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A theoretical investigation is made of the relaxation processes in the nuclear subsystem of an easy- 
plane antiferromagnet under conditions of an arbitrary dynamic frequency shift in the spectrum 
of nuclear spin waves. The diagram technique for the spin operators is used to calculate the 
relaxation frequencies of nuclear spin waves both in the range p w ,  and in the range T(w, (w, is 
the undisplaced nuclear magnetic resonance frequency). It is shown that in the case of a large 
dynamic frequency shift it is necessary to allow not only for the pair (Suhl-Nakamura) interaction 
of nuclear spins with one another, but also for many-spin interactions. When the latter interac- 
tions are allowed for in a suitable manner in the case of basal plane symmetry, the spectrum of 
nuclear spin waves exhibits a hydrodynamic region (w, cc k ) where the damping decrement of 
nuclear spin waves is governed by four-wave scattering processes: y cc k '. q t  temperatures T k w, 
the main contribution to the damping of nuclear spin waves in the principal part of the phase 
space of the nuclear subsystem is made by the process of the scattering of these waves by thermal 
fluctuations of the longitudinal component of the nuclear spins: yp oc kTwi. A determination is 
made of a characteristic temperature T *)w, at which perturbation theory ceases to be valid in 
respect of the number of loops in the diagram and the spin-wave picture of the nuclear subsystem 
no longer applies. An allowance is made for the influence of the dipole-dipole interaction on 
fluctuation damping of nuclear spin waves. 

PACS numbers: 75.30.Ds, 76.60.E~ 

1. INTRODUCTION 

Our aim will be to consider the relaxation processes in- 
volving nuclear spin waves exhibiting strong dispersion in 
antiferromagnets with the easy-plane anisotropy. In view of 
the strong exchange enhancement of the hyperfine interac- 
tion, the dynamic frequency shift in the spectrum of nuclear 
spin waves in substances of this kind may be of the order of 
the undisplaced NMR frequency w, . The large shift affects 
the dynamics of the nuclear subsystems as follows: 

1) the nuclear spin-spin interactions of higher order 
than the Suhl-Nakamura (pair) interaction become impor- 
tant'; 

2) at temperatures T&w, the dominant contribution to 
the relaxation frequencies of nuclear spin waves are made by 
the processes of the scattering of these waves by one another. 

We shall begin with the Hamiltonian of an easy-plane 
antiferromagnet 

where 

b-.f 

describes the subsystem of electron spins in two sublattices f 
and g, coupled by the exchange interaction with the anisot- 
ropy P > 0, and 

describes the subsystem of nuclear spins subject to an 
allowance for the hyperfine interaction with the electron 
subsystem. In the low-temperature range T< TN the electron 
spins are ordered in the basal plane (x, z) at a small angle to 
the z axis, given by 8=: (H + HD )/2w,, where HD = Sd, is 
the Dzyaloshinskii field and wE = SJ, is the exchange fre- 
quency. Here and later we shall use the energy system of 
units: k, = fi  = gp, = 1. In view of the smallness of the nu- 
clear magneton p, we shall ignore the direct interaction of 
the nuclear spins with a magnetic field. 

It is known that the spectrum of the electron magnons 
in an easy-plane antiferromagnet has two bran~hes,'.~ one of 
which (corresponding to oscillations of the magnetization in 
the basal plane) is characterized by a low activation energy: 

The formula (1.4) allows for the static influence of the nu- 
clear spins with the polarization b = ( I  ' ), = IB, (Iw, /T) ,  
where w, = A S  is the undisplaced NMR frequency and 
B, (x) is the Brillouin function, and also for the contribution 
made to the energy gap of magnons by other effects (magne- 
toelastic interaction, anisotropy in the basal plane, etc.), de- 
noted by A in the above equations." 

The spectrum of excitations of the nuclear subsystem of 
an easy-plane antiferromagnet also consists of two 
b r a n ~ h e s , ~ . ~  one of which (lower) is associated with low-acti- 
vation-energy magnons and exhibits strong dispersion: 

o ) , = o ,  [I- ( 2 b J 0 o , l e , 2 ) ]  Ih .  (1.5) 

If the symmetry in the basal plane is not disturbed (Z. = O), 
this branch or mode is of the Goldstone type with a linear 
dispersion law in the limit k-0. 
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At sufficiently high temperatures (or in sufficiently 
strong magnetic fields) when the dynamic frequency shift 
can be ignored, the experimental data on the NMR line 
width are described satisfactorily by the second Suhl-Naka- 
mura moment1 

Here, b '=I (I + 1)/3 is the derivative of the Brillouin func- 
tion and rl is the structure constant of the lattice 
(Y = 2113-31/2 for a simple cubic lattice and 7 = 2 for a bcc 
lattice). In the range TS; T *, where 

T ' = [ I ( I + 1 ) ]  ' " ~ , ( O E / E ~ ) ' ~  9 (1.7) 

the dynamic frequency shift governed by the quantity 
b z b 'w, / T  becomes greater than r,, and this gives rise to 
wave properties in the nuclear subsystem and to a consider- 
able reduction in the damping. The relevant result for the 
damping decrement of nuclear spin waves yk , first obtained 
using the relaxation function m e t h ~ d , ~  is 

q3 Tsk 
r k  = - o n  - 

8nS oE2 
and in the range w, - w, (w, , w, (T<T * it is confirmed by 
the experimental data on the parametric excitation of nu- 
clear spin waves.' As shown in Ref. 8, Eq. (1.8) describes 
damping of nuclear spin waves associated with their scatter- 
ing by thermal fluctuations of the longitudinal component of 
the nuclear spins. 

An important factor which makes it easier to study 
theoretically the properties of the nuclear subsystem is the 
fact that, because of its low energy (a, = 3.1OP3 - 3.10-' 
K(E,)  the subsystem does not have a significant dynamic 
effect on the electron subsystem. If we know the Green func- 
tions of magnons and the corresponding vertices, we can 
derive the effective Hamiltonian describing the nuclear sub- 
system in terms of the indirect interactions of the nuclear 
spins with one another via virtual magnons. It is then found 
that in the limit of a small dynamic frequency shift the dy- 
namic Hamiltonian need contain only the indirect pair inter- 
action (Suhl-Nakamura interaction) which gives rise to the 
spectrum of nuclear spin waves given by Eq. (1.5) and also 
yields the damping results given by Eq. (1.6) and (1.8). The 
situation becomes more interesting in the case of a large dy- 
namic frequency shift when the amplitudes of the scattering 
of nuclear spin waves include a considerable contribution 
from the indirect interactions of higher orders. In the Gold- 
stone limit (w,+O) an allowance for the latter results in sig- 
nificant contraction in the relevant However, 
a consistent analysis of these topics has not yet been carried 
out. 

A rigorous approach to the dynamic properties of the 
nuclear subsystem requires application of the diagram tech- 
nique for the spin operators2' described in Refs. 10-12. This 
approach was used in Refs. 9 and 13 to calculate the lifetime 
of nuclear spin waves associated with the processes of their 
scattering by one another in the case of a small dynamic 
frequency shift for vectors obeying skg~ , .  However, in the 
case of a large dynamic frequency shift the application of the 
diagram spin technique has until recently been hindered by 

the absence (within the framework of this technique) of a 
diagonalization procedure similar to the canonical Bogolyu- 
bov transformation for the Hamiltonians of Fermi and Bose 
particles. The absence of a diagonalization procedure has 
made it necessary to use a cumbersome and ineffective ma- 
trix method. 

We shall consider theoretically the dynamic properties 
of the nuclear subsystem of an easy-plane antiferromagnet 
with an arbitrary dynamic frequency shift using the proce- 
dure for the diagonalization of the spin Hamiltonian sug- 
gested in Ref. 14. We shall calculate the temperature renor- 
malization of the spectrum and the relaxation frequencies of 
nuclear spin waves in a wide range of wave vectors both in 
the case when D w ,  and also when Tgw,. When Tgw,, 
thermal fluctuations are weak and the dominant role is 
played by the processes of the scattering of nuclear spin 
waves by one another. If T?  w, , then in the principal part of 
the phase space the main contribution to the damping of 
nuclear spin waves is made by fluctuation processes [see Eq. 
(3.2)]. In the case of a small dynamic frequency shift this part 
of the phase space coincides with the region of existence of 
nuclear spin waves found from the condition yk S; kdwk /dk 
and having the form k 7 5 k 5 k :, where 

kl*=k, (TIT')  ', 
k,'=k,(T'/T)"= [ Z ( Z + l ) ]  " (o , /T)"k , ,  ] (1.9) 

and sk, = E, and sk,,, = w, . At k -K r, the contributions 
of the processes of different orders (fluctuation, four-wave, 
six-wave, etc.) to the damping become comparable and per- 
turbation theory in respect of the number of loops in the 
diagrams (expansion in terms of the excitation density) 
ceases to be valid. In the range k S; k 7 and k 2 k : a situation 
typical of a paramagnet is encountered. Well inside the spin- 
wave range (k - k,) a perturbation theory series converges in 
respectoftheparameter(T/T*)' = (r:/r0)3, wherer, = l/k, 
is the radius of the Suhl-Nakamura interaction and 
r: = l/k :.30 When temperature is increased to T- T *, the 
boundaries come closer together: we then have k 7 - k - k, 
and the spin-wave part of the phase space of the nuclear 
subsystem disappears. 

We shall also consider the influence of the dipole-di- 
pole interaction between the electron spins on the spectrum 
and damping of nuclear spin waves. We shall show that cor- 
rections to the spectrum of nuclear spin waves due to the 
dipole-dipole interaction and resulting in the anisotropy of 
the spectrum in the k space are proportional to the skew 
angle of the electron spin sublattices, i.e., to the degree of 
decompensation of the magnetic fields created by these sub- 
lattices. In the long-wavelength part of the phase space of 
the nuclear subsystem a characteristic dipole-dipole region 
with k 5 k, is observed4' and in this region we have 

where M, is the magnetization of the electron sublattice in 
which the dispersion of the nuclear spin wave spectrum 
k ldwk /ak I is governed entirely by the dipole-dipole interac- 
tion and does not disappear even in the limit k-0. The last 
circumstance stabilizes the spin-wave pattern which exists if 
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an allowance is made for the dipole-dipole interaction /A\ 
/ \ 

throughout the range O<k 5; k : right up to the temperature x-------x I '\ 

at which k 7 - k ,  . When T ,* is attained, the spin-wave pic- 
ture no longer applies anywhere in the dipole-dipole region. 
One should point out that if an allowance is made for the 
dipole-dipole interaction in the most thoroughly investigat- 
ed temperature range w, 5; T5; T,*, the fluctuation mecha- 
nism of the damping of nuclear spin waves plays the domi- 
nant role throughout the phase space O<kS k :  [see Eqs. 
(4.5)-(4.7)]. 

The present paper is organized as follows. In Sec. 2 we 
shall give the effective Hamiltonian of the nuclear subsystem 
of an antiferromagnet. We shall describe the diagonalization 
procedure which makes it possible to obtain a nuclear spin 
wave spectrum and the amplitudes of the interactions of spin 
waves in the case of an arbitrary dynamic frequency shift. In 
Sec. 3, we shall calculate the lifetimes of nuclear spin waves 
and renormalize the spectrum of these waves. In Sec. 4, an 
allowance is made of the influence of the dipole-dipole inter- 
action on the spectrum and fluctuation damping of nuclear 
spin waves. The small parameters of the theory are refined in 
Sec. 5 and an estimate is obtained of the contributions made 
to the dynamics of the nuclear subsystem by processes that 
have not been allowed for so far. The results obtained are 
compared with the experimental data in the Conclusions. 

2. HAMlLTONlAN OF THE NUCLEAR SUBSYSTEM 

The effective Hamiltonian of the nuclear subsystem of 
an antiferromagnet found by eliminating the electron de- 
grees of freedom from Eq. (1.1) and containing variables de- 
scribing only the lower branch of nuclear spin waves is as 
follows in the Fourier representation: 

FIG. 1 .  Amplitudes of the indirect interaction between nuclear spins. The 
dashed lines represent the Green functions of the electron magnons, the 
circles show the longitudinal component of the nuclear spins, and the 
crosses give the transverse component of the nuclear spins. 

is the amplitude of the four-spin interaction due to the hy- 
perfine interaction of the transverse components of the elec- 
tron and nuclear spins (Fig. lc) and also due to the four-wave 
anharmonicity ofnthe electron subsystem (Fig. Id). In Eq. 
(2.4) the quantity S,,,, is the operator for the symmetrization 
in respect of the wave vectors and the quantity 2 * denotes 
the contribution made to the amplitude of the four-spin in- 
teraction by the elastic subsystem and other sources (see the 
Introduction), which will be specified later. In deriving the 
Hamiltonian (2.1) we have obtained only the terms up to the 
fourth order of magnitude in respect of the spin operators. 
On the other hand, in principle, the Hamiltonian contains 
terms also of higher orders, for example, of the sixth order in 
respect of the transverse components of the nuclear spins: 

i8=- ' c 6 (1+2+3+4+5+6) 
N5 

1 2 3 4 5 6  

XW123456m,+m2+m3+m4-m5-m6-, 
where 

[compare with the formula (2.4)]. Terms of this type make a 
- 1 6 (1+2+3)  ~ ~ ~ m ~ ~ m ~ ~ 6 m ~ ~  

N2 contribution to the sixth-magnon processes which we shall 
i 2 3  not consider here. The contribution of these processes to the 

relaxation frequencies of nuclear spin waves should be small 
- 6 (1+2+3+4) W12iimlxm2xm3xm.x, in respect of the parameter ( T / T  *), (see Sec. 5). Renormali- 

N3 1231 zations of the four-magnon amplitudes due to such terms are 
where represented graphically in Fig. 2 and they are small in re- 

ma=Ita+Iga, (mk,++m-k , - ) ,  spect of the parameter (a, /c,)'. It should be pointed out that 
6m,'=m,,'-2bN6 ( k , )  . this is the adiabatic parameter that makes it possible to con- 

The amplitudes of the indirect interaction of the nu- 
clear spins are shown schematically in Fig. 1 and are given by 
the following expressions: 

V l = o , 2 J o / 2 ~ 1 2  P . 4  

is the amplitude of the Suhl-Nakamura interaction (Fig. la); 

U , 2 = - o , J J ~ / 2 ~ , z & 2 2  (2.3) 

is the amplitude of the three-spin interaction due to the hy- 
perfine interaction of the longitudinal components of the 
electron and nuclear spins (Fig. lb); FIG. 2. Renormalization of a four-magnon amplitude. 
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struct the effective Hamiltonian (2.1). Therefore, neither 
here nor in the diagonalization of the Hamiltonian shall we 
consider terms of order higher than the fourth in respect of 
the spin operators. 

The effective Hamiltonian (2.1) contains the operators 
ma = I," + If" which describe the low-frequency branch of 
excitations of the nuclear subsystem. We can similarly con- 
sider the effective Hamiltonian for excitations of the high- 
frequency branch described by the operators P = I," - If". 
The role of the cross terms of the m+m-l + I  - type in the 
dynamics of the low-frequency branch is unimportant be- 
cause of the smallness of the corresponding amplitude mea- 
sured by the parameter (E,/E,,)~, where E,, is the activation 
energy of the high-frequency branch. 

The quadratic part of the Hamiltonian (2.1) contains 
not only the diagonal terms m+m- but also nondiagonal 
terms of the m+m+ type. We shall diagonalize the Hamil- 
tonian by employing the unitary transf~rmation'~ 

* 
H* (a)  = eacfie-as, 

or, in the differential form, 

The "angle of rotation" R, is selected so that if a = 1, then 
the nondiagonal terms m + m+ vanish in the quadratic part 
 of^ *. In contrast to the case of bosons or fermions, the two-, 
three-spin and higher-order parts of the Hamiltonian do not 
transform independently. A direct commutation in Eq. (2.6) 
readily shows that any n-spin term creates a term of its own 
and higher  order^.^' The quadratic part of the transformed 
Hamiltonian can be written in the form 

1 
I?.* ( a )  =- z6 (14-2) { f l  ( a )  (m,+m-+H.c.) +gl ( a )  

12 

x (m,+mZ++~.c.)),  (2.7) 

where the coefficients f (a) and g(a) satisfy, because of Eq. 
(2.6), the following system of differential equations 

with the boundary conditions 

fk(0)  =gk(O) =l/4vklkr g k ( l )  =O. P9) 
Solving the system (2.8), we readily find that 

where mk is the spectrum of nuclear spin waves given by Eq. 
(1.5). Similar transformations are applied also first to the 
three-spin and then to the four-spin parts of the Hamilton- 
ian. The a-dependent coefficients are determined at each 
stage and included in the next stage within the inhomogen- 
eous terms of the corresponding linear differential equa- 
tions. This procedure gives 

In Eq. (2.11) we have omitted the nondiagonal terms of the 
m +m +amz, m+m+m+m-, and similar types, correspond- 
ing to processes in which the number of particles is not con- 
served. The cumbersome coefficients F,, and @,,,, are not of 
intrinsic importance and will not be given here. They will be 
used later in the expressions for the amplitudes of the scat- 
tering of nuclear spin waves. 

The diagonalized Hamiltonian of the nuclear subsys- 
tem (2.1 1) is the starting point in an analysis of its properties 
by the diagram technique applied to spins. We shall employ a 
modified variant of this techniqueI4 resembling the conven- 
tional diagram technique6) for many-particle  system^.'^ We 
shall introduce Matsubara Green functions 

1 - 
G,(T-a') = -(Tmk- ( a )  mk+(ar)  ), 

4bN 
(2.12) 

where 
mu (7) =exp ( a l l * )  ma exp (-d*) , O<t<l/T, 

and ? is the chronological operator. In the molecular field 
approximation these Green functions have the form 

1 
Go ( k ,  Q )  = - , Q=2niET, 1=0, + I ,  + 2 . .  . . (2.13) 

0.-Q 

If we allow for the "chain" correlations due to the pair inter- 
action, we obtain Green spin-wave functions found from the 
Dyson equation shown in Fig. 3 and given by 

where w, is the spectrum of the nuclear spin waves [see Eq. 
(1.511. 

The interaction processes in the nuclear subsystem re- 
sulting in the attenuation of nuclear spin waves and renor- 
malization of their energy are allowed for by introducing 
loop diagrams. The main processes in the spin-wave range 
under consideration (see the Introduction) are the scattering 
of nuclear spin waves on fluctuations of the longitudinal 
component of the nuclear spins and the four-wave scattering 
of nuclear spin waves. The amplitude of the fluctuation pro- 
cess is represented in Fig. 4 and on the mass surface it is given 
by the expression 

Q r r  ( k ,  q) =4 (fk+2bF,) =0,0nIo/2&,Z. (2.15) 
I 

The amplitude of the four-wave scattering process is shown 
in Fig. 5 and on the mass surface it is described by the expres- 
sion 

' L V I  (12,34) =-2 (fl+f2+f3+f4) 

FIG. 3. Dyson equation for the Green spin-wave function of the nuclei. 
The thin line represents a "paramagnetic" Green function G o  and the 
wavy line is the pair interaction f, . 
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FIG. 4. Amplitude of the scattering of nuclear spin waves by fluctuations 
of the longitudinal component of the nuclear spins. A semioval is used for FIG. 6.  Mass operator corresponding to the fluctuation scattering of nu- 

the longitudinal correlation function of the nuclear spins, The last graph clear spin waves. An oval is used for the longitudinal correlation function 

corresponds to the three-spin interaction. of the nuclear spins. 

which is quite cumbersome in the case of an arbitrary dy- 
namic frequency shift (see the Appendix). We shall now give 
three limiting forms of this amplitude which will be used 
later. 

1. Case of a small dynamic frequency shift (Sw, = w, 
- wi <an ): 

2. Case of a large dynamic frequency shift (w, <a, ): 

3. Case when two nuclear spin waves correspond to the 
range of small dynamic frequency shifts (Sw,,, (w, ) and two 
others to the range of large dynamic frequency shifts 
( ~ 1 . 3  % m n  1: 

Oh=- ( o 1 0 3 ) % / 4 b .  (2.19) 

In Eq. (2.18) the quantity 6, is given by the following expres- 
sion when the magnetoelastic interaction is always allowed 
for: 

If H, = a,,, = 0, the value of 6, reduces to the energy gap 
in the spectrum of nuclear magnons w,. It should be noted 
that in the case of a small dynamic frequency shift the scat- 
tering amplitudes Qfl and @,, are identical with those ob- 
tained allowing only for the Suhl-Nakamura interaction. On 
the other hand, in the case of a large dynamic frequency shift 
we have to allow for all the terms in the Hamiltonian (2.1). If 
the three- and four-spin terms are ignored, the Adler princi- 
ple for the scattering amplitudes is violated and this is mani- 
fested in particular by a strong damping of the Goldstone 
excitations. The scattering amplitudes obtained in the pres- 
ent section will be used later for renormalization of the spec- 
trum and in calculation of the relaxation frequencies of nu- 

lear spin waves in a wide range of temperatures and wave 
vectors. 

3. RELAXATION PROCESSES IN THE NUCLEAR SUBSYSTEM 

The simplest of the processes resulting in relaxation in 
the nuclear subsystem is the fluctuation scattering of nuclear 
spin waves. The damping decrement of nuclear spin waves 
representing this process is governed by the imaginary part 
of the diagram shown in Fig. 6 and it is given by the expres- 
sion 

r f l  (k) =2bfu.  ~ & l @ ~ ~ l ~ n 6 ( 0 ~ 0 ~ ) .  (3.1) 

where u, is the volume of a unit cell. A simple calculation 
gives the result 

which generalizes Eq. (1.8) to the case of an arbitrary dynam- 
ic frequency shift. The presence in Eq. (3.2) of an additional 
[compared with Eq. (1.8)] factor ( w , / ~ , ) ~ ,  which-in the 
Goldstone case-gives the dependence yfl a k eliminates 
the conflict with the results of a hydrodynamic theory of 
Ref. 16, according to which the damping of the Goldstone 
excitations with a linear dispersion law has the form y a k in 
the long-wavelength limit. We shall show later that the 
damping of the Goldstone nuclear spin waves is governed by 
the processes of their scattering on one another and is in 
agreement with the conclusions of the hydrodynamic the- 
ory. 

The damping decrement of nuclear spin waves repre- 
senting the four-wave scattering processes is governed by the 
imaginary part of the diagram expression given in Fig. 7. The 
diagram with a "paramagnetic" loop shown on the right of 
Fig. 7 making a negative contribution to the damping is re- 
lated physically to the finite nature of the spin operator spec- 
trum. Formally, the appearance of such diagrams is due to a 
supplementary procedure carried out in the course of con- 
struction of the Green spin-wave function in loops of spin- 
wave diagrams. The damping decrement of nuclear spin 
waves is 

where 

FIG. 5. Amplitude of the four-wave scattering of nuclear spin waves. The FIG. 7. Mass operator corresponding to the four-wave scattering of nu- 
last graph corresponds to the four-spin interaction. clear spin waves. 
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and 

1 @fL I2n6 (aq-ok). ye=-nu (n,,+I) uo - j ( 2 ~ ) ~  
(3.5) 

The quantities n, = n(wk/T), n, = n(w,/T), etc., are the 
Bose occupation numbers related by n(x) = (ex - I)-'. In 
Eq. (3.5) the variable in the integral is p. We can see that the 
quantity y* can be expressed in a simple manner in terms of 
the fluctuation damping yp [see Eq. (3.2)]. 

At low temperatures defined by T(w,, where the quan- 
tities yp and y* are exponentially small, the dominant con- 
tribution to the damping of nuclear spin waves is represented 
by Eq. (3.4). The interesting case is here that of a large dy- 
namic frequency shift, when we can use a spectrum of long- 
wavelength nuclear spin waves of the type 

and the scattering amplitudes (2.18) and (2.19). For the sake 
of brevity, we shall only give the results of calculations for 
Taw, [in the opposite limiting case the damping is exponen- 
tially weak: y a exp( - wo/T)]. The relaxation frequencies of 
long-wavelength nuclear spin waves may be calculated using 
Eqs. (2.18) and (3.6). If W u , ,  the result is 

(3.7) 
whereA (1) = 1, A ( m )  = 4, and 

c,= J J ~ x  dy " y ( x f y )  ,2.3, 
0 0 

sh x sh y sh ( x f  y )  

0 

x2y2 (x+ y )  
(3.8) 

c,= j[ dx dy - - 6.4. 
0 0 

sh x s h y  sh(x+y) 

The appearance of a negative term in the expression (3.7) is 
due to interference in the amplitude (2.18). We can see from 
Eq. (3.7) that the damping of a Goldstone nuclear spin wave 
(w,+O) is proportional to y a T7k ', in agreement with the 
hydrodynamic theoretical prediction of y a k2. In the oppo- 
site limiting case T(wk, the damping decrement of nuclear 
spin waves is given by 

(3.9) 
The damping of short-wavelength nuclear magnons 

[characterized by (sk )'>2bJ,,mn ] with energies w, zw ,  is 
due to their scattering by long-wavelength nuclear spin 
waves, which is of quasielastic n a t ~ r e . ~ '  A calculation car- 
ried out using the scattering amplitude (2.19) gives the result 

We shall now turn to high temperatures defined by 
D w ,  . In this case it is essential to include a "paramagnetic" 
diagram of Fig. 7. Its role reduces, roughly speaking, to trun- 
cation in the process of integration in Eq. (3.4) of a region in 
the phase space characterized by a small dynamic frequency 
shift, which has a significant influence on the damping re- 
s u l t ~ . ~ '  We shall first consider the relaxation of long-wave- 
length nuclear spin waves with a large dynamic frequency 
shift (w, (w, ). In this situation it is not possible to calculate 
the damping decrement analytically, since excitations with 
an arbitrary dynamic frequency shift participate in the pro- 
cess and for these excitations the spectrum and the scattering 
amplitudes are quite complex [see Eq. (1.5) and the Appen- 
dix]. However, to within a numerical factor, the damping is 
described by the last term in Eq. (3.7), where the energy inte- 
gral C2 [see Eq. (3.8)] is truncated at distances x, y z w ,  / 
2T( 1. This procedure gives 

which is again in agreement with the hydrodynamic theory. 
However, a comparison of the expression (3.11) with the 
fluctuation damping (3.2) shows that the hydrodynamic be- 
havior of nuclear spin waves occurs only in a fairly small part 
of the phase space 

The damping of nuclear spin waves with a small dynam- 
ic frequency shift can be calculated using the scattering am- 
plitude (2.17). In the case of long-wavelength nuclear spin 
waves (kdk,) the problem simplifies because the damping 
decrement is dominated by a logarithmically large contribu- 
tion of the processes of the scattering of these long-wave- 
length nuclear spin waves by short-wavelength waves (p, 
qsk,), as described in Refs. 9 and 13. The result is 

An increase in the wave vector of a given nuclear spin wave 
reduces the logarithm in Eq. (3.13). It follows that if k 2 k,, 
then nuclear spin waves with comparable wave vectors par- 
ticipate in the scattering process. The complexity of the scat- 
tering surface makes it impossible to solve the problem ana- 
lytically. Apart from a numerical factor, the damping result 
is given by Eq. (3.13). without a logarithmic term.9' 

Comparing the damping of nuclear spin waves due to 
the processes of four-wave scattering [Eq. (3.13)] with the 
fluctuation damping, we can demonstrate that the two types 
of process are of the same order of magnitude if the wave 
vector of a nuclear magnon is at the limit of the range 
k : 5 k 5 k : [see Eq. (1.9)]. As pointed out in the Introduc- 
tion, a spin-wave picture then ceases to be valid. Well inside 
the spin-wave region when D w ,  , the dominant process is 
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the fluctuation scattering. The ratio y,, /yp is minimal for 
k z  k,, when it is of the order of 

We shall now consider the process of renormalization of 
the spectrum of nuclear spin waves because of their interac- 
tion. At temperatures T(w, such renormalization is gov- 
erned by single-loop diagrams corresponding to the four- 
wave scattering. If wo(T, w, (w, , the result calculated in 
the first order in the scattering amplitude (2.18) is of the form 

Renormalization of the spectrum of short-wavelength nu- 
clear spin waves with energies wk z w ,  is due to their scat- 
tering by long-wavelength nuclear spin waves and if a m o ,  
we have 

At temperatures D w , ,  the dominant contribution to the 
renormalization of the energy of nuclear spin waves is made 
by the fluctuation process. A calculation of the real part of 
the diagram in Fig. 6 gives 

4. INFLUENCE OF THE DIPOLE-DIPOLE INTERACTION1o' ON 
THE SPECTRUM AND DAMPING OF NUCLEAR SPIN WAVES 

In considering the dynamic properties of the nuclear 
subsystem of an antiferromagnet we have ignored so far the 
dipole-dipole interaction. In fact, in antiferromagnets this 
interaction is exchange-weakened and its contribution to the 
various quantities is determined by a small parameter 2r/S 
(Refs. 17 and 18). However, the dipole-dipole interaction 
gives rise to a qualitatively important effect: it lifts the de- 
generacy of the spectrum of electron and nuclear spin waves 
in respect of the wave-vector direction. Consequently, the 
damping decrement of the excitations becomes anisotropic 
and a nonzero contribution appears in the damping in the 
limit k 4  and it is due to the fluctuation mechanism. These 
two circumstances alter considerably the relaxation of nu- 
clear spin waves in the long-wavelength part of the spectrum 
(see also the Introduction). 

In a theoretical analysis we shall allow for the dipole- 
dipole interaction using perturbation theory and the param- 
eter 2r/S (Ref. 19). The influence of the dipole-dipole inter- 
action on the nuclear subsystem of an antiferromagnet re- 
duces to the renormalization of the Green magnon functions 
and of the amplitudes of the hyperfine interaction, so that 
the coefficients V,,  U,,, and W,,,, of the effective Hamilton- 
ian (2.1) acquire additional-compared with Eqs. (2.2)- 
(2.4)-factors 

(4.1) 

per each dashed line in Fig. 1. A characteristic wave vector 
kd is given by Eq. (1.1) and the angle 6 is measured from thez 
axis which coincides with the spontaneous magnetization 
direction. Correspondingly the spectrum of nuclear spin 
waves obtained using (4.1) becomes 

whereas the amplitude of the fluctuation scattering is given 
by the expression 

It should be pointed out that the simplistic allowance for the 
dipole-dipole interaction by substitution in Eq. (1.5) of the 
correct electron magnon spectrum E~ obtained including the 
dipole-dipole interaction gives incorrect results. We find 
then that the expression for the spectrum of nuclear spin 
waves given by (4.2) acquires additional "parasitic" terms of 
the order of 2r/S and these do not disappear for the zero 
skew angle of the magnetic moments of the electron sublat- 
tices. 

Using the expressions (4.2) and (4.3), we can calculate 
the fluctuation damping of nuclear spin waves employing a 
formula similar to Eq. (3.1). In the range kgk,, where the 
spectrum of nuclear spin waves is typical of an antiferromag- 
net 

the fluctuation damping is given by the formula 

where for k > kd sin 0, , we have 

( k2-k,' sin2 0k )"I + (k2+k2  cos2 01) arccos 8k2+k,' cos2 0k 

whereas for k < kd sin 6,, we obtain 

a-c 
I = -(kZ+kd2 C O S ~  e, j . 

4kkd 
In the limit k-0, Eq. (4.5) reduces to 

In the range k>kd we shall give a more general result than 
the expansion of Eq. (4.5) and this result is valid also when 
k 2 k,: 

We can show that Eqs. (4.5) and (4.7) match in the range 
k, <k&o. 
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5. SMALL PARAMETERS OF THE THEORY AND ESTIMATES 
OF THE IGNORED CONTRIBUTIONS 

In discussing the processes of relaxation of nuclear spin 
waves at high temperatures we have shown above that the 
occurrence of large occupation numbers of nuclear spin 
waves n(w, /T), 1 does not by itself result in a divergence of 
the perturbation theory series in respect of the number of 
loops in the diagrams. Rigorous calculations including 
"paramagnetic" diagrams give a factor ( T / T  *)2, where T * is 
given by Eq. (1.7), which applies to each integration loop. 
This ensures divergence of the perturbation theory series in 
the spin-wave range of temperatures T 5 T * (see also the In- 
troduction). The second parameter of the theory is a small 
quantity a2 = w: /E@, which occurs in Eq. (1.6) for the sec- 
ond moment of the nuclear level. In this connection all the 
diagrams governing the physical characteristics of the nu- 
clear subsystem can be divided into two classes. 

The first class consists of the diagrams containing ori- 
ented loops with integration over the momenta not linked by 
the law of conservation of energy. Examples of such dia- 
grams are given in Fig. 8. All these diagrams make contribu- 
tions which are small in respect of the parameter a and, 
therefore, were ignored in the investigated range of tempera- 
tures D w ,  [however, it should be noted that if T<w,, the 
graph in Fig. 8a dominates the renormalization of the spec- 
trum of nuclear spin waves given by Eqs. (3.15) and (3.16)]. 
In particular, the diagrams in Figs. 8a and 8b yield relative 
corrections to the spectrum of nuclear spin waves of the or- 
der ofaZ and ( T  */T )a3, respectively, whereas the diagram in 
Fig. 8c renormalizes the longitudinal Green function (equal 
in the first approximation to 2b ') by an amount of the order 
of a2 and the diagram of Fig. 8d for the correction to the 
fluctuation vertex has a relative order of smallness ( T  / T  *)a. 
The diagram in Fig. 8e for the correction to the amplitude of 
the four-wave scattering includes small contributions of all 
three types. 

All the remaining diagrams belong to the second class. 
These are, for example, the diagrams shown in Figs. 6 and 7, 
as well as those given in Fig. 9. The contributions due to 
these diagrams are governed by the parameter ( T / T  *)2. In 
particular, the diagram in Fig. 9a is a contribution to the 
damping of nuclear spin waves which is of the same order as 
the four-wave process [Eq. (3.13) without the logarithmic 
ter,m]. It is the diagrams of the second class, which become of 
the same order of magnitude relative to one another, that 
destroy the spin-wave picture of the nuclear subsystem at 
T- T *. One may expect that well within the paramagnetic 

FIG. 8. Diagrams making contributions small in the parameter a. 

FIG. 9. Diagrams making contributions governed by the parameter (T/ 
T*I2. 

region (B  T *) the universal small parameter of the theory is 
a .  

6. CONCLUSIONS 

The results obtained in the present study show that the 
picture of relaxation in the nuclear subsystem of an antifer- 
romagnet changes considerably in the case of a large dynam- 
ic frequency shift, compared with the case of a small shift 
(Refs. 6, 8, 9, and 13). 

Firstly, the damping of nuclear spin waves due to the 
scattering by thermal fluctuations of the longitudinal com- 
ponent of the nuclear spins, which is the main source of re- 
laxation at temperatures T k w, , acquires an additional fre- 
quency dependence [see Eqs. (1.8) and (3.2)] and decreases 
significantly on increase in the dynamic frequency shift. In 
the limiting case when the spectrum of nuclear spin waves 
becomes of the Goldstone type (w, = 0) a hydrodynamic 
range k 5 k appears in the long-wavelength part of the phase 
space of the nuclear subsystems [see Eq. (3.12)] and in this 
range the damping of nuclear spin waves is governed by the 
four-wave scattering processes. This behavior of the damp- 
ing decrements (y,, a k 4, y4, a k 2, is due to the interference 
of the contributions from various terms of the Hamiltonian 
of the nuclear subsystem (2.1), giving rise to considerable 
reductions in the scattering amplitudes and to fullfilment of 
the Adler principle. 

Secondly, in the range Tgw, where thermal fluctu- 
ations are weak, the dynamics of the nuclear subsystem is 
dominated throughout the phase space by the four-wave 
scattering processes. It is worth pointing out a remarkable 
feature. If ignoring the interaction with the nuclear subsys- 
tem the spectrum of electron magnons in an antiferromagnet 
becomes of the Goldstone (or almost-Goldstone) type, then 
when an allowance is made for this interaction in the elec- 
tron spectrum, a gap appears because of the static action of 
the nuclei and the Goldstone (or almost-Goldstone) proper- 
ties are transferred to the nuclear subsystem. All the depen- 
dences of the damping decrement of nuclear spin waves on 
the wave factor and temperature in the "antiferromagnetic" 
part of the spectrum at T<w, repeat, apart from the coeffi- 
cients, the dependences typical of an easy-plane antiferro- 
magnet or ferromagnet. For example, in the presence of an 
energy gap in the long-wavelength limit the damping of nu- 
clear spin waves has the form y a T264,w; ' [the main con- 
tribution is governed by the 'gap" term in the amplitude 
(2.18)]. In the case of "suprathermal" nuclear spin waves 
(w, ST) ,  we find that y, a w: T4. 
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It should also be pointed out that an allowance for the 
dipole-dipole interaction gives rise to an anisotropy of the 
damping decrement of nuclear spinwaves in the k space [see 
Eqs. (4.5) and (4.7)]. This circumstance is important in dis- 
cussing the properties of parametrically excited nuclear 
magnons. 

We shall now compare our results with the experimen- 
tal data. In the case of parametric excitation of nuclear spin 
waves in various crystals it has been that the depen- 
dence of the damping decrement on the wave vector and 
temperature is of the type 

I t  is natural to attribute such a dependence to the fluctuation 
mechanism of the scattering of nuclear spin waves. In the 
experiments carried out at frequencies wk +, the damping 
decrement is identical with a numerical estimate obtained 
from Eq. (1.8). The possibility of a strong dependence of this 
decrement on the frequency of nuclear spin waves is pointed 
out in Ref. 8. An attempt made in Ref. 20 to detect a strong 
reduction in the damping decrement of nuclear spin waves in 
the presence of a large dynamic frequency shift was not suc- 
cessful. Instead of the theoretically predicted dependence 
y a w: , a characteristic trough-like dependence with a mini- 
mum at frequencies 400-500 MHz was observed. In our 
opinion, this behavior of the damping decrement is due to 
the imperfections of the investigated samples. An analysis 

that the process of scattering of nuclear spin waves 
on fluctuations of the longitudinal component of the spin of 
a paramagnetic impurity makes a contribution to the damp- 
ing decrement that decreases on increase in the frequency: 

where c is the paramagnetic impurity density. A similar fre- 
quency dependence results from the scattering of nuclear 
spin waves on crystal structure defects (which may be point 
or linear).22 

The sum of the expressions (3.2) and (6.2) can account 
fully for the experimentally observed frequency dependence 
of the damping decrement of nuclear spin waves. The valid- 
ity of this assumption confirms also the results of Ref. 23, 
where a reduction in yon increase in w, is observed in accor- 
dance with Eq. (6.2). We can identify the dependence y cc w i  
in the damping of nuclear magnons by experiments on crys- 
tals with controlled amounts of impurities. An extension of 
the investigated frequency range will also help to give infor- 
mation on the pattern of relaxation of nuclear spin waves 
characterized by a large dynamic frequency shift. 

The authors are grateful to P. B. Wiegmann and M. A. 
Savchenko for valuable discussions. 

APPENDIX 

We shall now give the expression for the amplitude of 
the four-wave scattering of nuclear spin waves in the case of 
an arbitrary dynamic frequency shift: 

bwn2 {-246 w,~,+u,~+u~~+u,, 
= - (w,o,o ,w,)" 

"When only the magnetoelastic interaction is included, it is found that 
A ' = 2o,w,,, where om,, is the characteristic energy of the magnetoe- 
lastic interaction. A magnetic field H is applied along the direction of easy 
magnetization in the basal plane. 
"The different boson representations of the spin operators, such as the 
Holstein-Primakoff representation with the 1-b substitution are incor- 
rect at temperatures TZo ,  , when the quantity b differs considerably 
from I. Although these representations make it possible to obtain the 
correct spectrum of noninteracting nuclear spin waves of the (1.5) type, 
the application of these representations to the processes of interaction in 
the nuclear subsystem requires certain artificial assumptions (see Ref. 8). 
3'This result does not confirm the apriori statements found in the litera- 
ture that the expansion parameter is in this case the "reciprocal interac- 
tion radius" ( ~ / r , ) ~ .  
4'The inequality k, (k, is satisfied in real cases. 
5'This description is valid if we ignore the problem of the normal positions 
of the operators ma in the Hamiltonian, i.e., ifwe ignore correctionsof the 
order of b - ' (~ / r , )~ .  These corrections are small both for T(o, and 
D o , ,  in which case their order of smallness is given by (T /T  *)'(om /T).  
6'The original variant of Ref. 10 utilizing renormalization of the interac- 
tion instead of introduction of Green spin-wave functions is less conven- 
ient. 
"This circumstance is related to the form of the nuclear spin wave spec- 
trum and it slows down considerably the process of relaxation of the nu- 
clear subsystem to a thermodynamic equilibrium state after the excitation 
of short-wavelength nuclear spin waves. 
"When "paramagnetic" diagrams are ignored (as is done in the case when 
the boson representations are used), additional factors of the order of 
(k,,, /16)3 appear in the expressions for the physical quantities. 
"Since at high temperatures the damping decrement of short-wavelength 
(k>k,) nuclear spin waves is dominated by the short-wavelength part of 
the phase space where the dynamic frequency shift is small, this result is 
valid even if the shift is large in the long-wavelength part. 
"'We shall consider only the dipole-dipole interaction between electron 
spins. The dipole-dipole interactions associated with the magnetic mo- 
ment of the nuclei can be ignored because of the smallness of the nuclear 
magneton. 

'H. Suhl, Phys. Rev. 109,606 (1958); T. Nakamura, Prog. Theor. Phys. 
20, 542 (1958). 

'A. S. Borovik-Ramanov, Zh. Eksp. Teor. Fiz. 36,766 (1959) [Sov. Phys. 
JETP 9, 539 (1959)l. 

'E. A. Turov, Zh. Eksp. Teor. Fiz. 36, 1254 (1959) [Sov. Phys. JETP 9, 
890 (1959)l. 

4P. G. de~knnes ,  P. A. Pincus, F. Hartmann-Boutron, and J. M. Winter, 
Phys. Rev. 129, 1105 (1963). 

5L. W. Hinderks and P. M. Richards, Phys. Rev. 183, 575 (1969). 
6P. M. Richards, Phvs. Rev. 173. 581 11968). 
'V. A. Tulin, Fiz. ~ i z k .  Temp. 5,'965 (1979)'[sov. J. Low Temp. Phys. 5, 
455 (1979)l. 
". ~ . '~u tok inov  and V. L. Safonov, Fiz. Tverd. Tela (Leningrad) 21,2772 
(1979) [Sov. Phys. Solid State 21, 1594 (1979)l. 

9N. N. Evtikhiev, V. S. Lutovinov, M. A. Savchenko, and V. L. Safonov, 
Pis'ma Zh. Tekh. Fiz. 6, 1527 (1980) [Sov. Tech. Phys. Lett. 6, 659 
(1980)l. 

'OV. G. Vaks, A. I. Larkin, and S. A. Pikin, Zh. Eksp. Teor. Fiz. 53, 281 
0967) [Sov. Phys. JETP 26, 188 (1968)l. 

"E. M. Pikalev, M. A. Savchenko, and J. Solyom, Zh. Eksp. Teor. Fiz. 55, 
1404 (1968) [Sov. Phys. JETP 28, 734 (1969)l. 

"Yu. A. Izyumov, F. A. Kassan-ogly, and Yu. N. Skryabin, Polevye me- 
tody v teorii ferromagnetizma (Field Methods in the Theory of Ferro- 
magnetism), Nauka, M., 1974. 

I3O. A.Ol'khov and S. P. Semin, Fiz. Tverd Tela (Leningrad) 23, 167 

1202 Sov. Phys. JETP 58 (6), December 1983 D. A. Garanin and V. S. Lutovinov 1202 



(1981) [Sov. Phys. Solid State 23, 93 (1981)l. 
I4D. A. Garanin and V. S. Lutovinov, Solid State Commun. 44, 1359 

(1982). 
15A. A. Abrikosov, L. P. Gor'kov, and I. E. Dzyaloshinskii, Metody kvan- 

tovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 (Methods 
of Quantum Field Theory in Statistical Physics, Prentice-Hall, Engle- 
wood Cliffs, N. J., 1963). 

16B. I. Halperin and P. C.Hohenberg, Phys. Rev. 188, 898 (1969). 
I7V. G. Bar'yakhtar, M. A. Savchenko, and V. V. Tarasenko, Zh. Eksp. 

Teor. Fiz. 49, 1631 (1965) [Sov. Phys. JETP 22, 11 15 (1966)l. 
I8V. I. Ozhogin, Zh. Eksp. Teor. Fiz. 48, 1307 (1965) [Sov. Phys. JETP 21, 

874 (1965)l. 

1203 Sov. Phys. JETP 58 (6). December 1983 

19V. S. Lutovinov and V. L. Safonov, Fiz. Tverd. Tela (Leningrad) 22, 
2640 (1980) [Sov. Phys. Solid State 22, 1541 (1980)l. 

''A. V. Andrienko,Avtoreferat kand. dis. (Author's Abstract of Thesis 
for Candidate's Degree), M., 1982. 

"V. S. Lutovinov, Phys. Lett. A 97, 357 (1983). 
"M. A. Savchenko and V. L. Sobolev, in: Magnetic Resonance and Relat- 

ed Phenomena (Proc. Twentieth AMPERE Congress, Tallinn, 1978, ed. 
by E. Kundla, E. Lippmaa, and T. Saluvere), Springer Verlag, Berlin 
(1979), p. 406. 

23A. Platzker, Ultrason. Symp. Proc., 1972, p. 116. 

Translated by A. Tybulewicz 

D. A. Garanin and V. S. Lutovinov 1203 


