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A study is made of the nucleation stage in the decomposition of a supersaturated two-dimensional 
solution. This problem is distinctive in that the concentration around a quasisteadily growing 
nucleus has a logarithmic behavior, making it necessary to consider a multidimensional Fokker- 
Planck equation in all the macroscopic variables characterizing the nuclei and the concentration 
field. The size distribution function of the nuclei and the rate of nucleation are found. The results 
are applied to the kinetics of layered crystal growth. It is noted that the distribution function over 
the unstable variable (in this case the size of a nucleus) has the universal property that it is 
independent of the kinetic coefficients. 

PACS numbers: 82.60.Nh, 8 l.lO.Dn, 61.50.Cj 

The problem of determining the rate of nucleation at a 
first-order phase transition usually reduces to that of solving 
the Fokker-Planck equation for the size distribution func- 
tion of the new-phase nuclei and the macroscopic problem of 
the growth of the transcritical nuclei without allowance for 
fluctuations. This approach, which was suggested by Zel'do- 
vich,' (see also Ref. 2), is justified in the case of sufficiently 
fast relaxation of the remaining degrees of freedom (e.g., the 
concentration field around the nucleus in a supersaturated 
solution). This condition, however, is not always satisfied. In 
particular, Voronkov3 has pointed out that it can be violated 
for two-dimensional nucleation on the face of a crystal dur- 
ing layered growth. 

In the present paper we investigate the decomposition 
of a two-dimensional supersaturated solution. In this prob- 
lem the approximation of a one-dimensional Fokker-Planck 
equation is also inapplicable if diffusion in the solution is 
important. Similar cases requiring the introduction of addi- 
tional variables were considered by Kramem4 by Landauer 
and Swan~on,~  and, in the most general form, by Langer.6 
We shall obtain the Fokker-Planck equation for the distribu- 
tion function over all the thermodynamic degrees of freedom 
of the system under consideration, and, solving it, we shall 
find the size distribution function of the nuclei and express 
the nucleation rate in terms of the thermodynamic probabil- 
ity for the formation of a critical nucleus. We shall apply the 
results to the kinetics of layered crystal growth. 

1. NUCLEATION IN THE DECOMPOSITION OF A TWO- 
DIMENSIONAL SOLUTION 

necessary to attain it. The latter is made up of the work of 
creating the concentration field. 

and the work of formation of the nucleus 

W2=aP+no ( y o - y ) S ,  

where T is the temperature, P and S are the perimeter and 
area of the nucleus, a is the energy per unit length of the 
phase boundary, and no is the number of atoms per unit area 
of the nucleus. The difference in the chemical potentials of 
the atoms in the nucleus and in solution is 

pa-p=T ln  (ck/c)  =-Ty.  

The saddle point-the extrememum of W-corresponds to a 
nucleus in the form of a circle of radius 

Rk=a/noTy. (1) 

In a polar coordinate system with origin at the center of this 
(critical) nucleus, we represent the shape of the boundary 
p(0 ) in the form of an expansion 

+ - 
in the orthogonal system of functions 

- cos me for m a 1  
Y 0 ( 0 ) = I ,  Y m ( 0 ) = Y 2  { 

sinme for m<-I ' (3) 

In the neighborhood of the saddle point the p, are small, 
and to quadratic accuracy we have 

+ m  

Suppose that the concentration Z of a weak two-dimen- W,=nTi-z.r [R,'+ ( m z - I )  p m 2 ] .  
sional solution is slightly greater than the solubility limit c, , 

m-...DO 

so that the supersaturated y is small: 
The equilibrium distribution function over the states of 

y=(F-ck)/ck<<l. 
the nucleus is obtained by integrating the complete distribu- 

The state of the system at an arbitrary time is determined by tion function exp[ - ( W, + w,)/T] over the-possible real- 
the position, size, and shape of the nuclei of the precipitating izations of the concentation field c(r). Here, strictly speak- 
phase and by the concentration field c(r )  in the solution. For ing, the integration should be carried out under the auxiliary 
a small supersaturation the number of nuclei is small, and condition that the total number of particles in the system be 
they develop independently, so it is sufficient to consider a conserved: 
system consisting of one nucleus. The probability of a given 

nos+ 1 ckr-conrt. state of the system is determined by the minimum work W 
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However, if the area of the system is large enough this 
condition is unimportant, and the distribution function over 
the states of the nucleus is simply exp( - W,/T) .  When the 
invariance of the problem with respect to translations of the 
nucleus as a whole (m = + 1) and the stability with respect 
to changes in shape (Im 1 >2) are taken into account, the equi- 
librium distribution function of the nuclei over their dimen- 
sions R = R, + po is 

f o  (R) = f o  (Rh) exp [nnoy (R-Rh)21, (4) 
where 

fo (Rh) =const exp (-nnoyR,2) (5) 

[ fo(R )dR is the number of nuclei per unit area having dimen- 
sions in the interval from R to R + dR 1. 

The kinetics of nucleation and nuclear growth is gov- 
erned by diffusion in the solution and by the processes of 
attachment and escape of particles at the phase boundary. 
Diffusion in the solution in the presence of 8-function-corre- 
lated fluctuational flows, 

( I ,  (r, t )  J g  (r', t') )=2Dc6ag6 (r-r') 6 (t-t') . (6) 
is described by the equation 

E=DAc-div J, (7) 

where D is the diffusion coefficient. Conservation of matter 
in the system leads to a boundary condition of the form 

noV,= (DVc-J),, (8) 

where V,, is the normal velocity of the phase boundary, and 
the quantity on the right-hand side is the normal component 
of the total flux. For the time being, let us assume for the sake 
of simplicity that the phase boundary has fast kinetics, so 
that at each point on the boundary a local equilibrium is 
established: 

cb =ck(l+yRhx), (9) 

where 7t is the curvature of the boundary. 
Equations (6)-(9) form a complete system of Langevin 

equations, which is equivalent to an infinite-dimensional 
Fokker-Planck equation. To obtain this equivalent equation, 
let us perform a separation of variables. 

The rotational part of the fluctuational flows is not im- 
portant, and we shall therefore treat them as potential flows: 

J=-DVrp. 

Since we are interested in nuclei which are close to critical, 
let us linearize boundary conditions (8) and (9). Substituting 
c(r) and p(r) in the form of an expansion in the circular har- 
monics (3) 

and describing the shape of the nucleus by expansion (2), we 
obtain from (7)-(9) the following system of equations: 

Eliminating p, from the last two equations yields the fol- 
lowing boundary condition 

for equation (10) 
Let us now introduce a system of functions @ k (r) satis- 

fying Bessel's equation 

hDmh=DA,,Omh 

with the boundary conditon 

For lm I > 1 only a continuous spectrumA < 0 exists, while for 
m = 0 there is also a split-off positive eigenvalue A = A o  in 
addition to the continuous spectrum. The eigenfunction cor- 
responding to A, is of the form 

- 

while the eigenvalue A, itself - is given by the equation 

which is obtained by substituting (12) into boundary condi- 
tion (1 1) (KO and K, are Macdonald functions). 

Expanding c, (r) and p, (r) in the basis @ i : 
c, (r) =I c,'@.~r) dh, qm(r) =J qm'@vA(r) dk 

we obtain the Langevin equations in the separated variables: 

E,"=h (c,'+q,~. (14) 
The correlators of the random forces 

<rp,"t) rp,,'' ( t ' )  )=Dmk6,,.61r,6 (t-t') s 

can be found from (6). 
The system of equations (14) is equivalent (see, e.g., Ref. 

7) to the Fokker-Planck equation for the distribution func- 
tion F ( c i  ) 

in which the variables ck are separated. Saddle-point linear- 
ized Fokker-Planck equations of the type in (1 5) were stud- 
ied in Refs. 4-6. The item of interest to us, viz., the size 
distribution of the nuclei, is obtained by the appropriate inte- 
gration of the stationary distribution function F(ck). This 
integration for the Fokker-Planck equation is done in gen- 
eral form in the Appendix. It turns out that the distribution 
function over the unstable variable is uniquely determined 
by the equilibrium distribution function and does not de- 
pend on the kinetic coefficients. 

In our case the unstable variable is the size of the nu- 
cleus, and the distribution function f (R ) which we seek is of 
the form [see (A.5)] 

1224 Sov. Phys. JETP 58 (6). December 1983 Brener et a/. 1224 



In the region of subcritical dimensions of the nucleus, 
R, - ~ ) ( n , y ) - ' / ~ ,  the distribution function (16) goes over 
to the equilibrium function (4). 

The rate of nucleus formation (the flow through the sad- 
dle) is governed by the growth rate of the unstable mode (see 
Appendix). To find this growth rate one must solve the fluc- 
tuationless problem, which, in the variables 6 is of the form 

[Eq. (14) without the fluctuation terms &. The unstable 
mode corresponds to the single positive value A = A o  deter- 
mined by Eq. (13). Since c, y/n,(l, the quantity z in (13) is 
small, and, to logarithmic accuracy, we find the following 
expression for A,: 

This formula is valid in the limit of infinitely fast kinet- 
ics at the phase boundary. For a finite rate of attachment and 
escape of particles, the boundary condition is no longer (9) 
but rather (without the fluctuation term) 

noVn=r[c, -ch(l+yRkx)l, 

where r is the corresponding kinetic coefficient. For the 
growth rate A, of the unstable mode we obtain, in place of 
(1  71, 

which goes over to (17) under the condition 

This inequality is always satisfied in the limit y-0. If, in- 
stead of (19), the opposite inequality holds, the kinetics is 
limited by the processes occurring at the boundary of the 
nucleus, and A, does not depend on the diffusion coefficient 
in the solution: 

Ao=rc,y/Rhno. 

The nucleation rate I (the number of transcritical nuclei 
arising in a unit area per unit time) is, according to (A.9), 

I=fo (R,) ho/2n (nay) '", (20) 
where fo(Rk ) is the thermodynamic probability for the for- 
mation of a critical nucleus [Eq. ( 5 ) ] ,  and A, is given in the 
general case by Eq. (18). The nucleation rate (20) is governed 
mainly by the exponential factor appearing in fo(Rk). The 
problem of determining the pre-exponential factor in fo(Rk ) 
is an independent problem which, as far as we know, has 
never been solved. Therefore, our results (as in Refs. 1-3) in 
fact amounts to an evaluation of the kinetic pre-exponential 
in the expression for the nucleation rate. 

2. TWO-DIMENSIONAL NUCLEATION DURING LAYERED 
CRYSTAL GROWTH 

The problem of this section is analogous to the pre- 
viously considered problem of the decomposition of a two- 

dimensional solution. A nucleus on an atomically smooth 
face is a multiatom terrace bounded by a ring-shaped step. 
The concentration of atoms no in the nucleus is the surface 
density of lattice sites in the corresponding crystallographic 
plane. The gas of adsorbed atoms responsible for the growth 
of the nucleus is distributed with concentration c(r) over the 
entire surface of the face, including the area of the nucleus. 

The dimension R, of the critical nucleus and the size 
distribution function of the nuclei are given by expressions 
(1) and (16), respectively. In place of (7), the diffusion equa- 
tion (both outside the nucleus and on it) is of the form 

where the additional term describes the input of material to 
the face from the interior, with characteristic time 7,. Under 
the condition of conservation of matter, we must include the 
diffusion fluxes from both sides of the nuclear boundary, and 
in place of (8) we have 

(the fluctuation term, as in (21), has been dropped). Bound- 
ary conditions (9) remains unchanged. The distribution of 
adatoms corresponding to the unstable mode is described by 
Macdonald functions: by KO([@, + l/r0)/D J1/'r) outside the 
nucleus and by Io([(Ao + l /~ , ) /D]"~r )  on the nucleus. The 
equation for A, obtained from boundary conditions (9) and 
(22) is 

To determine the nucleation rate one must substitute the 
value for 2, obtained from (23) into formula (20). 

Let us discuss the limiting cases in which the solution of 
the transcendental equation (23) can be written in explicit 
form. In the limit of small supersaturation y, when 
rO(R :/D , the argument of the functions KO and I, is large, 
and 

ho='(2cky/no) (DIR,2zo) '". 

In the opposite case (rO)R :/D ) the expression for A, is 

which goes over to (17) at a sufficiently high (but still small 
compared to unity) degree of supersaturation y, when 

3. DISCUSSION 

In this paper the size distribution function (16) of the 
nuclei is found by integrating the exact solution of the multi- 
dimensional Fokker-Planck equation over all the stable var- 
iables. We note that this same result could have been ob- 
tained by assuming, in analogy with Ref. 1, that the nuclear 
size R is a Markov variable and writing the corresponding 
(one-dimensional) Fokker-Planck equation for this variable. 
However, as was pointed out by Vor~nkov ,~  such an approx- 
imation is justified only in those cases when either the con- 
centration variables are not at all important (kinetics limited 
at the nuclear boundary) or the concentration field at a fixed 
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R relaxes sufficiently rapidly to some steady (dependent only 
on R ) distribution, i.e., the quasisteady approximation is val- 
id. I' 

In the three-dimensional case1 there are in fact grounds 
for assuming that the size of the molecules is a Markov vari- 
able. The quasisteady concentration field falls off with dis- 
tance as r- l .  The relaxation time of such a field, 7, - R i / D ,  
is small compared to the characteristic time for changes in 
the quantity R - R, (the deviation of the nuclear size from 
critical) 

In the two-dimensional case the quasisteady approxi- 
mation does not exist, since the stationary solution of the 
diffusion equation (lnr) diverges at large distances. In the 
problem of layered crystal growth the input of material from 
the interior alters the diffusion equation in such a way [see 
(21)] that the stationary solution is nondivergent at infinity. 
The quasisteady approximation is not always appli~able,~ 
however, but only for 

[the results obtained in Ref. 3 agree with (24) within the lim- 
its of their applicability (25)l. 

In summary, the problem of two-dimensional nuclea- 
tion does not in general reduce to the one-dimensional 
Fokker-Planck equation in the size of the nucleus. However, 
as follows from the analysis given in the Appendix, in all 
cases the use of this equation gives the correct stationary 
nuclear size distribution function, having a universal form 
(16). 

APPENDIX 

Let us consider the general form of a Fokker-Planck 
equation linearized about a saddle point: 

Here F ( x )  is the distribution function over the variables xi 
and the temperature T. The matrix H determines the qua- 
dratic form of the energy: 

Z = ' / z ~ i H i j ~ j ,  

which is not positive definite at the saddle point. The nega- 
tive eigenvalue of the martrix H is assumed to be unique, so 
that in any diagonal representation of the energy Z one of 
the coefficients is negative. We shall call the variable corre- 
sponding to this coefficient "unstable." 

The matrix Min the case of purely dissipative systems is 
the positive definite symmetric matrix of kinetic coefficients. 
In dynamical systems (in this case x is the set of coordinates 
and momenta and Z i s  the Hamiltonian) the matrix M con- 
tains, in addition to the symemtric kinetic part M +(M ,jt # O  
only for indices i, j corresponding to the momenta), an anti- 
symmetric dynamic part M -, which is made up of ones and 
minus ones in such a way that the Hamiltonians of the equa- 
tion of motion are of the form 

The equilibrium solution of equation (A.l) is of the 
Gibbs form 

Fo=const esp (-%IT). 

We are interested in the stationary solution of equation (A. 1) 
corresponding to the leakage of particles from the region on 
one side of the saddle, where equilibrium is assumed to be 
established, through the saddle to the other side. Following 
Langer,6 we seek this solution in the form 

m 
1 

~ ( x )  =F. (x) Jerp [- l ( ~ + u , x . ) 2 ]  d l ,  w.2) 
0 

where u is a constant vector. Substitution of (A.2) into (A. 1) 
yields an equation for u: 

II,,fif,,u,+T(~l,!l/l,,,u~) u,=O. (-4.3) 

Suppose equation (A.l) is written in one of the bases 
which diagonalize R. We shall assume that in the diagonal 
representation of the energy 

the unstable variable corresponds to the index i = 0, i.e., 
H, < 0. The distribution function with respect to the variable 
x, is obtained by integrating the complete distribution func- 
tion (A.2) over all the stable variables xi (if 0) under the con- 
dition x, = const: 

i ( J d )  

The inside integral is Gaussian and so can be evaluated sim- 
ply by finding the maximum argument of the exponential 
with respect to the variables xi(i#O). The position of the 
maximum is determined by the equation 

the solution of which, with allowance for (A.3), is of the form 

Substituting the expressions found for xi into (A.4), we ob- 
tain 

where 

f o  ( x o )  =const erp 

is the equilibriumx, distribution function reached by f (x,) in 
the limit - x,)(T/IH,~)"~. 

This result has the important property that the station- 
ary distribution over the unstable variable x, is independent 
of the kinetic coefficients, while the expression for the com- 
plete distribution function (A.2) contains the kinetic matrix 
M in an important way [see Eq. (A.3)]. This property does 
not depend on the particular means used to diagonalize the 
energy. 
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To evaluate the total flow of particles through the sad- 
dle, let us make use of the following simple considerations 
(which are analogous to some extent with Ref. 1). Far from 
the saddle point the fluctuations are unimportant, and the 
particles which have passed through the saddle move in ac- 
cordance with the equation of motion 

i . = - M . . H .  13 j k x k .  (A.6) 
In conformity with the presence of a single unstable variable, 
the matrix ( - M H )  has one positive eigenvalue A, leading to 
the presence of a single exponentially growing solution of 
equation (A.6). Since the remaining solutions are exponen- 
tially damped, far from the saddle point the particles which 
have passed through it asymptotically obey 

xi=AieA', ('4.71 

where A, is the eigenvector corresponding to the positive 
eigenvalue A of the matrix ( - M H  ). The distribution func- 
tions f (x,) for x,+ has the asymptotic form 

/(xo) =jO (0) (T/2n I Ho 1 )",x,-~. (-4.8) 
Evaluating the flow of particles through the plane 

x, = const and choosingx, sufficiently large, we obtain from 
(A.7) and (A.8) 

I=&f ( x O )  =A (T/2n I Ho I ) '"fo  (0). (A-9) 
This result agrees with the result6 obtained by direct integra- 
tion of the complete distribution function (A.2). 

"The rate of relaxation of the variables describing the distortion of the 
nuclear shape and the angular dependence of the concentration field is not 
important, since in the linear approximation the angular harmonics in the 
Fokker-Planck equation always separate, and the nuclear dimension in 
this case is correlated only with the isotropic part of the concentration 
field. 
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