (x, x') is 

a 
Xuk- (gab (x, z') +gba(xf, 5) ) =07 

a pi 
a a' agab (5, x') 

ui- g* (x, s f )  + - uhpA 
aqi a 8 ~ 4  
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As in Ref. 6, the right-hand side of Eq. (15) contains a sym- Substituting (18) in (15) and using (9), we obtain after 
metric combination of solutions of Eqs. (16) forgab (x,  x') and integrating in (15) over d 3q' the kinetic equation 
the solution of the equation for g,, (x', x) obtained from (16) a f .  a 
by the substitution a+&, xttx' .  

a f a  
a f a  + 5. (F{k)ub_ = - ui-+-ukp,- 

8qi a dp4 c Jab, (19) 
Because the interaction is weak, the trajectory of the dpr 8 ~ 5  

second particle in the integrand in (1 6) can be assumed to be a where 

geodesic in the Friedmann universe. We then obtain a kinet- 2ea2eb2nb  3 1 p d p ,  5 + ic equation to terms of second order in the interaction. For nc2 
11. a"(r1) 

ka 
the geodesic trajectory in the spatially flat Friedmann metric 
we have for a particle of species b (p2 = p: + p: + p i  ) 

(6) pa (qN1 ~ ' ) = p a ' = ~ o ~ s t ,  

pib' (qNl 5') = (8&'(qN) +pra)Ih=p'' ( q N )  , a x sink ( q  - q')) - u ' - (exp (- ikq) sin k (q  - q f ) ) ]  u' 
j aq1 

where 
{j ( b )  ( b )  - eb=g Pr Fj -conat, 

n' ' dr  qa (,,"I x') =qal-pa1 I-, q4 (q"lxO -9". 
1' 

P" (7 )  

*.' 
x d d  exp ( i k  31 v (1") dq" + ik v' (qa) dq") 

tl. B' 

Integrating in (16) over s", q"", and p", we obtain 8 a 
[P = @I, PZ, ~ 3 1 1  x [ukl (T') (exp (ikq) sink ( r  - z')) - ui' (%'I 7 84% 

x (exp (ikq) x sin k ( z  - r'))] 

In (17) we substitute the explicit form for L $ from (9) and 
write down the general solution of Eq. (17): 

a - vi ( z )  7 aq* (exp (ikq) sin k (.t - 

and (Pi, ) is the self-consistent electromagnetic field pro- 
duced by the particles. 

It is more convenient to make the remaining calcula- 
tions by going over to the seven-dimensional distribution 
function Fa (q, P ) , ~  which depends on the coordinates and 
spatial componentsp, of the momenta: 

a 
(exp (-ik (q-q') ) 

(18) 
In this expression, we have introduced the following nota- 
tion: v is the three-dimensional vector with coordinatesp, / 
p,, vk = (v, I), ui = qik uk. The primes identify particles of 
species b, while the unprimed quantities correspond to the 
particles of species a; qi = (q" , 7); (a f a  (x)/dp,), denotes 
the derivative in which the arguments q, q, pa ,p, are re- 
placed, respectively, by the arguments 7, and 

q+ +S s (q") pa, p. (TI. 
% 

The equation for Fa is obtained from (19) after integration of 
both sides of Eq. (19) over dp,. The integration is also to be 
performed over dp: in (20). 

As a result, we obtain 

where 

a (exp (- ikq) sink (q  - q')) 

a - vat - (exp (- 
aql 

ikq) bin k (q  - q l ) ) ]  
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7' 

x Fb (x')  { dr'exp ( ik  v (q") dq" + ik 5 v' (qn) dq") 
VP 7 n' 

a 
x [v;  (r') (exp (ikq) sink ( r  - 1')) 

z' 

x sink ( r  - r')) + dr'vkp ( r t )  - Fa (x)  5 dr exp I S q o  ) 7' no 

7' 

x ( ik  5 v (q") dq" + ik 5 v' (q") dq") 
7 n' 

a - V B  ( z )  - (exp (ikq) sin k ( r  - 
a q T k  

(22) 

Here, the primed quantities referring to the particles of spe- 
cies b taken without argument are calculated at the time 7'. 
The unprimed quantities are calculated at the time q. If an 
argument is indicated, the function is taken at the time indi- 
cated in the argument: 

(aFa (x)/aps), denotes the derivative with respect tops of 
Fa,  with the arguments q and q replaced by the arguments T 

and 
1 

q + Jv(q")d,,". 
* 

Similarly, (dF, (xl)/dp;), means that the arguments q' and 
q' are replaced after differentiation with respect to p i  by T' 

and 

q';j v' (q") dq". 
v '  

Further simplifications of the expression (22) can be 
achieved by assuming the parameter kq to be large: kq) 1. 
This approximation corresponds to collisions occurring over 
distances much less than the horizon distance: 

Ukq-r/ct<1. (23) 

To estimate the integrals in the approximation (23), we use 
the method of stationary phase.' By this method we can 
readily estimate integrals of the form 

%I i dr' exp ( ili J vt ($0 dl") 9 (r' ) { sin ('-") } 
cos k (r-T')  

h n' 

k '(')  
exp ( i q  v' (q") d l " )  (24) i kv (d  1 k2- (kv (r) ) 

9' 

and others like them. Here, ~ ( 7 ' )  is a function that depends 
weakly on k ~ ' .  

Integrating twice in (22) by means of (24), we obtain 

2ea2ebad S d8pf S d8k [k, (v'ull) + uUf ( (kv ) -  (kvl)) l  Ja = .ca 

1 +- v i  (kv  ( T )  - kv' ( T ) )  - [k2 - (kv)'] 

1 8Fb' 
X [k2 - (kv  ( T ) ~ ]  (Wj* 

Here, the quantities for which the time argument is not indi- 
cated are calculated at the time q. 

For a nonrelativistic plasma, when Iva 141, we obtain 
from (25) 

Here va =pa /ma ca, v; = p;/m, ca. 
The integral over d~ is most readily calculated in the 

case when the scale factor a varies in accordance with the 
law a = a l l ,  i.e., for a plasma in the radiation-dominated 
stage of expansion of the un i~e r se .~  In this case v = v d  
q, v' = vA/q, where v, and v; do not depend on the time, and 
the expression (26) takes the form (if we ignore the depen- 
dence of the distribution function on the time and the coordi- 
nates) 

We calculate the integral (u = v' - v) 

uoug J d'k kmkbq =A ( - ;;--) f ~ 6 o ~ .  
kk (ikuq ti) (28) 

Here 
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In the calculation of the integral for B the upper limit fork is 
set equal to + CO, since this integral converges at infinity. 
The lower limit for k is set equal to some nonvanishing value 
of kD despite the fact that the integral converges as k 4 .  In 
this way, we take into account the screening of the electro- 
magnetic interactions at distances greater than the Debye 
radius I ,  : 

For 2A + 3B, we obtain an integral that diverges logarithmi- 
cally as k+oo but converges as k 4 .  As k, , we must take' 

The scale factor a in (29) and (30) is introduced because the 
electromagnetic field is expanded with respect to harmonics: 
exp(ik*q). Since the spatial distances are measured by aq, the 
wave vector is not k but k /a. 

We note that the kernel in the collision integral (27) 
differs from the Landau kernel. This difference has the con- 
sequence that the Maxwell distribution function 

F=const exp (-f3p2) 

does not make the collision integral vanish. 
If the parameter kD ur] tends to infinity, then the kernel 

in the collision integral (27) takes Landau's form, since in 
this case A = I?L /2u and B = 0, where 

is the Coulomb logarithm. 
In reality, k, uc has the following form when the mean 

thermal velocity is substituted in place of uc: 
4neZN 'h 1 @ '" 4n;eZN Ih 

kDuq=a(T)  (;) 9 = 2 ( y - )  t. 

Substituting in this expression the time dependence of the 
electron density from Ref. 9, N- 10-'x lo3' t -3'z(sec), we 
obtain 

Taking into account (31), we obtain the collision integral for 
a nonrelativistic plasma for arbitrary variation of the scale 
factor a. For this, we apply to the integral over d~ in (26) the 
method of stationary phase, assuming the following param- 
eter to be large: 

If at the same time we do not ignore a possible time depen- 
dence of the distribution function, we obtain after calcula- 
tion of the integrals over d 3k 

Finally, the kinetic equation for the nonrelativistic plas- 
ma in the Friedmann universe has the form 

where Zzb has the form (27) in the case of the dependence 
a = a l q  of the scale factor when the dependence of the distri- 
bution function on the time is ignored but the parameter 
tcOll /t has arbitrary value. In the general case, the expression 
(32) gives the expression for the collision integral in the limit 
tCOll4t. 

The collision integral in the form (26) also holds for a 
nonrelativistic gas of gravitating particles if in (26) we re- 
place e2 by Gm2, where G is the gravitational constant. This 
is due to the fact that nonrelativistic particles in a plasma 
interact in accordance with the Coulomb law, while in a 
gravitating gas they interact through Newton's law. These 
laws are identical if e2 is replaced by GmZ. After such re- 
placement, the collision integral (26) agrees with the expres- 
sion obtained in Ref. 4 [see Eq. (15)] if the dependence of the 
scale factor a is taken in the form a = 1/2aoqz (nonrelativis- 
tic stage of the expansion). In the case a = alr], the collision 
integral can be obtained from (27) and (28) after the substitu- 
tion e2-+GmZ and the passage to the limit k D - 4  (gravita- 
tional interactions are not screened). 

In the case of a relativistic plasma, we can obtain from 
the collision integral (25) the following result: In the limit 
t c o l , / t 4 ,  the collision integral is given by the Belyaev- 
Budker expressi~n.~ 

For this, we apply to the integral over dr in (25) the 
method of stationary phase, assuming that the parameter 
(3 la) is large. We obtain 

Equation (19) together with (34) gives the Belyaev-Budker 
equationZ written in Klimontovich's formU6 
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