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Explicit equations for four quantities that describe spin glasses are obtained in the molecular-field 
approximation, namely, for the susceptibility of and the Edwards-Anderson parameter at macro- 
scopic (,yo and go) and microscopic (X and q) times. The differences of these quantities (,yo - x and 
q, - q) are measures of the irreversible phenomena in spin glasses which, in turn, are due to 
degeneracy and non-ergodicity in these systems. The problem is solved for the "soft" model of 
spin glass for the case of weak anharmonicity. It is shown that the system contains an infinite 
number of zero-gap modes. In our approximation, X, and q, do not depend on the temperature T. 
Near the critical temperature in a zero magnetic field we have T (,yo - x)ar2 ,  and in a finite field T 
is obtained in place of .r2, in agreement with experiment. 

PACS numbers: 75.40.Fa 

1. INTRODUCTION 

Failure to understand phenomena that occur in the re- 
gion of the Alameida-Thouless (AT) instability1 have recent- 
ly raised difficulties in the theory of the spin-glass molecular 
field. An attempt to solve the problem formally within the 
framework of broken replica symmetry has led Parisi to de- 
velop a theory in which the order parameter is a function q(x) 
that is a generalization of the Edwards-Anderson (EA) pa- 
rameter q and depends on a continuous parameter x (see, 
e.g., Refs. 2-5). This theory, described by an infinite number 
of order parameters q(x), has many interesting physical 
properties. In particular, the negative-gap mode, which is in 
fact the cause of the AT instability, becomes a zero-gap 
mode in the Parisi t h e ~ r y . ~  The physical meaning of the or- 
der parameter q(x) in this theory, however, remained utterly 
incomprehensible. Nor was the meaning of the mathemat- 
ical procedure in this paper understood. It was not complete- 
ly clear how the physical quantities are expressed in terms of 
q(x). Thus, although it was felt on the one hand that the 
theory leads to reasonable physical conclusions, more than 
enough questions remained. 

At the same time, analysis of the equations of Thouless, 
Anderson, and Palmer7 and of numerical modeling by var- 
ious  worker^^-'^ led to the conclusion that spin glasses are 
non-ergodic systems, in view of the degeneracy due to the 
presence in them of infinite barriers. The usual thermody- 
namic averaging and averaging over time lead in this case to 
different results. In particular, two different susceptibilities 
are obtained (see, e.g., Ref. 11). If this is the case, the usual 
methods of calculating thermodynamic quantities become 
unsuitable. In particular, it is impossible to apply to these 
systems the replica method, at least in its usual form. A hy- 
pothesis was advanced1' that the Parisi theory describes cor- 
rectly the non-ergodic behavior of spin glasses. If this hy- 
pothesis is correct, it becomes clear that the mathematical 
contrivances in the Parisi theory are connected simply with 
an attempt to adapt the replica method to a description of 
non-ergodic systems. We shall see presently that this is in- 
deed the case. 

It is known that if a system is not ergodic, only a tempo- 

ral description is possible for it. The statistical quantities are 
calculated by taking the limit as 0 1 4 ,  where w is the fre- 
quency. For example, the static susceptibility is defined as 
the limitx = x (w-0). If, however, we calculate the quantity 
xo = x (w-0) by direct statistical averaging, we get x,#x. 
We denote their difference by 

where Tis the temperature. We shall name the parameter A ,  
following a number of papers (see, e.g., Ref. 13), the irrevers- 
ible response. Obviously A # O  only in non-ergodic systems. 
The parameter A is a more important characteristic of spin 
glasses than the EA parameter. In particular, the phase tran- 
sition due to the appearance of degeneracy and non-ergodi- 
city can take place also in an external magnetic field,13 al- 
though the EA parameter differs from zero in this case also 
in the paraphase. 

Once it became clear that spin glass are non-ergodic 
systems amenable not to a statistical description but only to 
a temporal one, papers were published14-17 based on precise- 
ly the latter description. 

The first result of these payers was an elucidation of the 
physical meaning of the T singularity. It turned out that at 
the AT-singularity point the damping in the system vanish- 
es. This means in fact the onset of infinite barriers and of 
non-ergodicity. An attempt to describe the system below the 
AT singularity by introducing an irreversible response A in 
the simplest manner17 led to the same equations for the EA 
parameters q and A that were obtained earlier by Som- 
m e r ~ ' ~ . ' ~  by an entirely different method. It is known on the 
other hand that the AT singularity cannot be removed by 
this method, for a mode with negative gap remains in the 
system as before." The reasons for this are discussed in de- 
tail in Refs. 14-16. It was shown in these papers that there is 
some uncertainty in the theory and that introduction of the 
irreversible response A in the simplest manner does not 
eliminate this uncertainty. This is why the AT singularity 
likewise remains. Sompolinsky l4 proposed a simple method 
of solving this problem. He suggested the existence of an 
infinite hierarchy of infinite relaxation times ri . This hierar- 
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chy corresponds to a hierarchy of infinite barriers, and it is 
the latter that lead to the non-ergodicity. If this is so, there 
should exist also a hierarchy of the EA parameters qi and of 
the irreversible responses Ai (i = 1,2, ..., k ). The contribution 
ofeach is, ofcourse, infinitely small ( - l / k  ). It turns out that 
if such a picture is accepted, the uncertainty of the theory is 
completely eliminated (of course, as k--+ oo ). Introduction of 
a continuous parameter x = i / k  leads to an infinite number 
of order parameters q(x) and A (x). It is very interesting that 
the Parisi theory was found to be a particular case of the 
Sompolinsky theory. Moreover, it is clear at present how to 
obtain the results of Ref. 14 from the concept ofbroken sym- 
metry of the  replica^.^'.^^ Sompolinsky's approach, how- 
ever, is of course much more physical and illustrative. 

On the other hand, no explicit equations whatever were 
obtained for A (x) and q(x) in this approach, and the theory 
exists only in functional form. The reason is that in the gen- 
eral case the problem is a typical field-theory problem, and 
solution of field problems calls for some parameter. We 
study in this paper the so-called "soft" spin-glass model, 
which is the one mainly used in the study of spin-glass dy- 
namics (see, e.g., Refs. 15-17), since the usual model of a 
fixed spin does not lend itself to theoretical investigation. 
This model contains an anharmonicity parameter u. We ob- 
tain explicit expressions for A (x) and q(x) by standard pertur- 
bation theory in u, and use the smallness of a certain param- 
eter E which we call the supercriticality parameter. It will be 
defined below. The expansion in terms of E,  however, can be 
obtained formally with the aid of the perturbation theory in 
U. 

No AT singularity arises in first order in u. We use 
therefore perturbation theory up to u2. It is in this order that 
we study the phase transition connected with the appearance 
of degeneracy and non-ergodicity in the system. We obtain 
and investigate explicit equations for the parameters q(x) and 
A (x), which are, generally speaking, integral equations. In 
our approximation, however, these equations reduce to alge- 
braic and are easily solved. 

2. BASIC EQUATIONS AND THE SUPERSYMMETRIC 
DIAGRAM TECHNIQUE 

We choose the Hamiltonian in the 

U ( m )  =m2/2b+ um4/8. 

Here mi are classical fields, jik exchange integrals, and 
hi local magnetic fields. By choosing U (m) = S(m2 - 1) we 
obtain the usual Ising model, whose dynamics is very diffi- 
cult to study. In the soft model U (m) takes the form given in 
(2). In this model the spin modulus fluctuates and not only its 
direction. We consider the case of spin glass with ( J )  = 0 
and with random magnetic fields hi. We shall assume that 
Jik and hi have Gaussian distributions and 

It is easily shown9 that the random magnetic fields and the 
constant magnetic field are gauge-invariant if ( J )  = 0, but 

random magnetic fields are easier to analyze. 
The dynamic equations are in our case Langevin equa- 

tions with random forces .ci (t ), i.e., 

1 dm, 1 dH 
I'T dt T dmi + &, ( t ) ,  

2 
< F ,  ( t )  ~j ( t ' )  ) = - 6ij6 (t-t') , 

rT 

where T is the temperature and r -' the unrenormalized 
relaxation time. 

Generally speaking, one can use the diagram technique 
developed for averaging equations of type (4) (see, e.g., Ref. 
23). This technique, however does not have an effective Ha- 
miltonian in explicit form, and this is frequently inconve- 
nient. On the other hand, in Ref. 24 was indicated a general 
method of constructing an effective Hamiltonian in prob- 
lems with random forces, by using the supersymmetry ideas. 
This Hamiltonian was used for dynamic problems, in parti- 
cular, in Ref. 25. We shall describe briefly its derivation. 

The complete stochastic functional P for the functions 
mi (t  ) (the analog of the distribution function in probability 
theory) is of the form 

1 1 dZH l J )  

x D e t { E 6 i i ( g )  t , t 8  +-- T dmi dmj 6  (t-t') }. 
The symbol (a /at ),,, is used for the differentiation operator 
in matrix form. Using next the identities 

where vi and 77 are Grassmann variables having the follow- 
ing anti-commutation and integration proper tie^^^: 

and averaging over E ~ ,  we obtain the following expression for 
IV: 

We introduce now the s ~ p e r f i e l d ~ ' , ~ ~  

where 0 and 9 * are the supersymmetric coordinates. L takes 
then the form 
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a@i('' t ,  + 2@,(E, t ) )  x { p ( e , l )  a t  

Equation (lo) solves in the most general form the problem of 
the effective Hamiltonian (more accurately, Lagrangian) in 
the dissipative-dynamics problem. We note the operator 
P (8,l) is antisymmetric, since the operator of differentiation 
with respect to time is also antisymmetric, and the complete 
expression must be symmetric. 

To obtain an effective Hamiltonian that is specific for 
our problem we must substitute in (10) the Hamiltonian 
H (@ ) from (2) and average the stochastic functional over Ji, 
and hi, using (3). We then obtain 

L.= dt  d t f  5 d0' d0 dl' d tLR(t ,  t', 0 .  I ) ,  

- + ~ ~ i k @ i ( ~ , t ) @ i ( ~ y t ' ) @ h ( @ ~ ~ ) @ k ( ~ , ~ ' ) ,  

ik 

6 ( 0 - t )  =- (8*-E*) (0 -g )  =E(O,  t) . 
We shall solve the problem in the molecular-field ap- 

proximation. In the language of the effective Hamiltonian 
(1 1) this reduces to factoring the last term as follows: 

The averaging in (12) for the function G is over the Hamil- 
tonian (1 l), which becomes single-node after the factoring 
(12). Equations (1 1) and (12) yield a self-consistent system of 
equations, which we shall name in fact the theory of the 
molecular field in spin glasses, since it is a generalization of 
the usual molecular-field theory to include the dynamic 
case. 

After factoring in (12), all the terms in the Hamiltonian 
(1 1) except the quaternary term in U (@ )are quadraticin @. It 
is therefore easy to develop a standard perturbation theory 

in this quaternary term. We shall assume for simplicity that 
h = 0. Generalization to the case of finite h is quite simple 
and will be done at the appropriate place. 

It is easy to show that Wick's theorem holds in the su- 
persymmetric diagram technique, so that we can use stan- 
dard methods. Dyson's equation has in this case the follow- 
ing form in the w-representation: 

The quantities w$h the carets in (13) T e  operators in the 
superfield space, E is the unit operator, P was introduced in 
(19), andA ( 8 , l ) ~ l .  It is easy to show that 

A A A 

P2=E, A2=0, AP=-PA=A.  (14) 
h 

It is seen from (14) that products of the operators:, 2, and A 
are expressed in terms of the operators themselves, so that 
the correlators in (13) can always be cxpanded in terms of 
these three operators. The operator 2 in (13) is the mass 
operator. We put 

We then easily obtain from (13) and (14) the following equa- 
tions: 

Equations (16) are in fact the basic equations of our the- 
ory. Let us note first the physical meaning of the quantities D 
and G + . Using the definitions of the superfield (9) and of the 
s re en function (12) it can be easily shown that D (w) and 
G- (w) are respectively the Fourier transforms of the correla- 
tor (m(t)m(t ')) and of the retarded correlator 
(m(t )p(t ' ))a (t - t '). It is easy to show that TG-(w) is the dy- 
namic susceptibility of our system. If 2 = 0 and I,  = 0 we 
obtain, naturally, equations for the dissipative dynamics of a 
harmonic oscillator: 

Since it can be easily shown that G+G- is real and is a maxi- 
mum at w = 0, it can be seen from (16) that when the condi- 
tions 

(410 /T2)g2=l ,  g=G, (o=O) (18) 

are satisfied the correlators D (w) and G,(w) have singulari- 
ties. This means that the condition (18) determines the 
phase-transition point. We note that if the renormalized 
damping time is defined as 
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then r-co at the phase-transition point. 

3. PERTURBATION THEORY FOR &(w) 

It can be easily shown that the contributions of the first- 
and2econd-order diagrams yields the following expression 
for 2 (t ): 

3u 9u2 
2, ( t )  = - - D  (t=O) 6 ( t )  + - G ,  ( t )  D2 ( t )  , (20) 

2T 2T2 

In the w representation we get from (20) 

z* (0)  = 

Recognizing that D (w) and G-(w) satisfy the fluctuation-dis- 
sipation theorem (FDT), we easily obtain a number of useful 
relations: 

2 
D ( 0 )  = - Im G- ( o ) ,  D (t=O) =G- (o=O) =g, 

I,> 

We have already used the second of these relations on going 
from (20) to (21). The last relation of (22) expresses in the 
usual manner the static mass operator in terms of the static 
correlator. We note that it follows from (22) that a(w) and 
8- (w) satisfy a relation similar to the FDT. This is the neces- 
sary condition under which D and G- in (16) also satisfy the 
FDT. 

We introduce now a random magnetic field. It can be 
easily shown by using (1 1) that the following changes will 
occur in the perturbation theory: D (t ), u(t ), and B (t )acquire 
time-independent terms which we introduce in the following 
manner: 

D ( t )  =q+Do(t), a ( t )  =E+o,(t), 

2 h2 
B ( t )  = - - 6 ( t )  -00 ( t )  - --; - E. 

(23) 

I'T T 

Obviously, q in (23) is the EA parameter. The term h ' / T 2  in 
B (t ) stems from the effective Hamiltonian, and 6 from per- 
turbation theory. In thew representation we have 

The following must be noted here. A natural generalization 
of the FDT to include the case of a magnetic field, constant 
or random, is the FDT for the time-dependent quantities, 
i.e., for Do(t ) and ao(t ). Therefore it is necessary to replace D 
and a in (22) by Do and a,. 

Introduction of the random magnetic field added a new 
parameter to our theory, the EA parameter q, which is to be 

determined. We must therefore obtain an equation for q. We 
assume (and this is one of the basic assumptions of the pres- 
ent paper) that Eqs. (16) are valid also in this case. Then, 
substituting (24) in the equation for D (w) in (16) and equating 
the coefficients for the S function, we obtain for q the equa- 
tion 

Equations for G ,  and Do are obtained from (16) by simply 
replacing D and a by Do and a,. These, however are not the 
only changes in the equations, since 2, and a, must be 
calculated with q taken into account. To this end we must 
substitute the expression for D from (23) or (24) into (20) or 
(21). We then obtain 

2 dot do2 
+T JW ~ ~ ( o - w ~ - o ~ ) ~ ~ ( o i ) ~ o ( ~ ) } ,  

We have separated in (26) the terms 2 and a,, which are 
proportional to G and Do, inasmuch as 2 and a in Dyson's 
equation should not contain these terms. An equation for 
was also obtained from (20). We then obtain from (16) 

It can be seen from (27) that the singularity in Do(w) at 
w = 0 did not vanish and is determined now by the condition 

Taking into account Eq. (25) for q and the expression for 
from (26), we obtain from (28) the following condition for the 
singularity in Do: 

q3= ( h / ~ z u )  '. (29) 

We note that Eq. (25) together with Eq. (27) for G ,  yield at 
w = 0 equations for two thermodynamic quantities, the EA 
parameter q and the static susceptibility g:  
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Equations (30) are the Sherrington-Kirkpatrick equa- 
tionsZ9 of second order in u for our model. This can be veri- 
fied by using the standard replica method. The condition (28) 
is an equation for the AT singularity in the same approxima- 
tion. Thus, as expected, the AT singularity means diver- 
gence of D,(w), or in analogy with (19), that the relaxation 
time becomes infinite. The relaxation time usually becomes 
infinite when degeneracy, and hence non-ergodicity, ap- 
pears in the system. 
4. SIMPLEST EQUATION FOR THE IRREVERSIBLE 
RESPONSE 

As already mentioned in the Introduction, onset of non- 
ergodicity brings about a difference between two susceptibi- 
lities or, more conveniently, between two correlators, which 
we designate as 

g = lim G, ( a ) ,  g+A=G,  (o=O) . 
0 - 0  

(31) 
Just as a 8 function can be regarded as the result of a limiting 
transition, A can be regarded as the function: 

A ( o ) = A l i m -  " A )  = A 1 y e t )  . (324 
o + i y  ' 7'0 

It is then obvious that the limiting values are A (w) = 0 or 
A (a) = A at w = 0, depending on the sequence in which the 
limit is taken as w and y go to zero. We shall distinguish 
between these limiting transitions by using the following no- 
tation: 

A  (a-+O) =0 ,  A  ( a = O )  = A .  (32'3) 
We then obtain Equation (31). We will use for quantity 

A the term "irreversible respond." Formally we can intro- 
duce A in the following way. We put in an analogy with 
Equation (23) 

G-  ( t )  = A  ( t )  tG-, ( t )  , C- ( t )  =p ( t )  + L o  ( t ) ,  
n ( t )  = q ( t ) + ~ , ( t ) ,  ~ ( t )  = ~ ( t ) + ~ , ( t ) ,  

(33) 

where q( t)  is the Fourier transform of 2.rrqs(w). Here, of 
course, A (t ) and q(t ) do not change over physical times, but 
we shall write them as time dependent, since this will become 
important later. Thequantities p(t  )and f (t )are also constant 
in physical time. Obviously, products of the type A (t )D,(t ) 
yield zero, and products of the type yield q(t )Do(t ) = qD,(t ). 
Therefore Eqs. (26) and (27) remain in force, but it is neces- 
sary to replace in them G + (o) by G., (w). This means that 
Eqs. (30b) are also preserved if it is assumed that 
g =  G*,(w =0). 

We must now write equations for A and q. It can be 
easily shown that 

If we put 

q ( t )  = q l i m  ecr''l. 
r-0 

It can be seen from (32), (34), and (35) that the product 
A (t )q2(t ) depends substantially on the sequence of the limit- 
ing transitions with respect to y and 1" in (32) and (35). The 
definition of p(t  )thus becomes somewhat ambiguous, as first 
pointed out by S~mpolinsky. '~ Obviously, 

~ ( t )  =o, rKr .  
In the second case we again obtain the equations of the pre- 
ceding section. We consider therefore the first case. 

Just as in the preceding section, we assume that Eqs. 
(16) are valid also at w -1", y, which we shall call the macro- 
scopic frequencies. Then, considering in succession in the 
regions w(1" and Tgw(y, we readily obtain the following 
equations for q and A: 

Equations (37) together with (30b) are the complete sys- 
tem of equations for three thermodynamic quantities: q, g, 
and A .  From (30b) and from the first equation of (37) we have 

from which it can be seen that A becomes different from zero 
when the AT condition (28) is violated. It can be easily 
shown, for example, by using the method of Ref. 20, that 
Eqs. (37) and (38) are the Sommers for our 
problem. As aleady noted in the Introduction, the Sommers 
solution is unsatisfactory. This is easily understood also 
from our analysis. Indeed,the first equation of (37) is similar 
to (30b), but is written for a Green function G-(w) in the 
range 1"(w(y, while (30b) is applicable at w)y. However, a 
detailed analysis in the region r g w g y  shows that a new AT 
singularity appears there and must again be removed. If this 
is done, we remove it, but a succeeding one arises, etc. We see 
thus that an infinite sequence of AT singularities appears, 
and can be removed only by introducing an infinite number 
of parameters q, and A , .  As already mentioned in the Intro- 
duction, this is exactly what Sompolinsky proposed to do. 
We shall show in the next section how this can be done. 

5. EQUATIONS FOR A(x) AND q(x) 

To implement this program we proceed as follows. We 
introduce a dual hierarchy of frequencies y, and Ti (with all 
y,, r ia )  and of the functions S,(o) and pi(@), using the 
formulas (getting ahead of ourselves, we note that in the limit 
as k + ~  the equations cease to depend on the chosen rela- 
tions between yi and Ti): 
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We carry out here, in effect, an iteration of the procedure 
considered in the preceding section. This means physically 
introduction of the infinite hierarchy of barriers, which was 
proposed by Sompolinsky and was referred to in the Intro- 
duction. We put 

Just as in the preceding sections, we assume that Eqs. 
(16) are valid also in the region of macroscopic frequencies. 
All the conclusions of the preceding sections, as already 
mentioned, can be reproduced by the replica method. Since 
the procedure of the present section is an interaction of that 
in the preceding one, and since it is known from the replica 
m e t h ~ d ~ ' . ~ ~  that such an interaction corresponds to the 
Sompolinsky scheme, our assumption is fully confirmed. 

We note first that Eqs. (26), (37), and (30b) remain again 
in force, subject to the stipulations made in the preceding 
section. To derive 2k equations for the 2k quantities qj and 
A ,! we must consider in succession in (16) the 2k regions in 
(39) and take (33), (34), and (36) into account. We then obtain 
after straightforward but laborious transformations 

The term with q, in (41) is separated at h $0, since it is clear 
that in the language of Eq. (40) the term with h is of the form 
(h 2/T 2)So(~) .  It can be seen from (41) that generally speaking 
the coefficients of qj and A l are not equal. On the other 
hand, the coefficients ofA ,! are AT singularities in the corre- 
sponding region. It is therefore easy to show that at a finite 
number of iterations of k the AT singularity does not vanish. 
The only way out is to go to the limit as k-+m. Then 
qj,A l - I/k (except for q, at finite h ), and we obtain, by in- 
troducing the continuous variable x = l/k, dx = l/k, 

We note first that in the region where q' and A ' differ from 
zero, i.e., in the region of the AT singularity, two equations 
in (42) coincide. This means physically that in all the fre- 

quency-hierarchy intervals there are zero-gap modes, i.e., 
we have an infinite number of zero-gap modes. Next, Eqs. 
(30b) and (42) are simple algebraic equations. We note that 
ql(x) andA '(x) themselves are not determined from the equa- 
tions. Only the relations between q(x) and A (x) are deter- 
mined, and equations are also obtained for the four physical 
quantities go, q, A ,  and g. We note that q, and A + g are 
respectively the EA parameter and the response of the sys- 
tem at macroscopic frequencies, while q and g are the same 
for microscopic ones. If we introduce in analogy with the 
susceptibility the Fourier transform q(w) of the magnetiza- 
tion correlator q(t ) = (m(t )m(O)), we obviously get in ana- 
logy with (3 l )  

qO=q ( t=m) ,  q = lim q ( t )  . 
i-. 00 

(43) 

We note also that q, and A + g can be defined as the correla- 
tor and response obtained by Gibbs averaging, while q and g 
are obtained as time averages. As already mentioned in the 
Introduction, these quantities do not coincide in non-ergo- 
dic systems. From (30b) and (42) we obtain for these four 
quantities the following four equations: 

Equations (44) hold in the degenerate phase, in the nonde- 
generate phase however, q = go, and A = 0, and we have 
Eqs. (30). The boundary between these phases is determined 
by the condition (28). We note that the second and third 
equations of (44) define zero-gap modes for macroscopic and 
microscopic times, respectively. We note also that the two 
susceptibilities X, and X, which we defined in the Introduc- 
tion, are equal to 

x0= ( A + g ) / T ,  x=g /T ,  

and it is this which leads to (1). 

6. SOLUTION OF THE EQUATIONS 

It can be seen from (44) and (45) that q, andx, are inde- 
pendent of temperature, while q andx  are independent of h. 
We note that it has long been known that two different sus- 
ceptibilities are observed below a definite temperature (see, 
e.g., Ref. 30), and that the larger of them is practically inde- 
pendent of temperature. It is natural to identify these two 
susceptibilities with X, and x (Ref. 13). If this is done, it 
follows indeed from the experimental data that X, is inde- 
pendent of temperature. 

It follows from the foregoing that 

q ( T ,  h )  = q c  (T) g ( T ,  h )  =gc (TI (46) 
where q, and g, are the values of q and g on the h, (T) phase 
curve. These three functions of temperature, q,, g,, and h,, 
are determined by solving simultaneously the three equa- 
tions (18) and (30). We shall not determine h,(T), but regard 
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it as a known function of temperature. We then obtain di- 
rectly the following expressions for go, x0, g, and X: 

Equations (47), in principle, solve the problem completely. 
We note now the following. We have used in this paper an 
expansion in the parameter u. We have noted in the Intro- 
duction that an expansion in u is an expansion in a certain 
supercriticality parameter E. To introduce this parameter we 
consider the case of low temperatures T4Tc, where T, is 
determined from the formula h, (T,) = 0. At T< T, it is easily 
seen that g, a T and q, is a constant. The equation for a in 
(30b) is then simplified and we obtain from (28) and (30) at 
T=O 

It can be seen from (48) that at E < 0 the critical field is h, = 0 
even at T = 0. Thus, in our model the spin-glass phase exists 
only at E > 0. We shall assume that u, a, and l / b  are ener- 
gies of the same order and are of atomic scale. The physical 
quantities h, and T, are then located in the energy region of 
interest only if&( 1. The situation here is thus perfectly anal- 
ogous to an ordinary phase transition in ferroelectrics of the 
displacive type,31 when T, is determined by cancellation of 
the atomic constants. We shall in fact assume that E< 1. The 
anharmonicity is then small (but not the anharmonicity con- 
stant u), and perturbation theory in terms of E can be formal- 
ly obtained by expansion in terms of u. If all this is taken into 
account we easily obtain near T, 

- 
21z0 

T ,  = - T - T ,  
3bu 

It can be seen from (49) that at h = 0 we have A a T ~ ,  and one 
can easily show that at h #O 
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A- I T ( h )  I = I T-T, ( h )  I IT, (h )  , 

which agrees with experiment.13 It follows also from experi- 
ment that q(h = 0) +O and qo(h = 0) = 0. This means that in 
each of the valleys that are separated by infinite barriers 
there are local frozen-in magnetizations mi, but they are ori- 
ented in different directions in different valleys, and in the 
calculation of go and mi they therefore vanish after averag- 
ing over the valleys. 
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