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I 

Migdal's semiphenomenological approach (1962) to two-component degenerate Fermi liquids is 
generalized to include different particle masses in the two components. The formulas are obtained 
without allowance for the isotopic invariance of the effective interaction between the particles. 
Only a potential interaction between the particles is considered, so that the spin response of the 
system is considerably simplified. The screening of the long-range Coulomb forces is introduced 
by assuming that the zeroth Fourier transform of the interparticle interaction has an extremely 
large but finite modulus. The limiting transition to infinity is made only in the final stages of the 
calculation. The results are confirmed of the phenomenological approach of Oliva and Ashcroft, 
and new results are obtained. A Ward identity hitherto unknown even for one-component sys- 
tems is derived for the spin current components. 

PACS numbers: 6 1.20. - p 

1. INTRODUCTION. SELECTION RULES FOR TWO-PARTICLE 
GREEN FUNCTIONS 

The transformation of hydrogen into a metal at appro- 
priate high pressures and low temperatures is an obvious 
consequence of quantum mechanics. The question of the 
structure of metallic hydrogen is completely open from the 
experimental viewpoint and is at least partly open theoreti- 
cally. The main source of the theoretical uncertainty is the 
inaccuracy of the calculations of the correlation energy of an 
intermediate-density gas.' A quasiliquid character in one di- 
rection and a solid-state triangular structure in the perpen- 
dicular plane were obtained at zero pressure in the calcula- 
tions of Yu. Kagan's group.2 At higher pressures this group 
goes over into others, including triangular ones3 Calcula- 
tions by Ashcroft's group4,' lead to the conclusion that at a 
Wigner-Seitz parameter ro -- 1.6 a liquid metal phase should 
appear, although at higher densities, rOz0.8- 1.6, the solid- 
metal phase is favored. It is worth while noticing that the 
liquid-metal phase is preferred at astrophysically high densi- 
ties, since the energy of the lattice zero-point vibrations in- 
creases with density more rapidly than the potential energy 
of the ~ y s t e m . ~  

In recent work, Oliva and Ashcroft used a model of a 
degenerate electron-proton liquid to investigate its static 
properties and to derive stability  condition^,^ as well as to 
investigate its kinetic and transport properties8 They used 
the Landau phenomenological a p p r ~ a c h . ~  

A two-component Fermi liquid (FL) as a model of nu. 
clear matter was introduced by Migdal. 'O." The initial equa- 
tions of Ref. 10 are valid for any two-component FL, but the 
final conclusions formulated in Ref. 11 are valid only for 
systems with isotopic invariance. In potential interaction, 
which is a very good approximation in our case at astrophys- 
ical densities, the spin of each component is also a conserved 
quantity. This leads to specific selection rule--diagonality 
with respect to particle species-for the spin-exchange part 
of the two-particle Green function, and hence also for the 
spin-exchange part of the quasiparticle interaction. This se- 

lection rule for quasiparticle interaction was noted by Oliva 
and A~hcrof t ,~  although its derivation was not wholly con- 
sistent. 

The restriction imposed by isotopic invariance in the 
derivation of the stability conditions was lifted by us in Ref. 
12. This leads to an important analogy with the theory of a 
ferromagnetic FL, if the particle species in the ferromagnetic 
FL is taken to be its spin. In Ref. 12 was used the proof13 of 
the conditions of stability of a ferromagnetic FL. In addi- 
tion, an analog of the Leggett equation14 was obtained for a 
two-component system.12 We add that our stability condi- 
tions for a two-component FL coincide with the conditions 
of Oliva and Ashcroft. 

Our purpose is to generalize and supplement Migdal's 
results. ' ' The generalization is due mainly with allowance 
for the difference between the particle masses of the two 
components. Our approach is very close to that of Ref. 10, 
and is also close to the approach of Nozieres and Luttinger. l5 

The method developed in Ref. 1 1 was adapted to a treat- 
ment of long-range Coulomb forces. This was done by a pro- 
cedure introduced in Ref. 15: all the quantities of interest to 
us are expressed in terms of a sum of proper diagrams. For a 
single-component charge FL one must introduce a charge of 
opposite sign, uniformly spread over the entire volume of the 
system and canceling completely the charge of the particles. 
In our case there is no need for such an artifice, since the 
charges in two-component thermodynamic systems are mu- 
tually cancelled. The terms connected with the closed loops 
of the particle lines cancel one another if it is recognized that 
Vf(r) + Vfl(r) = 0, where Vfg (r) is the potential of the inter- 
action of particles of species f andg, and the variables f andg 
run through values + 1, with?= -f. To avoid infinities in 
the intermediate calculations we must assume that U,, (0), 
which the fourier transform Vf, (r) at k = 0, has a very large 
modulus but is finite. 

At finite values of Ufg (O)(f,g = 1) we can use all the 
relations that are characteristic of uncharged systems, ex- 
pressing the improper diagrams in terms of proper ones, only 
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for the sake of performing the subsequent limiting transition 
Ufg (O)+ f cc (plus at f = g, minus at f = g), so that 
Uf(0) + Ufi(0) = 0. Therefore the theory of a charged two- 
component FL is a variant of the theory of an uncharged 
two-component FL. This is not the case of one-component 
FL. We start from the theory of an uncharged FL and obtain 
the properties of a charged FL via a special transition to the 
limit. The present paper deals only with normal nonsuper- 
conducting systems, although electronic superconductivity 
of liquid metallic hydrogen is apparently possible, and fur- 
thermore at relatively high temperatures.7 In addition, at 
r,-, 1.6 there can arise a ferromagnetic state in a proton liq- 
 id.^ For the system to be degenerate at r,=; 1.6, tempera- 
tures not higher than several kelvin are needed. 

We consider the interaction potential 

- 
f #a@ 

where Pfa (r) is the second-quantized operator of the field of 
the particles of species f at the point r with spin a(fi/2=1, 
a = + 1); for liquid metallic hydrogen Vfg (r) = fge2/r, f, 
g = 1, and e is the elementary charge. In systems with this 
interaction the spin of each particles species is separately 
conserved, i.e., we have 

aB 

where uaBa denotes the a-th Pauli matrix, which commutes 
with the Hamiltonian, while a = x ,  y, z (or 1,2, 3). The two- 
particle Green function is defined as ( TP3 P4 !PI ' %+), 
where T stands for time ordering and the subscript of P is  the 
set of variables, the arguments of P in  the Heisenberg repre- 
sentation: f and a running through two values and the Gali- 
lean space-time vector X, =t, ,x, . The angle bracket ( . . . ) 
denotes averaging over the ground state of the system. From 
the Hamiltonian responsible for the temporal evolution of 
the operators P we have subtracted the term,u,N, +pi  N 7, 
where,uf and Nf are respectively the chemical potential and 
the number of particles of speciesJ Since the number of 
particles of each species is preserved, we need consider, with- 
out loss of generality, only the quantity 

For both a normal and a superfluid system, this quantity is 
invariant to spin rotation. From this we get 

~ a , ' ; a  ( x n )  = 6aT6oaKa'"Xn) + ( o a ~ u ~ ~ )  Ka" (Xn) (1) 
where Kzs(X, ) are scalar functions of their arguments. The 
Hamiltonian considered is invariant to the following gauge 
transformation: 

where pfa is a real phase that depends on f and a in arbitrary 
fashion. The function KsDsy, (X, ) is also invariant to this 
transformation. From this we find that 

f4  
~ a ~ , , a  (Xn) =e~p[i(cpta+cp~e-cptr-cps~) 1 ~ 2 , r a ( ~ n )  

This leads to the relation Kafg = KOfsfg, i.e., to a specific 
selection rule. 

For a ferromagnetic system or for one strongly polar- 
ized in spin, the function K$B,y, is invariant only to spin 
rotation about the magnetization axis. Expressing this fGnc- 
tion in terms of the spin invariants, we get (see Ref. 16) 

if the spin quantization axis coincides with the magnetiza- 
tion vector. Here Ksfg , Kmfg , Kmfg, K K~~~ denote sca- 
lar functions, and d- is the component, perpendicular to the 
magnetization axis, of the pseudovector a made up of Pauli 
matrices. Using the foregoing gauge transformation, we find 
that 

KLf'=.6tgKlf. 

We shall use a diagram technique with the rules intro- 
duced in Refs. 17 and 18 for the correspondences between 
the diagrams and the analytic expressions. 

2. BASIC RELATIONS FOR AN UNCHARGED TWO- 
COMPONENT FERMl LIQUID 

We generalize Migdal's approach,I0 regarding this sec- 
tion as an introduction to the problem of charged two-com- 
ponent FL. We consider the Fourier transform of the two- 
particle Green function 

J Ka& (x~x. ;  x.x,) srp [ i (P,x,+PX~-P,X,-PIX,)  1 

where P, is a four-momentum with zero frequency reckoned 
from,ug for even n and from ,u for odd n. The scalar product 
XP is specified by the expression wt - pax. The function 
Kfg (P, ) is meaningful only if P, + P2 = P3 + P4. We define 

where 4-vector describing the transfer of energy and mo- 
mentum (a ,  k). The expression of the two-particle Green 
function in the momentum representation Kfg (K;P,P,) in 
terms of the two-particle vertex part rfg(K;P,P2) is of the 
f ~ r m ' ~ . ' ~  

~ a : f , a  ( K ;  Pip,)  = (2n) ' 16'" ( K )  Gf ( P i )  Gg (P2) 6,1667 
- 6'" (P i -P2)  6fg6aa6B,Gf (Pt- '12K) G f  (P,+'12K) ] 

x ( K ;  P ip , )  Gg(Pz+'/zK) Gg(P2-'IzK) , 
where Gf (P ) is the single-particle Green function of the parti- 
cles of species f in the momentum representation (cf. Refs. 
17, 18). According to this formula the function Tfg has the 
same spin structure and satisfies the same selection rules as 
the function Kfg . The function rfg is the sum of all the con- 
nected diagrams with two incoming and outgoing particle 
lines. We introduce the two-particle irreducible function 
r-the sum of all the diagrams that cannot be divided into 
two nonconnected diagrams by dissecting two particle lines. 
We use the symbol for this function. We have (cf. Refs. 10, 
11, 17, 18) 
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summation over repeated spin indices is implied. We confine 
ourselves hereafter to small 4-momentum transfers. In this 
case we neglect the dependence of the function F on K. Ex- 
pressing the functions rfg and Ffg in terms of their parts that 
are direct and exchange in spin, as was done with the func- 
tion Kfg , we find that only those parts of these functions rSfg 
and Fsfg which are direct in spin have nonvanishing ele- 
ments with f = g. From this we get 

where Fafg ,Tafg c~ Sfg . It is convenient to rewrite this equa- 
tion in operator form 

r,, . ( K )  =F,, .+F,, . (GG)  ( K ) T . ,  . ( K )  

(cf. Refs. 10, 11, 15). At low energy-momentum transfers the 
product of single-particle Green functions can be divided 
into a regular part that is independent of K and a singular K- 
dependent part: 

G ,  (P+'IzK) G ,  (P-'IzK) 
= c p ,  ( P )  +2niZf26 ( p o )  6 (p-p,)  [ o - - ~ ~ ~ k + i 6 w ] - ~ ,  (4) 

(cf., e.g., Refs. 10, 11, 15, 17, 18). Here pf and uf denote 
respectively the Fermi momentum and the Fermi velocity of 
the particles of speciesf; Zf is the jump of the density of these 
particles on their Fermi surfaces; the 4-momentum P ~ ( p , ,  
p), the unit vector p = p/p, and p, are reckoned from the 
quantity pf7 and S = O+.  The diagonal operators that corre- 
spond to multiplication by the first and second terms of the 
right-hand side of (4) will be designated respectively by p and 
A (K ). It will also be convenient to write 

where 

1n matrix notation these terms willbe designatedg a n d j  (K ). 
According to (4) and (5) we have 

c p f  ( P )  = lim lim G f  (P+'/,K) G f  (P-'I,K) , 
w-0 !,-to 

qf ( P )  = lim lim G, ( P f i / , K )  G,  (P-'I&) ; 
k-0 0-0 

( 6 )  

these limits will hereafter be defined as w- and k-limits. As 
applied to the functionr (K ) these limits determine the func- 
tions "r and kr. In operator form we have 

With the aid of algebraic transformations we obtain from (2) 
and (7) 

= k r s ,  o+kI'8, a A ( K )  I's, ( K )  . (8) 

From this we get the relation 

"r., a=kr., a + k r , ,  .A T , ,  .. (9) 
Here A is A (K)  in the k-limit or -2 ( K )  in the w-limit. The 
nondimensionalized function r (K ) will be designated f (K ) 
and defined in accord with Ref. 10 (cf. also Ref. 13) in the 
following manner: 

where vf is the density of states on the Fermi surface of the 
particles of speciesf, and vf = pj/vf $ ( f iz l ) ;  a unity-vol- 
ume system is assumed. Relations (9), rewritten for the di- 
mensionless quantities (lo), take the form 

where Q =(O,p, q), is the 4-momentum and the bracket 
( . . . )e denotes averaging over the spherical angles that 
define the unit vector q. At P, = (O,pf fi) and P2 = (O,pg $ I )  the 
matrix functions " f and f should depend only onpf ,pg , and 
the scalar product kfi'. The Landau parameters in our case 
are the quantities " f&;, , I = 0, 1, . . . , defined by the rela- 
tion 

where P, is a Legendre polynomial. In contrast to the usual 
definition of the Legendre amplitudes, we have introduced 
the factor (21 + 1) in the sum (12). Substituting (12) in (1 1) we 
get 

whereg, f = + 1 and& - g; the Landau-parameter matri- 
ces are diagonal in the indices f and g: 

f f 
+f&.;l1 = k,ofa;l, k.wf8;l =k,wf';l. 

The function 

has for two-component systems the meaning of the forward- 
scattering amplitude of the quasiparticles of species f and g, 
with corresponding spins and moment pf f~ and pg fir on the 
Fermi surface (cf. Refs. 17 and 18). Accordingly, this quanti- 
ty should vanish at f = g, a = f l =  y = S and fi = fi' on ac- 
count of the Fermi statistics (see Refs. 17, 18, as well as 19). 
Expressing this fact with the aid of the quantities (12) we 
obtain two sum rules for our system: 

To express relations (14) in terms of w-quantities, a substitu- 
tion using (13) must be made. 

We introduce the vertex functions for the scalar, vector, 

1187 Sov. Phys. JETP 58 (6), December 1983 E. Czenvonko 1187 



spinor, and spinor-vector fields. They will be defined, in the 
spirit of Ref. 16, somewhat differently than in Refs. 10 and 
11. We begin with a definition of the free vertices vcf ,O<c(7, 
f = _+ 1. We have 

u,Of ( p )  =6!,, vgaf ( p )  =Gfspalmf, a==%, 2 , 3 ;  

a+&,4 
vgCf  ( P )  = 0 ' 8 ~ ~ ~  U g  ( p )  = ( ~ ' € i ~ ~ p , , / m ~ ,  

where the vertices vCf are proportional at c < 4 to a unit spin 
matrix. The vertex particles dressed by the interparticle in- 
teractions are defined in operator form by the relation 

P ( K )  = v i + r , ,  . ( K )  ( G G )  ( K )  v', 

or by the equation 

P ' ( K )  =vi+f  ,, . ( K )  ( G G )  ( K )  v'. 

We have used here one variable i in place of the two c andf, 
with O(c(7, f = + 1. More expanded, these relations take 
the form 

Tsi ( K ;  P )  = v,' ( P )  - 2i - d4Q I $ ( K ; P Q ) G ~ ( Q - ~ / , K )  EJ h=-i-.t ( 2 4 .  

d4Q - 
x G~ ( Q + ~ I ~ K )  vhi ( Q )  = vgi ( P )  - 2i ZJ - ( 2 n ) k r : l ( ~ ~ )  

It is necessary to substitute here r, or Fa if c > 3, and r, or 
7, ifc< 3 (i = c, f ); there is no summation over the spin varia- 
bles in these equations. 

Taking thew- and k-limits in (16), we find with the aid of 
(4) and ( 5 )  

Using the algebraic methods developed in Refs. 10 and 15, 
we obtain from (16), (17) and (7), (8), with account taken of (4) 
and (51, 

.P(K) = w p + r . , . ( K )  A ( K ) ~ Y - ~ = ~ P + ~ ~ . + A  ( K ) P ( K ) ,  

P ( K )  =kT'+I's,a ( K )  A(k) k T ' = k P . t k r 8 , a A  ( K )  P ( K ) .  
(18) 

We introduce correlation functions developed by 

where Tr stands for the trace over the spin indices (cf. Ref. 
15). It can be easily seen that SJ = 9 by virtue of Eq. (16) 
and of the symmetry of the function T. The quantity S'(k ) 
can differ from zero at i = c, f andj  = d, g only when we have 
simultaneously c < 4 and d < 4 or c>4 and d>4, and in the 
last case furthermore iff = g. If the correlation of the orbital 
vertices (c, d < 4) or of the spin vertices (c,d>4) is considered, 
the Tr symbol can be replaced by the factor 2. We shall con- 
sider hereafter only such cases. From (4), (16), (18), and (19) 
we obtain 

x ( ~ ;  PQ)  A~ ( K ;  Q )  o T ~ ' ( K ;  Q ) .  
(20) 

Applying in the same manner Eq. (16) and the third equation 
of (18) to Eq. (19) we obtain 

X ( K ;  PQ) Ah ( K ;  P )  ' T h j  ( P )  . 
(21) 

We made use of Eq. (5) (cf. Ref. 15). Relations (20) and (21) 
complete the algebraic part of the relations of the theory. 

3. WARD IDENTITIES AND THEIR COROLLARIES FOR THE 
VERTEX AND CORRELATION FUNCTIONS OF AN 
UNCHARGED TWO-COMPONENT FL 

The Ward identities for two-component FL were estab- 
lished by Migdal.'O.'' We shall express them in terms of our 
system of vertex functions (15), taking into account the mass 
difference of the two components, which was neglected in 
Refs. 10 and 11. In addition, we establish the Ward identity 
for the vertex of the spin current, i.e., Y;!(P) at c > 4, which 
was hitherto apparently unknown. We begin with the identi- 
ties that follow from gauge invariance. For our system, thex- 
dependent phase function can also depend arbitrarily on the 
spin and on the particle species. If the phase function is inde- 
pendent of spin, the response to such a field can be expressed 
by a combination of vertices with i = 0, f and i = a, f, with 
a = 1,2,3. Using a procedure similar to that used in Ref. 18, 
we obtain 

= air.' ( K ;  P )  - z k g ; !  ( K ;  P )  . (22) 

If the phase function is odd in the spin variable, then 

8 

= as" (K; P )  - z ka9-;+'.' ( K ;  P )  . (23) 
0-1 

In the w- and k-limits we obtain from (22) 

"Y-sOf ( P )  =6fg(aGg-I ( P ) / i ) p 0 ) ,  (24) 

'TKaf ( P )  =-6fg(dGd-' (P) / i )p , )  ; a=l ,  2, 3, 
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and similarly from (23) 
"9-2' ( P )  =6,,a"(dGg-' ( P )  lapo) , 

(25) 
k9-g4+asf  (P)=-6fg~z(aG,- '  (P ) /dy , ) ,  a=l,  2,3. 

Using (18) we can verify that Eq. (22) is satisfied identically 
by virtue of the relation 

wAg(K;  Q) =Vg(kqj A ~ ( K ;  Q ) .  

In the proof we use the form of the pole part of the Green 
function, i.e., 

Gf  ( P )  =Zf/  [p,-v, (p-p f )  +ipo61 , 6=0+ 

By performing similar transformations with identities (5) we 
can prove that relation (23) is also identically satisfied. Rela- 
tions (22) can be rewritten with the aid of (24) in the form 

3 

( K ;  P )  - Z k a 9 y f  ( K ;  P )  

= 0 ( P )  - k. hT;' ( P )  

From (23) and (25) we obtain similarly 
3 

= 0 'Tif ( P )  -Z k. k.7-yf ( P )  . 
a-i 

Introducing a static scalar field Scpi that varies slowly in 
space, and recognizing that in such a case,uf + Spj = const, 
we get 

":' ( P )  =8Gg-'(P) lap,. (28) 

We now establish the Ward identity that follows from 
the conservation of the total momentum. A transformation 
to a reference frame that moves with infinitesimal velocity 
6w and varies slowly with time leads to perturbation of the 
system Hamiltonian by a term i(SwV) that acts equally on 
both components. This leads in turn to a change 
p,-+p, + p.6~ of the argument of the single-particle Green 
function. The change of the single-particle Green function is 
therefore 

6Gf ( P )  =p6w (dGf (P)  lap,).  (29) 
Expressing this change in terms of the vertices and compar- 
ing the results, we get 

Let us, following Ref. 15, investigate the Ward identi- 
ties for the correlation functions. By virtue of (24), (25), and 
(2 1) we have 

(31) 
hsof.Og=-alvf/ap,=-alvgiap,, 

kS4f,6E8=-6 / tsxi B f 2 ,  

where Nf andxf are respectively the density of the particles 
of species f and their specific static spin susceptibility. The 
remaining quantities k ~ ' i ,  i, j = C, g; O<c<7, g = + 1 are 

equal to zero. In the w-limit only the correlation functions 
oflag and "S4 + af;4 + a = 1, 2, 3 differ from zero. On 
the other hand, by virtue of (28) we have from (19) 

The spectral representation of the autocorrelation functions 
makes them negative at w = O.I4 Hence " S4 + + Of < 0, 
and the symmetric matrix "S"f;"g, which does not depend on 
a for isotropic systems, is negatively semi-definite. That this 
matrix is not definite follows from (32). These inequalities 
lead to inequalities for the amplitudes (12). From (22) lead to 
the following equations for the correlation functions 

as can be proved by using (4), (5), (19), (24), and (26), as well as 
the form of the pole part of the fuanction Gg (P). A similar 
application of Eqs. (27) and (3 1) leads to the relations 

It follows from these relations that the continuity equation is 
automatically satisfied for the induced density and for the 
induced current of the particles of any component of (33), 
and also for the induced spin density and spin current of any 
component of (34). On the other hand it follows from these 
relations that a field that depends arbitrarily on the spin- 
species variable and on the spin, but is a Cgradient, induces 
no densities or currents. Expressing the response functions 
of the phenomenological approach7p8 in the form used in Ref. 
15, and comparing them with ours, we can prove that both 
approaches are identical provided that the effective interac- 
tion of the phenomenological approach is taken equal to 
z,zgoJlfg ( ~ 1 ~ 2 ) .  

We introduce, following Ref. 15, the effective vertices 
w9k i on the Fermi surface. They are defined as 

( P )  =Zs',kT6'(P) I FS. (35) 

Using (24), (25), and the form of the pole part of the Green 
function, we obtain 

!, tg h+a,f = 6 f f l z ~ f j a ,  a=1,2,3. 
(36) 

The vertices rg Of, rf 4f, " rg af and " T; + "f can be ex- 
pressed in terms of the quantities in (36) with the aid of Eq. 
(1 8) and the Landau amplitudes. Comparing the dual form of 
the vertices involved in this procedure and using (30) we can 
obtain equations for the observable quantities of the two- 
component FL. We shall do this by direct application of (20) 
and (21) together with (31), (32), and (36). In addition, we 
write down the formula 

" T , " ' = ~ ~ ~ . [ 6 ~ ~ + ~ f . ~ i '  ( V ~ / V ~ ) ' ~ ] .  (37) 

Choosing i = 0 and5  j = 0, g in (30), substituting there 
the corresponding T from (36), taking the k-limit in (20), and 
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making use of the fact that "SOLog = 0, we obtain with the 
aid of (3 1) 

dNtlc9pg=Gfgvi- ( v f vg )  'I2 'f;:. (38) 

Similar calculations with i = j = 4 and f yield 

xf=vfpfZ ( ~ + " f ; ~ ) - ~  (39) 

in accord with Ref. 7. Choosing i = a , f ;  j = a,  g in (21), and 
making there the appropriate substitution from Eqs. (3 1) and 
(36), we obtain in the limit 
o af as- - S # - ~ ~ ( l / m ~ - l l m ~ ' ) 6 ~ ~ - ~ f ! , 8 1  ( N ~ N ~ ) ' "  (m,'mf8)-'", (40) 

where the effective mass mf * of the particles of species f is 
defined as pf/uf. In the proof of (4) we used the relation 
Nf =p;/3?T2 ( f i ~ l ) .  For two-component systems this rela- 
tion can also be obtained by direct application of the formal- 
ism of the single-particle Green function without using the 
formalism developed in this paper (cf. Refs. 20 and 21). Sub- 
stitution of (40) in (32) leads to an equation for the effective 
mass 

1= (l+'f::)mf/mf'+"fSi~ (m7N7/mfNf)'" (m,milm,'m~') '" (41) 

in accord with Ref. 7. Taking (41) into consideration, we find 
that a positive-semidefinite character of the matrix (40) is 
equivalent to the inequality 

a/.;: 20. (42) 
This inequality coincides with the Leggett inequality for fer- 
romagnetic systems,I4 if the spin projection is regarded as a 
particle "species." Choosing i = j = 4 + a, f in Eq. (21) tak- 
en in the w-limit, and making in it the substitution from (31) 
and (36), we get 

from which follow two Leggett inequalities,14 a separate one 
for each component. For the sake of completeness, we add 
the inequalities for the Landau amplitudes, which we ob- 
tained'' in 1970 by the Leggett microscopic methods,14 and 
the analogous Pomeranchuk inequalitiesz2 for a two-compo- 
nent FL. We have 

l + " f ~ , > o ,  1+~f . f ; ,>0 ,  ~ e t ( ~ ~ , + " f ~ ; ~  ) >O (44) 

in accord with Ref. 7. 
When using the analogy beteen particle species and spin 

it is useful to mention that some other inequalities that mix 
terms with different I and do not reduce to inequalities (42)- 
(44) should be satisfied for" f3, although even the simplest 
of these inequalities is quite unwieldy (see Refs. 23 and 24). 

Taking the matrix inverse to (38), we get with the aid of 
(13) 

(dpi /dNg)  = ( v f vg )  -I" (6fg+*f$ ) , (45) 
in agreement with Ref. 7. Substituting these quantities in the 
thermodynamic formulas for the compressibility 

we can obtain it for our system. The heat capacity of a two- 
component FL can also be obtained by the method of Lut- 
tinger and Ward.20925 It can be proved with the aid of the 

Ward identity (28) that the principal term of the low-tem- 
perature entropy can be written as 

where Gg (0; EP)  denotes the Green function at zero tempera- 
ture, with po replaced by the Matsubara frequency E .  For 
single-component systems there is summation over g in (47). 
From this we obtain for the low-temperature heat capacity a 
formula that coincides with that obtained phenomenologi- 
cally.' 

4. CHARGED FERMl LIQUIDS 

It was assumed in the two preceding sections that the 
only source of singularities at small K is connected with the 
product (4) of the Green functions. For a system with long- 
range forces it is easy to find diagrams for the function r 
with an interaction line connected with K, a typical diagram 
of this kind consists of two contributions at the vertex of the 
function with small transfer of energy-momentum K, con- 
nected by a single (wavy) interaction line (Fig. 1). The dia- 
grammatic contribution to the function r may not contain 
such lines at all, i.e., it can be a proper diagram in the sense of 
Nozi2res and LuttingerI5 or be an improper diagram and 
contain such a line only once, etc. We introduce an effective 
interaction line, shown in Fig. 2 by a thick wavy line, where 
the circle denote the sum of all the diagrams that terminate 
in interaction lines with quasimomentum K. The analytic 
form of this equation is 

V f g ( K )  =fgu(k) t fhu (k)S"$U' ( K )  Vh'g(K),  (48) 
h,h8=*i 

where f, g = , 1, u (k)  = 4n-e2/k2 and e is the electron 
charge, sohpoh ' is the proper correlation function of densities 
of the particles of species h and h '. Solving (48) for the quanti- 
ties Vfg (K ) we obtain 

Vfg(K)  =fgu(k)  [I-u ( k )  S q q ( K ) ]  -', (49) 
where 

S.9 ( K )  = z fgSivog ( K )  . 
i,g=*1 

This quantity has the meaning of the autocorrelation func- 
tion of the charge in units of the elementary charge, and the 
term in the square brackets in (49) is the dielectric function of 
the system. The improper vertex function Tfg of (2) can be 
expressed in term of the proper Tfg with the aid of Fig. 3 and 
the following equation: 

P, - K / Z  

FIG. 1. 
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V fg f g u  Oh,Ohr 
- =  - +  aq 
f k g  f k g  f k  

FIG. 2. 

where a tilde over a symbol denotes its proper part. Substi- 
tuting in this formula V,, . (K ) in the form (49)  we obtain 

r f g ( K ;  PIP2)  = r f g ( K ;  PIP2)  

+u ( k ) ? p ( ~ ;  P , )? ,~(K;  P2) [I-u(k)Sqq(K),]-I ,  (50)  

where the proper vertex functions are 

Taking into account the character of the vertices pq , we can 
show that the last term in (50)  modifies only T$. Substitut- 
ing r in such a form in (16)  and expressing the vertices in 
terms of this function we obtain with the aid of (19)  

where 

E ( K )  = [ I-u ( k )  Sm ( K )  1, Sqzcf ( K )  = hSohzcf ( K )  ; 
h = f  i 

at c>4  we get 

F,"'(K; P )  = . T g c f  ( K ;  P) . 
Substituting (5 1 )  in (19)  we can express the improper correla- 
tion functions in terms of the proper ones: 

s c f , d g  ( K )  , p f , d #  ( K )  +Sq*cf ( K )  S P > ~ # ( K )  / E  ( K )  . (52)  

Hence 

Sqq(K) = g g q ( K ) / ~ ( K ) .  (53)  

We note that at c ,  d > 4  we have 
p f , d g , ~  p , a f  

i g  . 
If u(0)  is very large but finite (see the Introduction), all 

the relations obtained in the preceding section, including the 
Ward identities, are valid in the present case. Equations 
(50)-(53) enable us then to express all the quantities in terms 

Pr + K / Z  P, + K I Z  

hh' 

P , - K I Z  P ~ - K / Z  

of proper ones. We note that two-particle irreducibility can 
be introduced also for proper diagrams. This enables us to 
repeat for the proper quantities the previous algebraic trans- 
formations. However, proper vertex functions in thew- or k- 
limits can be obtained only with the aid of the relations for 
the improper quantities (24) ,  (25) ,  and (28) ,  which are con- 
nected with the corresponding proper ones through Eqs. 
(51) .  This question does not arise for the spin vertices (at 
c > 4 ) ,  which consist of only proper parts. 

The Ward identities yield "SOLcg = 0 at all c. Going to 
the w-limit in (52)  and (53)  at finite u ( 0 )  we find that also 
"SOLcg = 0 at O<c(3 .  Using this result in (51)  we get 

0.?8cf ( P )  =@?,"' ( P )  , O<c<3. (54)  

In addition, recognizing that kSOLag = 0 at a = 1 ,  2, 3,  we 
can find from (52)  at c = 0 ,  d = a,  and finite u(0)  that 
kSOLag = 0 ,  too. Hence and from (5 1 )  we get 

h F p " f  ( p )  =hrgaf ( P )  , a=I, 2 ,  3. (55)  

We can prove similarly that 

Relations (54)  at c = 0 and (55)  are sufficient to establish the 
form of the proper correlation functions. They are expressed 
in terms of the proper Landau parameters in the same man- 
ner as the improper functions are expressed in terms of the 
improper parameters. The equations for the effective masses 
(41)  are therefore valid also for charged systems. We add that 
relations (54)  and (55)  lead jointly with the equations for the 
vertex functions to relations (22)  and (26) ,  which are satisfied 
by the proper vertex functions. Relations (33)  are therefore 
valid also for the proper correlation functions. Relations (54)  
and (55)  yield the effective interaction for charged systems if 
Eqs. (35)  and (36)  are taken into account: 

z , z ,"r fg(PiP2)  I ps=ZrZg@Tfg(PlP2) I p s - t 4 ~ e ~ f g / k ~ ,  (56)  
where the w-limit must be understood in the sense of 
0 < kv, ( w e j .  Equation (56)  can be interpreted as a verifi- 
cation of the Landau-Silin term for two-component charged 
FL. It can be seen from (56)  that the exchange part of the 
effective interaction, just as the components of the nonex- 
change part with I < 0 ,  are not altered by the long-range ac- 
tion. 

It remains to consider only the vertex riqP) and the 
correlation functions SOLog ,f, g = + 1 .  We can let u(0)  tend 
here to infinity right away, since this done not result in ambi- 
guity. In the calculations we shall need to know the values of 
k J t - ~ f  , I ., and SOLog. The quantities 7J I,, ,k @,Of, or pq 
that enter in (51)-(53) and are taken in the k-limit can be , . ,  , 

obtained from the preceding ones by direct summation. Ex- 
k t-Of pressing J , I,, in terms of " efl ,, = tifg /Z,  (cf. (35) ,  

(36) ,  and (54) )  with the aid of the first equation of (18) ,  taken 
in the the k-limit, we obtain 

where W, -Det(Sfg + "7%) (cf. (13) ) .  Substituting " eflF, 
in (20)  we get (cf. Eq. 38))  FIG. 3. 
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Going to the k-limit in (52) and (53) at c = d = 0, we 
obtain 

k , ' j ' w = O ,  k,'j'Of,Og=kgOf,Og-k~Of.qkSOg,q/kS~~ 7 (59) 

whence kSOLq = 0. That part of the thermodynamic-poten- 
tial differential which is connected with the change of the 
number of electrons and protons takes the form 
pIdNI + p,dN, = p + d N  +p-dQ, where 
N = (N, + NI)/2, and Q = N, - N T are respectively the 
number of particle pairs and the charge of the system in units 
ofe.Thequantitiesp+ =p ,  + p T , p -  = (u, -pT)/2arein- 
terpreted as chemical potentials connected respectively with 
the variables N and Q. The identities obtained, expressed in 
terms of the introduced parameters, take the form dN/  
dp- = dQ/dp- = dQ/dp+ = 0 [cf. (31)], i.e., the charge 
and its chemical potential are no longer thermodynamic var- 
iables. Indeed, the charge density of a thermodynaic system 
should vanish and, hence, all the thermodynamic variables 
should be independent of the chemical potential connected 
with the charge. Changing to the k-limit in (5 1) we find, after 
multiplying by f and summing over f = + 1, that F;(P ) 
[or dG/ '(P)/dp_ if (28) is taken into account] is equal to 
zero. 

In some respects our system behaves as a one-compo- 
nent system consisting of electron-proton pairs. Summing 
the second equation of (59) over f and g and using the first 
equation of (3 1) we get 

I B  

where 

Substituting (58) and (60), we find after some calculations 

The thermodynamic formula for the compressibility of the 
system per unit volume takes the form x = (dN/dp+)N -2 ,  

from which it follows that Eqs. (45) and (46) lead to the same 
result if N, = NT = N. We have thus confirmed the result of 
Oliva and Ashcroft,' which was obtained by method more 
appropriate to systems with short-range action. Transform- 
ing to the k-limit in (5 I), summing overf, and using Eq. (28) 
taken on the Fermi surface, we obtain 

av,dpp/dp+= ['Fgn ( P )  - k ? g q ( ~ )  hSqn/kSqql I Fs, (62) 

wherep, denotes the Fermi-momentum value that is com- 
mon to both components. It can be verified that (62) is satis- 
fied identically at g = + 1. 

For charged particles, the amplitude for forward scat- 
tering of particles on the Fermi surface is kr (PIP,)/,, [cf. 
(19)l. Therefore the sum rules for charged liquids cannot be 
obtained from (14) by direct replacement of the improper 
amplitudes by proper ones. Changing to the k-limit in (50) 

we should get zero at f = g and P, = P, on the Fermi surface 
and at equal values of the spin indices. Using (57) and (58) to 
obtain PJI,, and S4q,  and changing to dimensionless 
variables, we get 

It is easily seen that the stability conditions will be satisfied 
by all the proper Landau exchange parameters and by the 
proper non-exchange ones at I >  0. In addition, all the in- 
equalities (42) and (43) should also be satisfied by proper 
amplitudes. For non-exchange Landau parameters at I = 0, 
starting from the fact that the static autocorrelation func- 
tions are not positive, we can prove with the aid of (60) and 
(61) that dN /dp + > 0, and find from (53) that Fq < 0. 

5. CONCLUDING REMARKS 

For two-component FL, just as for ferromagnetic FL 
(cf., e.g., Refs. 25 and 13), the number of possible static mea- 
surements is smaller than the number of Landau parameters 
that enter in the equations for the corresponding quantities. 
For example, for two-component neutral FL we can mea- 
sure the three quantities dNf/dpg, the heat capacity, and the 
spin susceptibility, while the equations for these quantities 
contain five Landau parameters (" f $, , f :$ ) and two effec- 
tive masses. For charged systems the situation deteriorates, 
inasmuch as in place of the three quantities dNf/dpg we can 
now measure only dN /dp +, although the determination of 
the static screening length via E(K ) makes it also possible to 
obtain the value of k @ q .  For neutral systems there remain 
therefore two free parameters, and for charged systems even 
three. These numbers can be reduced by unity, since it is 
possible to measure separately the static electron susceptibil- 
ity and the proton spin susceptibility. These possibilities are 
the consequence of the separate conservations of the electron 
and proton spins, as a result of which the spin vertices and 
the correlation functions are diagonal in the particle species. 

The proton and electron components of the dynamic 
susceptibility have the analytic properties of the susceptibil- 
ity. Their static values are therefore expressed in a known 
manner in terms of an integral of their imaginary parts with 
respect to the frequencies. If a static magnetic field h is 
turned on, such that IB7 1 h @ ,, the regions of w in which the 
electron and proton imaginary parts o fx  differ substantially 
from zero become separated. This yields the static values X ,  
and g = f 1 separately rather than only their sum. 

We have considered in this paper only normal FL, with 
a slight exception made (see the Introduction) for ferromag- 
netic FL. We note once more that the proton ferromagne- 
tism is more readily feasible at r, =: 1.6 and a nonzero elec- 
tron magnetic moment appears in that case as a result of the 
action of the magnetization field. Generalization of the the- 
ory to include this case is quite simple-the single-particle 
Green functions become dependent on the spin projection a 
on the magnetization axis. In addition, the two-particle ver- 
tex part will take the form considered by us at the end of the 
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Introduction. We take an analogous expression for T2p,T,. It 
is easy to note that our approach can be used only for the 
quantity r$p,ap if the particle spin in units of fi/2 is compar- 
able with the number of particles. In this case the quantity 
r? is inessential, and Zfa Zgpo r?p,ap (where Zfa denotes 
the discontinuity, on the Fermi surface, of the density of the 
particles of species f with spin a )  plays the role of the effec- 
tive quasiparticle interaction. The aggregate of the vertices 
determined by the free vertices (15) is also now sufficient to 
obtain all the results of the theory. Equations (16) for the 
total vertices will contain summation over the longitudinal 
spin a, the vertex r will be a spin matrix, and the solutions 
Y;,(K,P) of Eq. (16) will depend on spin. It is easy to show 
that the Ward identities and their corollaries can be written 
for two-component ferromagnetic FL in the form (22)-(30) if 
the subscript g is replaced everywhere by the double sub- 
script ga. It is likewise easily seen that the expressions (50)- 
(53) for the improper values in terms of the proper ones re- 
main in force (in some cases following the substitution 
g+ga), although the form of the proper quantities changes. 
The number of the free parameters of the theory, i.e., those 
that cannot be determined from static measurements, in- 
creases compared with the normal systems. Indeed, we have 
here ten different Landau parameters at I = 0 and four effec- 
tive masses. On the other hand, it is possible to measure 
seven quantities for neutral systems (three values of dNf/ 
ap, , three values ofaM /ah, a M  /apf, and the heat capacity; 
here M is the magnetization). For charged systems we can 
measure only four quantities including the screening length. 
It is therefore interesting to ascertain whether an analog of 
(62) will be satisfied identically for ferromagnetic FL or not. 
If not, "jPp and the effective masses become subject to the 
restrictions that are valid for charged systems. 
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