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A theory of the electron spectrum of semimetals is developed on the basis of Peierls's idea that a 
metal with simple cubic lattice is unstable to doubling of the period. The translational symmetry is 
taken into account by using the approximation of tight binding to two nearest coordinate spheres. 
Expressions are obtained for the effective masses and for the spin splitting at the points Tand L, as 
well as for the levels in r. The connection between rhombohedra1 deformation and the atom 
displacement due to doubling of the period is established, and the softening of the optical mode is 
investigated. 
PACS numbers: 7 1.25.Pi, 7 1.25.Jd, 7 1.70.Ej 

1. INTRODUCTION 

Semimetals of group V have been the subject of many 
studies. It is precisely for these substances that Peierls' first 
advanced the idea that metals with an odd number of elec- 
trons per unit cell can be unstable to a relatively small dis- 
placement of the atom, resulting in doubling of the lattice 
period. Abrikosov and one of us2 considered the electron 
spectrum in the vicinity of those Brillouin points where the 
Peierls doubling lifts the electron-level degeneracy. It was 
found that the total energy acquires a term that is logarith- 
mic in the small displacement, and it is this term which de- 
scribes the instability of the metal to a transition into a di- 
electric (or semimetallic) state. 

At the same time, many questions remained unans- 
wered. Thus, the filling of the electronic states, considered in 
Ref. 2, corresponds to a metal with an even number of elec- 
trons per atom. To resolve the contradiction, Gordyunin 
and Gor'kov3 analyzed the role of the electron and of the 
electron-phonon interactions and modified the Landau- 
Luttinger theorem. Next, besides the atom displacement 
that causes the doubling of the period, a small lattice defor- 
mation sets in and changes the angle between the elementary 
translation vectors. In experiment, the displacement and the 
deformation are of the same order, but the theory of Ref. 2 
did not yield the connection between them. Finally, for the 
hole extremum (point T)  in bismuth the spin splitting of the 
levels in a magnetic field is double the cyclotron splitting (the 
distance between the Landau levels), but in the theory of Ref. 
2 these splittings are approximately equal (see the review 
articles4). 

To answer these questions we must know the electron 
spectrum both in the vicinity of the conduction- and valence- 
band extrema, and in the entire Brillouin zone. The first to 
calculate the spectrum in symmetric directions was ~ a s e , ~  
who used the tight-binding method with only the nearest 
coordination sphere taken into account. However, the idea 
of the doubling of the period was not used, and no quantita- 
tive agreement with experiment was obtained. 

The pseudopotential method was used to calculate the 
band structures of a r~en ic ,~  antimony,' and bismuth.' Pseu- 
dopotential calculations, however, do not lead to analytic 
results. Besides, the quantitative agreement of these calcula- 
tions with experiment cannot be regarded as satisfactory. 

Thus, e.g., for bismuth the calculated effective masses differ 
by approximately a factor of 3 from the experimental ones. 
To reconcile them it is necessary to shift the calculated band 
positions for the point T by 0.3-1.2 eV.9 

The situation is even more intricate for the L point, at 
which the electronic extremum is located. The forbidden gap 
between the conduction and valence bands in bismuth is here 
anomalously small (on the order of 0.01 eV). The velocity 
interband matrix element vanishes for some direction lying 
in the symmetry plane of the L point. This explains the great 
elongation of the equal-energy surface in the corresponding 
direction for which McClure and ChoiIo wrote out the high- 
er-order terms within the framework of the two-band 
scheme previously proposed by Cohen." A large number 
(17) of independent parameters were obtained, which could 
not be determined unambiguously in experiment. 

Recently Pankratov and one of us1' considered the 
band structure of IV-VI compounds, which have, like the 
group-V semimetals, ten valence electrons per unit cell. The 
body lattice of these compounds-which are of the rock-salt 
type--consists of two cubic face-centered sublattices, with 
the IV atoms at the sites of one of them and the VI atoms at 
the sites of the other. The parameter that distinguishes these 
sublattices, the ionicity, plays a role similar to the small dis- 
placement of the atoms in the lattice of the group-V semime- 
tal. In both cases the "parent phase" is a simple cubic lattice, 
which is unstable to doubling of the period. 

The use of the tight-binding approximation in Ref. 12 
made it possible to obtain the energy spectrum in an analytic 
form suitable for the entire Brillouin zone. The basis of the 
wave functions consisted of three atomicp-orbitals. The re- 
quirement of the Landau-Luttinger theorem, that the num- 
ber of states be conserved, is automatically satisfied in this 
case. The overlap integrals were regarded in Ref. 12 as free 
parameters determined by comparison with the experimen- 
tal data. It turned out that to describe the available data on 
the electron spectra of all the cubic IV-VI semiconductors it 
suffices to use the two nearest coordination spheres. 

It appears that the approximation used in Ref. 12 is 
effective for two reasons. The first is that allowance for only 
two nearest coordination spheres is sufficient to satisfy all 
the symmetry requirements. The second is the existence of a 
small parameter, the ratio of the crystal binding energy to 
the typical atomic energy. The order of magnitude of this 
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parameter is given by the ratio of the boiling point (of the 
order of lo3 K) to the ionization energy (5 X lo4 K). 

To determine the electronic structure of group-V semi- 
metals we use in the present paper the idea of electronic in- 
stability of a simple cubic lattice and employ the tight-bind- 
ing approximation on atomicp-orbitals. We present first the 
explicit form of the parent-phase spectrum. Next we consid- 
er its change as a result of the doubling of the period, and 
analyze the vicinities of points T, L, and r of the Brillouin 
zone. We then obtain the connection between the rhombohe- 
dral deformation and the shift of face-centered sublattices, 
and finally discuss the phonon-spectrum change, due to the 
doubling of the period, at the center of the new Brillouin 
zone. 

2. ELECTRON SPECTRUM OF A METAL WITH A SIMPLE 
CUBIC LATTICE 

The electron spectrum of the parent phase of group-V 
semimetals is made up, in analogy with Ref. 12, of three 
atomic p-states with wave functions p, ), py ) , p, ). The re- 
maining two valence electrons are in deeps states and inter- 
act weakly with thep states. The Hamiltonian is a 3 x 3 ma- 
trix: 

a"=g+.;;, (1) 

where contains the overlap integrals for the first coordina- 
tion sphere, and has only diagonal matrix elements of the 
type 

gm=go cos kxa+g, (cos k,a+cos k,a) , (2) 

and 6 are the overlap integrals for the second sphere 

qxu=qo sin k,a sin k,a, (3) 

q==qi cos k,a cos k,a+q, cos k,a (cos k,a+cos k,a) . (4) 

We have introduced here the following overlap integrals 

EO=2(px(0, 0 ,  0 )  I Ha I p,(a, 0,  0 )  ), 

EI=2(p,(0, 0,O) I Ho Ip,(O, a, 0 )  >, 
qo=-4(pX(0, 0,  0 )  lH~Ip , (a ,  a, O ) ) ,  (5) 

q3=4(pX(0, 0,O) ( H a  Ip,(O, a, a )  ), 

q2=4(pz(0, 0,O) I Ho Ip,(a, a, 0 )  >. 
We use the coordinate axes of the simple cubic lattice, with a 
its period. The arguments of the wave function in (5) give the 
position of the atom cbosen as the origin. The remaining 
elements of the matrix Ho are obtained from (2)-(4) by cyclic 
permutation of the indices. 

Calc~lation'~ has shown that in the IV-VI case the over- 
lap integrals for the nearest coordination sphere are of the 
order off, - 3 4  eV and 6, - - 1 eV, while for the second 

sphere 1ij -0.2 eV. This estimate does not depend on the 
actual chemical composition of the IV-VI compound. 

The Hamiltonian Ho in the spin coordinate is propor- 
tional to a unit matrix which we shall not write out hereafter. 
For the heavy elements of group V, however, account must 
be taken of the spin-orbit interaction 

(6) 

where a, is a Pauli matrix. The quantity A is an intracenter 
matrix element. The corrections connected with all the over- 
lap integrals can be left out here, since A is determined by 
small distances of the order of 1/Z (Ref. 13), where Z is the 
atomic number. For the same reason, the value of A corre- 
sponds to the spin-orbit splitting in an isolated atom (it is 
listed in the table, where the following notation is used: a, (in 
A is the lattice period, a = 2-'"(1 - E, )a, is the period of 
the cubic parent phase, a is the angle between the lattice 
vectors, cXy = (cosa - 1/2)/2 is the strain-tensor compo- 
nent, x ,  is the rhombohedra1 coordinate of the atom in the 
cell, u = 1/2 - 2x,  is the coordinate of the displacement 
vector of the fcc sublattice, andA is the spin-orbit splitting of 
the atomic p-levels). 

The electron spectrum of the parent phase is given by 
the solution of the equation 

det (~ - f~+A-o)  =O. 

3. CHANGE OF SPECTRUM ON DOUBLING OF THE PERIOD 

For each semimetal atom there are three p-electrons, 
and the corresponding three bands of the simple cubic lattice 
are half-filled. If the small terms with 7 and A are left out of 
the Hamiltonian, the Fermi surface will consist of congruent 
sections that become superimposed on one another upon 
translation of any of the vectors 

n n n 
= - - l , l , l ,  1 - I )  - 1 1 , - 1  (7) 

a a a 

Therefore the simple cubic lattice is absolutely unstable (at 
zero temperature) to a relative shift of two face-centered sub- 
lattices in the [I, 1, 11 direction. 

The elementary vectors of any face-centered sublattice 
are of the form 

ai=a(O, 1, I ) ,  0, I ) ,  a ( i , 1 7  O), (8) 

and the vectors of its reciprocal lattice are Qi (7). The cubic 
coordinates of two atoms in the unit cell, after doubling of 
the period, are equal to + a(1/2 - u, 1/2 - u, 1/2 - u). In 
the initial lattice u = 0, and the parameter u for semimetals 
is given in the table. 

TABLE I. 
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Corresponding to the doubling of the period is instabil- 
ity of optical oscillations with wave vectors (7). Their inter- 
action with the electrons is given by 

where V, and V, are the potentials of two fcc sublattices 
that are shifted by a vector u = ua(l, l , l)  in opposite direc- 
tions. 

Doubling of the period transforms the lattice from cu- 
bic to rhombohedral. This lowering of the symmetry is of 
necessity accompanied by acoustic deformation described 
by the tensor E ~ .  In cubic axes, the tensor E~ has two inde- 
pendent components (E, and E, ), one of which (E, ), which 
is responsible for the hyrostatic compression, can be set 
equal to zero. The deformation adds to the Hamiltonian a 
term 

8=cijOij(r), (10) 

which describes the interaction of the electrons with the 
acoustic phonons. 

Without resorting to model representations it is impos- 
sible to write down the explicit forms of Oi and Oij . In the 
calculation of the matrix elements of (9) and (19) on the tight- 
binding functions we shall therefore use only symmetry con- 
siderations that are dictated by the group of the simple cubic 
lattice. 

The perturbation (10) has a nonzero intracenter matrix 
element 

eo=(p%(O, 0, 0) 18 )pg(O, 0, 0) ) 

=e,,(p,(O, 0, 0) I Ox, lp,(O, 0, O ) ) ,  

as well as the following matrix elements for the nearest 
neighbors: 

cI=2(px(O, 0,O) (81 pub ,  0,O) ), 

&2=2(pa(O, O,O) 18 lpu(0, 0, a)>: 

Therefore the off-diagonal (in the index of the p-states) ma- 
trix element of the perturbation (10) takes the form 

8m=~,+~,  (cos k,a+cos k,a) +E, cos k,a, (11) 

or in shorter form 
^ ^ , . A  

~ = E , + E , + E ~ .  

The diagonal matrix element is proportional to the hydro- 
static compression E,, and can therefore be discarded. 

The matrix elements considered so far are diagonal in 
the quasimomentum k. The perturbation (9), however, has 
the periodicity of a face-centered lattice and has matrix ele- 

ments that connect the states k) and k + Q) of the crystal, 
where Q is any of the vectors (7). To describe this situation it 
is necessary to introduce one more index, that of the dou- 
bling of I, such that the part of the Hamiltonian which is 
diagonal in this index is given by expressions ( 1), (6), and (1 I), 
while the off-diagonal one is connected with (9) and is pro- 
portional to the vector u. Since any two vectors Qi are equi- 
valent in the initial cubic lattice, the index I can take on only 
two values and it suffices to consider the matrix elements for 
the transition 1 pa p a  ) into the state 
2, p, )=k + Q, Pa ) with some definite Q from (7). 

The intracenter matrix elements U (9) are equal to zero, 
since this perturbation is odd in the inversion r-t - r. In the 
next higher approximation the matrix elements ( 1, p, I U- 
12, ps ) = Uas take the form 

U,=i [u, sin k,a+'/,u, (sin k,a+sin k,a)] , 

Uxy='I2iu3 (sin k,a+sin k,a) , 
(12) 

where 

In the derivation of (12) we used the relations 

the first of which is the consequence of the invariance of the 
matrix element to the symmetry transformation -,x4x 
of the simple cubic lattice. To prove the second, we effect the 
transformation xey,z+z. Then 

(px(O,O, 0) I0,I p,(O, a, 0) )+(p,(O, 0,O) I0,I &(a, 0,O)). 

We next carry out the shift x+x + a, y-y, z-z, in which 
the sublattices A and B change places, and consequently 
0, -, - 0, [see (911, 

(pu(O,O, 0) IO,Ip,(a, O,O))+-(p,(-a,O, 0) IO,IpX(O,0,0)). 

It remains to carry out the reflection x-t - x, y+y, z-z, 
whereby 0, +OY, p, (0,0,0)+ - p, (0,0,0), py ( - a ,  
O,O)+py (a,O,O), and we return to the left-hand side of the 

second relation. 
The total Hamiltonian 

8=p+L+&+l i  (13) 

is a 12 x 12 matrix. We write it out relative to the doubling 
index 

I =  1 2 
E + 4 + a + 6, + E, +a2 ili 

- ili - g +  4 + ~ + 6 , - 6 , - ~ ~  

where each term is a 6 X 6 matrix in the indexp, and in the secular equation 
spin variable; the imaginary unity is explicitly separated in det (8-o) =O. 
the matrix 2i (12). 

(15) 

To determine the electronic spectrum w(k) in the self- Inasmuch as inversion is preserved in the crystal also after 
consistent field approximation it is necessary to solve the the doubling of the period, the eigenvalues w(k) in the com- 
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mon point k are doubly degenerate. The spectrum deter- 
mined by expressions ( I ) ,  (6), ( 1  1 )  and (12) is specified in the 
Brillouin zone of the undeformed fcc lattice. This is as it 
should be, even though the lattice is deformed. Its unit vec- 
tors a; are connected with the initial rectangular basis a; via 
the strain tensor 

a,'= (6,,+eij) a:, 

where the nonzero component E~~ is determined by the angle 
between the elementary translation vectors and is given in 
the table. Transformation to the undeformed basis is implied 
in the derivation of ( 1  1 )  and (12), since it is needed for the 
elimination of the sizeable displacement of the remote 
atoms. For this purpose it is necessary to carry out in the 
Hamiltonian an appropriate coordinate transformation that 
returns the atoms to the original position.16 

4. ELECTRON SPECTRUM IN THE VICINITY OF HIGH- 
SYMMETRY POINTS 

We consider the spectrum in the vicinity of the most 
symmetrical points Tand r, as well as L, the latter being the 
location of the electronic extremum of all the semimetals of 
group V. 

4.1 The point T=& CQ, 
i 

The cubic coordinates of this point are (1,1,1)~/2a. The 
Hamiltonian terms with lo.,, l,, vl, 77,, and E, vanish at the 
point T. We therefore carry out the unitary transformation 

where the elemepts, just as in (14), are 6~ 6 matrices. The 
transformation 9' corresponds to a transition to functions of 
definite parity P = f 1 at the point T. We obtain 

P= - 1 + 1 

To obtain the s~ectrum in T, it is necessary to diagonalize the 
matrices 6, +A + &, + l i .  With the aid of (3), (4), ( 1  I), and 
(12) we get 

(18) 

where 

c t = ~ I + u z ,  ~ z = q ~ + & ~ + u ~  

at k = T. The matrix (18) is reduced to the diagonal form 

~ - l ( q O + ~ O - ~ a ) ~ =  
0 c1 + 2cz 

with the aid of the transformation 

which reduces to a rotation of the coordinate frame. The new 
axes are chosen as follows: 01=[0, - 1,1] along the twofold 
symmetry axis of the point T, and 03=[1,1,1] along the 
threefold symmetry axis. The eigenfunctions of the operator 
(20), which we designate 1 ), 2), and 3), are connected in the 
usual manner with pa ) . For example, 

l)=9-m IpJ. 

The spin-orbit interaction (6) is written in invariant 
form, so that to transform to the new axes it suffices to make 
the change of variables x ,  y, 2-1, 2, 3. As already noted, 
Kramers degeneracy takes place in this case. We designate 
the eigenfunctions of the spin projection operator by T ) and 
1). The two sets of functions corresponding to the Kramers 
states take then the form 

In the new basis, the spin-orbit interaction has no matrix 
elements for the transition between the states + and Q: 

(+Id Iq) = 0. The matrix A is of the same form for transi- 
tions within each set: 

and the matrix (20) remains unchanged. The eigenvalues of 
the sum of these two matrices can be easily obtained: 

T4,-=ct -cz+' /3A,  (24) 

T,- ( I ,  2 )  =c ,+' / ,  (c2-'13A) _+ ( c 2 + A )  2 + 2 ~ 2 2 ]  "'. (25) 

The even terms are obtained from (24) and (25) by re- 
versing the signs of the terms ui in c, and c, (19). The sub- 
scripts in (24) and (25) are standard. Thus, the term T,, cor- 
responds to two one-dimensional complex conjugate 
representations of a two-valued group. 

If the inequality ~ ) 2 ~ / ~ 1 c , l  is satisfied, Eq. (25) is sim- 
plified: 

T 6 - ( 1 )  = C , + C ~ + ~ / ~ A ,  T6-  ( 2 )  = c , - ' / ~ A .  

The schematic arrangement of the levels at the point T 
is shown in the figure for the case lc, 1 ,  Ic2 1 <A. The sixfold 
degenerate (in a simple cubic lattice) p-state is split by the 
spin-orbit interaction into two terms with respective total 
angular momenta j = 3/2 and 1/2. This splitting is equal to 
A. The acoustic deformation E, together with the cubic 
crystal field 7, splits the states with different values of the 
projection m, in the term j = 3/2. Doubling of the period 
causes us to join the three terms obtained for the point Twith 
the same terms for the point - T. The optical shift u splits 
the resultant degeneracy while retaining the twofold 
Kramers degeneracy of all the terms. We note that the rela- 
tive arrangement of the four upper levels can be arbitrary, 
depending on the ratio of c, and c,. The relative position of 
the two lower levels is determined by the sign of the sum 
u ,  + u,. 
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FIG. 1 .  Splitting of atomicp-term under the influence of: 1)  the spin-orbit 
interaction (A ), 2) of the cubic crystal field (1) and of the acoustic deforma- 
tion ( E , ~ ) ,  3) of the doubling of the lattice period (u). 

Let us calculate the effective masses at the point T ,  ap- 
plying to (17)  the usual kp scheme. To this end we subject 6, 
7, and 2 to the same transformations as in the derivation of 
relations (24)  and (25) .  We transfer the origin to the point T ,  
expand all the matrices in powys of k  and rotate the axes 
with the aid of (21) .  The matrix 6 ( 1 )  ( 2 )  takes in the basis of 
the coordinate functions 2-"'(1 + i 2 ) ) ,  2-"'(1 - i 2 ) ) ,  3 )  
used in (22)  the form 

/ I  0 O'\ 

where k*  = k ,  _+ ik,. 
The quantity fo + 25,  is substantially smaller than 

go - f ,  (estimates of lo and f ,  were given in the Introduc- 
tion). We retain therefore in 2 and 7j only the terms with k, 

- 
q='/3aZk,2 ( ( q O +  q1+2q2, q0+qi+2q2, -2q0+qi+2q2) ), 

(28)  
where the parentheses contain the diagonal elements of the 
matrix; the off-diagonal elements vanish in this approxima- 
tion. 

Rewriting (17)  in the basis of the functions (22) ,  we use 
the transformation C that diagonalizes the Hamiltonian at 
the point T .  With the aid of (20)  and (23)  we obtain for the 
basis of the functions with definite spin ($ and cp) and parity 

where 

To obtain 2 ( + 1) it suffices the reverse the sign of u, in (19)  

and (25);  the corresponding values will be marked by a tilde; 
? does not change sign on reversal of the spin. 

We obtain thus a spectrum in the vicinity of each of the 
extrema at the point T: 

o=o ( T )  +k32/2m3+k,2/2m,, 

and the longitudinal and transverse masses m, and m, are: 

for the level T ;  ( 1 )  

+ cos"0-0) 

T6-(1)  - Te+ ( 2 )  

for the level T ,  

1 aZ 
-=- ( g o - E i ) ?  (T I~ - -TB+  ( I )  )-' + (TLs--TE+ ( 2 )  ) - ' I ,  
2m, 6 

(32)  
where 

p=3-'"a(Eo+2~i-~z-2&1), 

p ,=3 - '"~  (Ea+25~+2&z+4~i) .  

The corresponding expressions for the remaining terms 
are obtained from (3  1 )  and (32)  by the obvious permutation of 
the indices. 

It is of interest to calculate the splitting w, of a Kramers 
doublet in a magnetic field H parallel to the C, axis. The ratio 
of w, to the distance between the Landau levels w, is called 
the spin-splitting factor Y = Iw, /a, I. 

In a magnetic field, the components k+ and k -  in (26)  
are operators that satisfy the commutation relation 

{k+,  k-) =2eH/ch. 

By tracking the sequence of the operators k+ and k -  we 
obtain within the framework of the employed kp method 

y = [ ( A - B ) 2 + C 2 ] ' h / ( A + B ( ,  (33)  

where we have for the T ,  ( 1 )  level 

s inye-8)  + cosZ (0-8)  
B =  TB- ( 1 )  - Ts+ ( I )  T6- ( I )  - T6+ ( 2 )  ' (34)  

and for the T ,  level 
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It can be seen from (33) that y can be noticeably larger than 
unity if A and B have opposite signs and are comparable in 
magnitude. 

4.2 The point L 

This is any of the points Qi/2 (7). Let, for the sake of 
argument, L = Qi /2 = ( - 1,1,l)n-/2a. Following the trans- 
formation 9(16) ,  the Hamilt~nian~is again written in the 
form (17), while l, l,, and E, ,  and E,  vanish at the point L 
itself. At the same point, the matrix is 

We transform to the axes of the point L, choosing 01 
along the twofold axis [0, - 1,1] and 03 along r L  = [I, 1,1], 
and transforming the matrix (36) with the aid of 

At the point L we obtain 

&-'(;O+EO+a) 9-;; 

with nonzero elements 

W ~ ~ = - ~ O - E O + U ~ - U J ,  wzz=-Tlo+ ( ~ E O - U ~ + ~ U Z + U J )  /3, 

We designate the basis functions of the matrix (38) by 
I),  2), and 3) and choose the basis in spin space to be the 
eigenfunctions t )  and 1) of the projection of the spin a, on 
the 01 axis. The Kramers-doublet function is of the form 

$=2-"'(3-i2) J.), 2-'"(3Si2) $>, I?) ,  

q,=2-'" (3+ z2)t), ' 2-IA(3-i2)f>, -14) (40) 

and satisfies the requirements 

as well as relation (23). In the new basis (40) the matrix 
($1 w I$) =hii has the following nonzero elements: 

To find the levels at the point L it is necessary to diagon- 
alize the sum r] ,  + E, + i + A .  With the aid of (23) and (41) 
we arrive at the cubic equation 

+'/,A2 (Sp W+'/~A) =O, (42) 

which yields three states L +(  j). The odd states L - are ob- 
tained by reversing the signs of the terms ui in (39). 

The figure presented above can be used to elucidate the 
arrangement of the levels at the point L, paying attention 
only to the parity symbol. The two lower levels L +(3) and 
L -(3) split off by the spin-orbit interaction are relatively 
deep in the case of bismuth (where A is large). The distances 
between the four upper levels should be of the order of 
E, -E,,,~,,, i.e., of the order of 0.2-0.4 eV. For the Tpoint in 
bismuth this estimate is confirmed by the experimental 
data.9 All that is known about the terms in L is that in bis- 
muth the levels L +(2) and L -(2) are close, the distance E, 

between them not exceeding 0.015 eV. According to pseudo- 
potential calc~lations,~ the lower and upper pair of levels are 
about 1 eV away from the middle one, but we know, with the 
Tpoint as the example, that the results of these calculations 
can be subject to a correction amounting to 0.3-1.2 eV. 

For energies Iw - L (2)(gEg one can construct a two- 
band approximation that desc5ibes the levels L * (2). To this 
end we write down the matrix 6 in the vicinity of the point L, 
using the basis (40): 

We retain in the matrices & and 7j only the terms with k,: 

a2ks2 -1/2q~+T1+2Tz -3/2qo+ 2"l.(qz-q1)13 0 

=T( - 1/2To - 1 + 2 0 
C.C. To + Tl A- 29% 1. (45) 
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The matrices g, 2, and i j  satisfy the relations 

( cp l . .  . l c p > = < $ I . .  . I $ > * ,  < ( P I . .  . I$>=-($1. .  . I @ * .  
Finally, we transform the Hamiltonian (17), diagonaliz- 

ing it at the point L itself. The functions with definite parity 
and spin are then transformed, as we have already seen, only 
in terms of one another. The maLrix elements of the corre- 
sponding unitary transformation C (+, + 1) can be expressed 
with the aid of (41) and (23) in the form 

clj=hlz (h33--L+ ( j )  ) /Nj ,  

c2,= ( L + ( j )  -h33) (hi l+A/3-L+ ( j ) ) / N j ,  

C,~=I'~-A (L+ ( j j  - A / 3 - h l l )  /3Nj,  
(46) 

where Nj is determined by the normalization condition 

The matrix k (p, + I), with the aid of which are transformed 
the functions of the second set (40), are obtained from (46) by 
the complex conjugation k(?, + 1) = k(+, + I), and to 
transform to the odd functions it is necessary to reverse the 
sign of ui in (39). 

We obtain thus the effective Hamiltonian of the two- 
band approximation 

where 

Contributions to the diagonal terms are made by the 
terms with 7, (45) and (12), as well as by the levels L (1) and 
L (3) in second-order perturbation theory: 

+ I ~ , , ~ k , + v , , ~ k ~ l ~ /  ( L +  ( 2 )  - L  (i) ). (49) 
1 = 1 , 3  

With the aid of (47) we obtain the spectrum of the two- 
band approximation 
(L+ ( 2 ,  k )  -o)  ( L -  (2 ,  k )  - w )  = 1 v~zz I 'kt2+ I vzZZk2+~3zzk3 1 '. 

(50) 

I 

By rotating the coordinate axes in the (2,3) plane 

03=zi cos cp-y, sin ;cp, 02=zl sin mcp+y, cos c p ,  O1=xl 

we diagonalize the right-hand side of (50) 

Q~2kxrZ+Qyy2kyiZ+QzzzkzizI 

where 

QprZ= I  v l z2  1 ', Qlly2= I  vzz2 cos ( P - v ~ z ~  sin cp 1  ' ,  

Q.:= 1 vzz2 cos (P Iz, 

t g  29=2 Re(v32,v2*2,)/( I v3221z- 1v,,212). 

We note that for bismuth Q,, ,/Q,,,, ,- lop2, and ac- 
cording to the estimate given above I v , ~ / v , ~  1 2 -  lo-'. The 
additional smallness appears if u,,, and v,,, are simulta- 
neously real or pure imaginary [see (50)l. This condition is 
realized, for example, in the limiting case Jui I  (max{ Ir],l, 

1 [see (39)l. Then the values of ZV and cU differ little, and 
v,,, and v,,, in (48) are almost pure imaginary. In this case 
there exists a direction z, in which w(k ) remains practically 
unchanged, i.e., the corresponding Q,, is small. At small Q,, 
the two-band approximation is not very accurate for direc- 
tions close to kzl , since the contributions of the higher orders 
of perturbation theory are substantial (their relative magni- 
tude is v , ~  (w - L (2))/Q, E, ). 

4.3. The point r 
This point is the center of the Brillouin zone. We are 

interested here only in the term arrangement known from 
optical measurements. At k = r the matrix u vanishes from 
the Hamiltonian (14), and the parity of the states is uniquely 
determined by the doubling index. Wiih the aid of relations 
(2)-(4) and (1 1) we see that the matrix 5 + +j + 2, + 2, + 2, 
has a structure similar to the matrix (18) with a diagonal 
element b, = go + 25, + 7, + 277, and an off-diagonal one 
b, = E~ + 2&, + E,. We can therefore use Eqs. (24) and (25): 

I''S-=bi- bZ+'/3A, (51) 
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where the parity index is determined with allowance for the 
translational functions of the crystal functions I r )  and 
Ir + Q ). The even terms, as can be seen from (14), are ob- 
tained by substitution in (5 1) and (52): 

bi+-to-2giigi+2qr12t ~ Z + E ~ - ~ E I - E Z .  

5. CONNECTION BETWEEN RHOMBOHEDRAL 
DEFORMATION AND SUBLATTICE SHIFT 

So far, the rhombohedral deformation E, and the sub- 
lattice shift u were regarded by us as independent quantities. 
Actually, however, they are connected by the condition that 
the new phase be at equilibrium. To find this connection we 
use the Green-function technique. 

We denote thep-electron Green function e0(k ) in the 
parent phase by Gy, , and the corresponding value of 
qo(k + Q )  shifted by some vector Q (7) will be designated 
G :, . These functions are matrices in the index a = x ,  y, z, 
which numbers the basis p-~tates.~When the period is dou- 
bled, anomalous mean values of GI, appear. In the mean- 
field approximation we obtain the equations 

where a circle corresponds to the interaction (1 I), and a cross 
to (12). Multiplying the first equ:tion from the left by the 
matrix G :,- ', and the second by G :; ', we obtain 

It can be se!n from these equations that the poles of the exact 
functions GI, and G,, are determined by the eigenvalue 
equation (15) for the Hamiltonian (14). 

We obtain the self-consistency equations by noting that 
the vertices of the equations (53) are proportional to the 
small shift of the atoms: 

where phonon Green functions were introduced for the par- 
ent phase at the frequency w = 0. The wavy line corresponds 
to the acoustic limit k-0, and the dashed one to k-+Q. The 
structure of the verticesg in the right-hand side of (55) can be 
explained with the aid of (9) and (lo), namely, to obtaing it is 
necessary to exclude from the interaction the factors that 
correspond to the phonon shifts. 

To solve (54) and (55) we proceed as follows. We retain 
during the first stage only the principal terms with 5. The 
electron spectrum breaks up then into three quasi-one-di- 
mensional bands of the type 

o , ( k )  =go  cos k,a+g, (cos k,af cos lc,a), (56) 
and the Green function G , ,  is determined by second-order 
perturbation theory in U (12): 

After integration with respect to frequency, this loop dia- 
gram contains the denominator w, (k ) - wa (k + Q ). The in- 
tegral over the occupied states diverges logarithmically if 
a = 0. The divergence is a consequence of the congruence 
condition w, (k + Q ) = - w, (k ), because ofwhich the inte- 
grand becomes infinite on the Fermi surface (at {, = 0 this 
surface consists of the planes k, a = + .rr/2). We note that 
the threefold degeneracy at the point T (or L ) is completely 
lifted only if the spin-orbit interaction and the hybridization 
7 are simultaneously turned on (see Fig. 1). For the parent 
phase to be unstable it suffices therefore to have only one of 
them small compared with lo .  

The principal logarithmic contribution is made by the 
region I U /go( 4 1 k, a + .rr/2 1 4 1, where U determines the 
band splitting due to doubling of the period. This contribu- 
tion can be written in the form 

- 
(6/na3Eo) Ux,gQ In )4EolU I . (58) 

The coefficient 6 corresponds to weak spin-orbit interaction, 
when the three bands of (56) make equal contributions, and 
the factor 4 under the logarithm sign arises when 12 U I coin- 
cides exactly with the gap between the one-dimensional 
bands; the bar denotes averaging over the Fermi surface. It is 
the fact that distances far from the Fermi surface are signifi- 
cant in (57), as well as that the splitting U has little effect on 
the result, which justifies the perturbation theory in I/{ 
which is used here. With allowance for (6), the second equa- 
tion of (35) 

determines the equilibrium shift of the sublattices 

U=4Eo exp ( - i l k Q ) ,  

where 

k ~ - 6 g ~ ~ / n ~ a ~ ~ ~ ~ ~ ~ - 6 ~ ~ / ~ ~ a ~ ~ ~ ~ ,  (60) 

M is the mass of the atom, O Q  is the frequency of a phonon 
with k = Q in the parent phase. The observed value I U/ 
C0I - 1/20 leads to A, = l/ln1410/U I - 1/4. We obtain this 
value from (60) using the data known1' for bismuth: 
O Q  =: 1.5-10" rad/sec, M = 3.47-lo-'* g. 

The connection between the rhombohedral deforma- 
tion and the shift of the sublattices is determined by the first 
equation of (55). The loop in it arises in third-order perturba- 
tion theory 

where we show by way of example the one configuration of 
the band indices x and y which makes the largest contribu- 
tion. These indices were arranged with account taken of the 
fact that the interaction (1 1)with the acoustic phonons con- 
tains only off-diagonal elements. In diagram (61) the term 
with E~ [see (1 I)] is cancelled and in the logarithmic approxi- 
mation the integral is equal to 
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The first equation of (55) reduces therefore to the condition 

toe,- (6goZU2/nMQoZt,2) In 14E,/U I , (62) 
where 0, is the frequency of the acoustic phonon as k 4  in 
the parent phase. Recognizing that go-g,k, we rewrite (62) 
in the form 

E,- (6U2/nMsZEO) 1n I 4t0/171, (63) 
where s is the speed of sound in the parent phase. 

We see that the rhombohedral deformation is propor- 
tional to a large logarithm that compensates for the extra 
power of the sublattice shift u. Substituting in (63) the speed 
of sound in bismuth s = 1 .5.105 cm/sec we get lo/Ms2 - 1, 
which agrees with the observed value. We emphasize that an 
important role in the estimate of&, was played by the differ- 
ence between the constants of the coupling with the optical 
(k-Q) and acoustic ( k 4 )  phonons. 

The present results cast light on the question of the soft- 
ening of the optical mode at the center of the Brillouin zone, 
i.e., of the oscillation with wave vector Q in the parent phase. 
Instability of a cubic lattice corresponds to vanishing of the 
frequency of the oscillations with vector Q. To find the fre- 
quency of these oscillations in the restructured lattice, it suf- 
fices to note that the self-consistency conditions (55) consti- 
tute requirements that the total energy be a minimum as a 
function of the phonon displacements. However, the second 
derivative of the total energy yields directly the square of the 
phonon frequency. Thus, the second equation of (554, which 
can be rewritten with the aid of (59) and (60) in the form 

U-AQU In 14t0/UI =0, (64) 

allows us to calculate the frequency of the optical oscilla- 
tions as k-0. Differentiating the left-hand side of (64), we 
obtain the square of the frequency 

92--QQ2(1-)\Q In]4go/Ul +AQ). 

Taking the equilibrium condition (64) into account, we get 

Q=QQ (In I 4t0/U) -". 
Thus, the optical frequencies as k-0 are approximately 

half the frequency 0, of the acoustic oscillations in the par- 
ent phase with wave vector Q. The dimension of that region 
near the Brillouin-zone center where the optical frequencies 
have a dip is not literally small-it is small only compared 
with the dimensions of the zone itself. 

6. CONCLUSION 

Our results for quantitative comparison with experi- 
mental data. This should be done in two stages. First, using 
the well-known parameters of the electrons and holes, we 
determine the overlap integrals. The equations given above 
are next used to reconstruct the electronic spectrum in the 
entire Brillouin zone. Let us list the parameters involved in 
the theory: the overlap integrals co and 6, for the first coordi- 
nation sphere and vo, vl, and 77, for the second coordination 
sphere in the cubic parent phase, the energy A of the spin- 
orbit interaction, the three parameters E ~ ,  &], and &' that 
characterize the rhombohedral deformation, and the three 
parameters u,, u,, and u, of the shift of the face-centered 

sublattices. From among the listed 12 quantities, A is known 
from the splitting of the atomic levels (see the table), while { 
and 77 should go over into the corresponding values for IV- 
VI compounds with allowance for the correction for the 
change of the interatomic distance. 

We note that electrons and holes, say in bismuth, are 
described at present by at least 12 quantities (two masses and 
the spin splitting for holes; three interband effective masses, 
the energy gap, the slope of the "ellipsoid," as well as the 
Fermi energy for the electrons). The experimental informa- 
tion on the electronic spectrum is, of course, much more 
extensive. Measurements were made also of the different fre- 
quencies and of the probabilities of the optical transitions, 
e.g., at the r point, of the deformation potentials, and of 
other quantities that are directly described by the proposed 
theory. 

The relation obtained here between the acoustic defor- 
mation and the shift of the sublattices is valid also for the 
rhombohedral modifications of IV-VI semiconductors, as 
well as to hexagonal helical structures of Te and Se. For this 
reason, the "vibronic model" of Konsin and Kristoffel' (Ref. 
18), constructed under the assumption that the decisive role 
is played by a small vicinity of the L points of the Brillouin 
zone, and in which the topology of the parent-phase Fermi 
surface is neglected, is not an adequate description of the 
structural transitions in IV-VI. 

In conclusion, we assess the role of the Coulomb inter- 
action. Keldysh and Kopaev, in an analysis of a model of an 
excitonic dielectric,I9 have shown that Coulomb interaction 
can also lead to structural instability if the Fermi surface has 
congruent sections. In the case of group-V metals, however, 
one deals with a transition that conserves the spatial inver- 
sion wherein two face-centered sublattices exchange place. 
The order parameter that describes this transition is pure 
imaginary [see (l2)]. In this case the Hartree diagrams simi- 
lar to those shown in (55) but with a Coulomb line in place of 
a phonon line, are cancelled out by complex conjugation. 
What are left are diagrams of the type of the electron self- 
energy, which contain an internal Coulomb line. This line 
has in the long-wave limit a small factor that is inversely 
proportional to the dielectric constant. In semimetals the 
latter is of the order of 10'. To consider the contribution of 
short distances, we replace the Coulomb interaction by point 
interaction. In this case we verify again that the complex- 
conjugate diagrams cancel out. The Coulomb interaction is 

- - 

thus suppressed under the given conditions. 
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