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Nonlinear fluctuation effects in the dynamics of smectic liquid crystals are considered. A diagram 
technique for interacting long-wavelength modes is utilized. Within the framework of this tech- 
nique a procedure is constructed for excluding weakly fluctuating variables. An effective action is 
derived for the smectic mode. It is proved that this mode is strongly damped. The logarithmic 
behavior of the coefficients describing this mode is derived. The contribution of fluctuations to 
the spectrum of first sound is considered. It is shown that the fluctuations lead to a divergence 
a w - '  in the viscosity. The logarithmic behavior of the coefficient in this law is determined. 

PACS numbers: 61.30.Cz, 62.10. + s 

INTRODUCTION 

Smectic liquid crystals of different kinds are unique 
physical objects, exhibiting at the same time properties of a 
two-dimensional fluid and of a one-dimensional solid. The 
linear theory of elasticity and the hydrodynamics of such 
systems are well known.' For the sake of concreteness we 
shall consider smectics of the A type, in which the molecules 
are orthogonal to the layers, although all results obtained 
below, with appropriate changes of notation, are valid for 
arbitrary smectics in which there exists a solid-state order in 
the layers (for instance for smectics of the C type, in which 
the molecules are inclined relative to the layers, or for the so- 
called hexatic B smectics, which exhibit a certain orienta- 
tional order of the bonds in the layer). 

Compared with an ordinary isotropic fluid, the only ad- 
ditional hydrodynamic variable necessary in the theory ofA 
type smectics is the displacement u of layers in direction 
perpendicular to them. The absence of an A type smectic of a 
Young modulus for changes of u along the layers leads to 
strong fluctuations of the order parameter, and according to 
the Landau-Peierls theorem,' to an absence of long-range 
order in such a system. Of course, the order disappears only 
in an infinite system. In a finite system, or, what amounts to 
the same, for finite wave vectors, the description of a smectic 
in terms of a displacement of equidistance layers is correct. 

In studying the nonlinear properties of a type A smectic 
it is more convenient to use in place of the layer displacement 
a function W (r,  t ) which has the interpretation that the equa- 
tion W = const determines the position of the layer of mole- 
cules. The energy density of an A type smectic can be repre- 
sented as an expansion with respect to the gradients of these 
functions, for which the leading terms have the form 

E(W)=1/8@ [ (VW)2-1-2] 2+i/236 (V2W) '. (I)  
here p and 7t are the elastic moduli and I is the distance 
between the layers (the period of density modulation). At 
equilibrium Wo = z/l ,  with the z axis perpendicular to the 
layers, since the condition Wo = const defines a plane per- 
pendicular to the z axis. 

If one now considers deformations of the molecular lay- 
ers, one must go over from the variable W to the variable u 
according to the definition 

w= (z-u)lZ. (2) 

For small deviations from equilibrium the variable u coin- 
cides with the displacement of the layers along the z axis, in 
agreement with the standard notations of the linear theory.' 
Expanding the expression (1) with respect to u one easily 
obtains the harmonic part of the energy 

Thus fl corresponds to the compression modulus of the lay- 
ers and x to the Frank modulus for transverse bending in the 
linear theory.' In Refs. 3-5 it was shown that the anhar- 
monic effects (i.e., the interactions of the long-wavelength 
fluctuations) lead to a substantial logarithmic renormaliza- 
tion of the elastic modulip and x, which in the limit of large 
values of the logarithmic factors behaves as follows: 

HereL = In[A /max(k, ,lk ')) is the large logarithm, k is the 
wave vector, ,l is a characteristic wave vector cutoff, which 
determines the limits of applicability of the macroscopic 
treatment. 

It is natural to expect that strong long-wave fluctu- 
ations must also manifest themselves in the low-frequency 
dynamics of an A type smectic. This was first pointed out in 
Ref. 6. However the authors of Ref. 6 have only calculated 
the first correction to the viscosity coefficients, correction 
which diverges as w-'  for low frequencies. The same diver- 
gences are exhibited by the higher corrections of perturba- 
tion theory. Therefore, one is not allowed to restrict oneself 
to first-order perturbation theory in the investigation of the 
low-frequency dynamics of A type smectics, and one must 
take into consideration all the leading corrections. It should 
then be kept in mind that not only the kinetic coefficients 
(which determine the imaginary part of the oscillation spec- 
trum) are subject to strong renormalizations, but also the 
coefficients which determine the real part of the spectrum. 
The higher orders of perturbation theory will be taken into 
account in the present paper by means of the diagram tech- 
nique developed by Sukhorukov, Khalatnikov, and one of 
the present authors (V. L.) in Ref. 7. 
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INVESTIGATION OF THE WEAKLY FLUCTUATING 
VARIABLES 

The diagram technique developed in Ref. 7 is construct- 
ed starting from the generating functional 

Here pa (t, r) is a complete set of hydrodynamic variables; P a ,  
+ha,  and qa are auxiliary variables, with both IC,,, , $, as well 
as v, , E, anticommuting quantities. Summation over repeat- 
ed indices is understood. The Lagrange function density has 
the form 

The expressions Fa (p ) determine the hydrodynamic equa- 
tions 

and contain (Ref. 7) both reactive and dissipative terms, as 
well as random forces over which the functional (5) should be 
averaged. 

By expanding the functional (5) with respect to the var- 
iables m, y, y,, 7, which are canonically conjugate to the 
variables p,  p, + h a ,  $,, one can obtain the correlators (corre- 
lation functions) of various powers of the functions p,p,  llr,, 
qa. It follows from the structure of the density of the La- 
grange function (6), that only the following pair correlators 
do not vanish: 

Dab (t-t', r-r') =- (qa ( t ,  r)  qb (t', r') ), (8) 

Gab (t-t', r-r') =-(rp,(t, r ) p b  (t', r ' )  )=i($a(tr r)$6 (t', r ' )  ). 

(9)  
The last equality in (9) follows from the invariance of the 
Lagrange function with respect to the (supersymmetry) 
transformations 

Here the infinitesimal parameter ii of the transformation is 
an element of a Grassmann algebra (an anticommuting 
quantity). Note that the D-function is a correlator of obser- 
vable~, and the G-function is the linear response of the sys- 
tem to an external force which has to be added to the right- 
hand side of Eq. (7), i.e., G (a) is holomorphic in the upper 
half-plane and its poles determine the eigenvalue spectrum 
of the system. 

The exponent of the exponential in the expression (5) is 
conveniently represented in the form 

Here 
$a=ya+i8v,, iiia=m,+i8,B, p",=p,+$,0, @=cp,+o$,. 

(11) 
The Berezin integrals over the Grassmann variables 8, and 
8, is defined so that 

j d2eee=i.  

Recall that from this definition follows the fundamental 
functional relation 

We shall be interested in the effects related to the interaction 
of long-wavelength fluctuations, i.e., effects determined by 
the nonlinear terms in the Lagrangian density (6) or the 
expression (10). However, among the variables of the system 
studied here only one-the order parameter of the smectic- 
is strongly fluctuating. This means that the interaction of the 
various degrees of freedom yields a small contribution to the 
renormalization of the hydrodynamic equations (a term of 
the order wl" in the kinetic coefficients) and thus this inter- 
action is negligible. One must take into account only the self- 
interaction of the order parameter and its interaction with 
the other degrees of freedom. Accordingly, it is convenient 
to carry out the mathematical procedure in a general form. 
Let@, and @, describe the strongly fluctuating one. Neglect- 
ing the interactions of the pa and G, means that in the 
expression (10) we must retain only terms quadratic in these 
quantities, retaining however the full nonlinearity in 6 .  
After this one can explicitly integrate with respect top, and 
Ga in the expression (5). It is easy to see that the determinant 
which is obtained this way is equal to one, and a shift in the 
exponent of the exponential leads to the following expression 
for the generating functional (5) 

dt  d3r d2B erp ( i08)  8, , I (12) 

- (p, a+iii,) (6,a dldt+Fa, b )  - I  (Fb+y"t.). (13) 
Here Fa,, and F,, denote the differential operators corre- 
sponding to the integral operators with the kernels SFa (r,)/ 
Sp, (r,) and SF  (r,)/Sp, (r,), respectively, in all quantities we 
have set @, = 0, but have retained the dependence on @. We 
note that the expression (13) depends explicitly on ma and 
j, , so that the information on the correlators of weakly fluc- 
tuating variables is not lost through the procedure described 
above. 

Until now in this section we have nowhere taken into 
account the necessity to average over the random forces. As 
was shown in Ref. 7, this averaging does not change the form 
of the expression (5), but leads to the appearance of terms 
quadratic in @ in the exponerlt of the exponential. Together 
with the terms coming from the dissipative terms in the hy- 
drodynamic equations, these terms will be written in the 
form of a dissipative contribution to (13): 

9 ,d-zpZ~+'/zip"lIj. -.- (14) 
The self-energy function 2 and the vacuum polarization op- 
erator IT are related to each other by an expression of the 
type of the fluctuation-dissipation theorem. Note that a con- 
tribution of the same form as (14) to the effective action (12) 
appears on account of the interaction of the fluctuations. 

AN EFFECTIVE ACTION FOR THE ORDER PARAMETER OF 
SMECTICS 

In this section we carry out the described procedure for 
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the elimination of the weakly fluctuating variables for smec- 
tics. As will be shown below, the corrections to the dissipa- 
tive Lagrange function (14) which are due to fluctuations are 
much larger than the bare quantities, so that we shall be 
interested only in the nondissipative terms in the nonlinear 
hydrodynamic equations of type A smectics. We give here 
the form of these equations discussed in Ref. 9. 

The energy density in type A smectics is a function of 
the following variables: 

E = E ( g , o ,  j, ViW, ViVhW). (15) 

Herep is the mass density, a is the specific entropy, j is the 
momentum density, W is the smectic variable about which 
we talked in the Introduction. The thermodynamic identity 
for the energy has the form 

Here p is the chemical potential, v is the velocity, T is the 
temperature, qhk and qh, are the variables canonically conju- 
gate to V, Wand Vk V i  W. The pressure P is defined as fol- 
lows: 

The thermodynamic identity for the pressure follows from 
Eqs. (16) and (17): 

dP=pdp+jdv-Tpd~-~?~V~dW-V~(~ikV~dW). (18) 
Finally, the nondissipative equations of the hydrodynamics 
of smectics have the form: 

Here the stress tensor is 

Tik = [P+ V m  ($rnnVnW)] 6 i k S - p V i ~ k + $ k V i W - V i $ k ~ V , W .  (20) 

We consider the expression for the energy density of the 
smectic corresponding to the expansion (1): 

Here E, P, I, and x are functions of .rr and a. Calculating the 
pressure according to equation (17), we obtain 

P=pd~/dp -~+P(W' ,  (22) 

where the part of the pressure related to the smectic variable 
is 

In Eq. (23) we have introduced the notation 
y= (8 ln 118 ln p )  o. (24) 

The smectic contribution to the stress tensor has the form 

T , ; ~ = ~ I , ~ [  ( V W ) ~ - Z - ~ ] V ~ W  vkw-%vk v2w viw 
-xVi V2W VhW+[P'W'+V,(xV2W VnW)]6n. (25) 

Before proceeding we note that in the linear approxima- 
tion' the equations (19) describe two modes of the acoustic 

type. One of them is related to the density oscillations and 
represents ordinary longitudinal sound (in an A type smectic 
it is called first sound, by analogy with superfluid He4). Its 
speed of propagation c, is determined by the compressibili- 
ty: c: = pd2&/dp2. The second mode is related to a compres- 
sion of the layers (without a change of density). It is called 
second sound and its velocity of propagation c, is deter- 
mined by the elasticity modulus P, i.e., c: = P/p1 4. In real 
smectics the order of magnitude of these velocities are in the 
ratio c:/c: - lop3. This means that the spontaneous sym- 
metry breaking in smectics is weak in the parameter - 

We now eliminate the weakly fluctuating quantities p, 
a ,  and j by means of the nondissipative hydrodynamic equa- 
tions (19). In the linear approximation with respect to these 
variables the equation for a separates entirely, so that inte- 
gration with respect to this variable reduces to replacing a by 
its (homogeneous) equilibrium value. The integration with 
respect t op  reduces to the substitution 

where k is the wave vector and o is the frequency; there 
remains only to eliminate pi = ji . This leads to the Lagrange 
density (13). According to Eqs. (19), (22), (23), and (25) the 
quantities which occur in this expression have the form 

In the expressions (27), (28) we have omitted terms of the 
order of c:/c: ; in all coefficients in Eq. (27)p and a are equal 
to their (homogeneous) equilibrium values. 

We shall be interested principally in the self-interaction 
of the strongly fluctuating degrees of freedom. In this case 
the frequencies have the approximate behavior o -c2kz. 
One may thus omit the second term in the denominator of 
the expression (28), corresponding to neglecting a quantity of 
the order c:/c:. Omitting in 9, the dependence on m andj ,  
we obtain, upon substitution of Eq. (27) into Eq. (13), the 
following expression: 

(29) 
Here 

and V, is the component of the del operator perpendicular to 
thez axis. In the derivation of Eq. (29) we have omitted terms 
which contain Vk (V w ) ~ ,  since they contribute little to the 
long-wavelength properties of smectics. 

One must add to the reactive part of the action defined 
by Eq. (29) the dissipative part (14). Inclusion of the tradi- 
tional dissipative terms into the hydrodynamic equations 
(Refs. 1, 9), leads to the following expressions: 

Here r is a kinetic coefficient. However, already the 
first fluctuational correction to 2 and 17 has the form: 
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Z=2igV12, I I=-aVL4/02V2.  

Here g and T are constants. These quantities have a lower 
power in k than those in Eq. (31), and consequently they 
exceed (31) for hydrodynamic values of the wave vectors. 
This circumstance means that the region of applicability of 
the expressions (3 1) is absent, and that the dissipative part of 
the action is determined by the expression 

RENORMALIZATION OF THE ACTION FOR THE SMECTIC 
VARIABLE 

The expressions (29), (32), and (12) define an effective 
bare action for the smectic variable W. As will be shown 
below, taking into account the interaction of the fluctuations 
leads to a logarithmic renormalization of the constants a, 6, 
g, and T. This circumstance allows us to write explicitly the 
expressions for the Green's functions D, Eq. (8) and G, Eq. (9) 
which involve the smectic variable. Retaining the quadratic 
part of the Lagrange density (29) we are led to the generating 
functional which in the Fourier representation yields the fol- 
lowing expressions for the Green's functions referring to the 
smectic variable: 

Here 
q2= (akZ2+bk4)  k l2 /k2 ,  

We point out the following expression which is a conse- 
quence of Eqs. (33) and (34) 

This representation is convenient for the calculation of the 
intermediate integrals with respect to the frequency. This is 
due to the fact that, being a linear response function, G (a) 
can have singularities only in the lower half-plane (this cor- 
responds tog > 0 in Eq. (33)l. It follows from the structure of 
Eqs. (33) and (35) that for a characteristic wave vector 

Thus, ksk,,  and the ratio k : may be replaced by unity in all 
intermediate integrations. At the frequency w we have the 
estimates 

In the action defined by the expressions (29) and (32) the 
only nonlinear term describing the interaction is the second 
term in the right-hand side of (29). Based on its structure one 
can construct a diagram technique for taking into account 
the higher fluctuational corrections. It turns out that the 
integrals which correspond to these diagrams are deter- 
mined by the internal wave vectors q which are much larger 
than the external wave vectors k. This makes it possible to 
use the one-loop approximation for the renormalization 
equations for the action under consideration. Moreover, it 
turns out that the structure of the action defined by (29) and 
(32) reproduces itself under renormalization, and the corre- 

/---- 

\ FIG. 1. 

sponding integrals are purely logarithmic. We are thus faced 
with a typical renormalization group (renormgroup) situa- 
tion, where the "charges" are the quantities a, 6, g, and T. 

The renormgroup procedure consists in separating 
from Eqs.(29), (32) the "rapid" variables, which have a char- 
acteristic wave vector q)k, and integrate the generating 
functional (12) with respect to them in the Gaussian approxi- 
mation, which leaves behind only a dependence on the slow 
variables with a characteristic wave vector k. The renormal- 
ization of the interaction vertex is then given by the diagram 
represented in Fig. 1. In this and the following figures the 
broken line denotes the D function, the solid line denotes the 
G function, the quadrilateral denotes the vertex a/w, where 
V  is connected to the light corners, and Vp is connected to 
the dark corner; quantities with mutually contracted indices 
are designated by the straight segments on the quadrilater- 
als. The renormalization of the vacuum polarization opera- 
tor I7 and of the self-energy part H are described, respective- 
ly, by the diagrams represented in Figs. 2 and 3. On the pair 
of external end points of these diagrams one must substitute 
the zero values W, = d l .  The diagrams represented in Figs. 
1 and 2 are purely logarithmic and yield the renormaliza- 
tions of a and T, respectively. The diagram of Fig. 3 diverges 
for large wave vectors. Consequently, one must carry out a 
subtraction of an infinite constant from this diagram, and 
expand the remainder in terms of the external parameters. 
The expansion with respect to the external frequency yields 
the renormalization of g, and the expansion with respect to 
the external wave vector leads to the renormalization of b. 

The technical details of the calculation of the diagrams 
are relegated to the Appendix; here we list only the final 
renormgroup equations: 

In these equations the accent denotes differentiation with 
respect to the variable I 2L / 1 2 8 ~ ,  where L is a large loga- 
rithm. It follows from the equations (38) that 

a/g=const, dg2/db=l+gVb. (39) 
The first equality is a reflection of the fluctuation-dissipation 
theorem. Integrating Eq. (39) as well as Eqs. (38) for a and b, 
taking r/g = const into account, we find 

FIG. 2. 
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FIG. 3. 

accL-"5, baL'/s, g2=hln(b/b,).  (40) 

The relations (40) solve the problem of renormalization of 
the action defined by Eqs. (29), (32). We note that g and r 
vanish at the normalization point b = b,, and then grow with 
respect to b ' I2  at a doubly logarithmic scale. 

The logarithmic behavior of the quantities a and b in 
Eq. (40) is equivalent to the logarithmic behavior (4) of the 
elastic moduli. Thus, the relations (30) remain valid also 
when the renormalization is taken into account. This guar- 
antees the reproduction of the static limit. Indeed, let us 
consider the equal-time pair correlator (ww), which can be 
calculated starting from Eq. (1): 

<W (k) w(-k) >=T ( p ~ - ~ k , 2 + ? ~ k ~ ) - ~ .  

On the other hand, the same correlator equals 

Taking into account Eq. (30) these two expressions are equi- 
valent, and comparing them one can determine the constant 
which occurs in Eq. (39): 

dg=4T/plZ. (41) 

FLUCTUATION CORRECTIONS TO THE FIRST-SOUND 
SPECTRUM 

We now consider the fluctuational contribution to the 
equations for the weakly fluctuating variables. As can be 
seen from the equations (19) for the mass density p and the 
specific entropy a, the fluctuations do not contribute to 
them, so that we can only find the fluctuation contribution to 
the equation for the momentum density j, i.e., to the stress 
tensor T,. In the language of the diagram technique this 
means that we must find the polarization operator IZik and 
the self-energy function 2, corresponding to the variable 
qi = ji . For this purpose one must take into account in the 
Lagrange density 3, the explicit dependence on mi and ji , 
which is reconstructed from Eq. (13), and after that an ex- 
pansion in terms of these variables yields the Green's func- 
tions Gik and D, for the variable qi = ji . One has to keep in 
mind that the expressions for the fluctuational contributions 
to the first sound spectrum contain terms small of the order 
c~/c:. One must therefore take into account the part of F,,, 
due to smectic contributions to (25), contribution we have 
left out in the consideration of the self-interaction: 

tor of Eq. (28), and the expression (28) ceases to be a trans- 
verse projector. Thus, one must now take into account in Fi 
the longitudinal part omitted in our discussion of the self- 
interaction of the smectic mode, so that in the leading ap- 
proximation with respect to the difference (V  w)' - 1 - 2 ,  the 
nonlinear part of Fi becomes 

We now consider the Lagrange density (1 3). In this case, 
taking account of Eq. (27), the nonlinear part of this density 
has the form 

iS, =p-'p"V iWBik-'Fk. (44) 

Here Fk is defined by Eq. (43), and 

Bs=o (6ik+c12 V t V k / 0 2 )  +iFi, k.  (45) 
The bare value of Firk is given by Eq. (42). Separating in the 
Lagrange density (13) the terms which depend on mi andj i ,  
we find 
iz,,=p-'p" ViwBik-'y"k+EiB,k-1Fk+EiBfk-13k 

+'/~%tBin-~nnmBhrn-'%k. 
(46) 

The last term in (46) appears for renormalization. 
The renormalization of the action defined by the La- 

grange density (44) is carried out similarly to the renormal- 
ization of the coefficient a in the preceding section. We must 
separate the two rapid variables win  F~ [from the last factor 
of Eq. (43)] and pair them with the rapid variablesp and w 
 is taken from Fk ,  the first term in Eq. (43)l. This yields a 
diagram of the type of the one represented in Fig. 1, which 
gives the renormalization of the coefficient p in the expres- 
sion (43). If the two rapid variables w i n  F, are paired with 
the rapid variablesp and w [with w taken from Fik , the last 
term in Eq. (42)], there appears a diagram yielding the renor- 
malization of the coefficientp in the expression (42). Similar- 
ly one renormalizes the first two terms in the Lagrange den- 
sity (46); the renormalization of the third term in (46) is given 
by a diagram which is obtained by pairing the first and sec- 
ond terms in Eq. (46). All the mentioned diagrams are of the 
same type and yield a synchronous renormalization of the 
coefficientsp c L -415 in all the expressions under considera- 
tion (so that, even taking into account the renormalization, /3 
coincides with the appropriate elasticity modulus, as expect- 
ed). Thus, the structure of the bare action is reproduced by 
the renormalization. 

When one considers the acoustic lines one must take 
into account the corrections determined by diagrams with 
an intermediate smectic G-line. Such diagrams occur when 
one pairs the factorp from (44) or (46) with the factor 1Z, from 
Fi [the last term in Eq. (43)] and they can be collected in the 
following correction to B, which occurs in the acoustic 
lines: 
6Bik=iBp-'V,[(ViWV,tP+yl-26i,) V,WV,W] o-''7,. (47) 

BY Y v F;T' =-i- v . ( - S ~ , , + V . W V . W ) ~ .  (42) In this expression we have taken into account the fact that 
pL2 l2 the sound frequency w -c,k satisfies the inequality p&c2k, 

The terms left out of Eq. (42) are small on account of their b 'I2k ', so that the smectic Green's function may be set ap- 
proportionality to thequantity (V w)' - 1 -'.In addition, the proximately DEW-l.  The expression (47) yields an addi- 
frequency of the first sound is no longer small compared to tional contribution to the self-energy function correspond- 
c,k,, so that both terms are now important in the denomin- ' ing to the variable qi = ji. 
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The renormalization of the last term in Eq. (46) is deter- 
mined by the diagram obtained by pairing two factors com- 
ing from the second term of Eq. (46). In each of these factors 
one must separate a pair of rapid variables 6 in Fk [from the 
last term of Eq. (43)l. Their pairing leads to a diagram of the 
type represented in Fig. 2. As a result of this we find the 
following expression for the polarization operator IIik : 

(Recall that ni are the components of a unit vector along the 
z axis). We make the following remarks regarding the expres- 
sion (48). First, for the acoustic mode k, - k, so that in (48) it 
is legitimate to retain the factors with k, . Secondly, the fre- 
quency for the acoustic mode satisfies w -clk)c2k, b '12k 2, 
hence one may neglect the k dependence in the integrand of 
Eq. (48). The integral (48) is investigated in the Appendix. 

The structure of the Lagrange density (46) allows one to 
write down directly the expressions for the Green's func- 
tions Gik and D, obtained by expanding the generating 
functional sandwiched respectively between m i ,  yk , and m i ,  
mk . Setting Win the third and fourth terms of the expression 
(46) equal to its equilibrium value z/l, we obtain, taking ac- 
count of Eqs. (45) and (47) 

G*-'=w (6ik-~iZkikk/02) -2ik) (49) 

We shall be interested particularly in the imaginary part of 
the self-energy function 2,. In order to determine it one 
must take the diagram which yields the renormalization of/? 
and separate in it the imaginary part. As a result of this we 
obtain 

Im Zik=-nik/2pT. (=I 
The expression (52) is a form of the fluctuation-dissipation 
theorem. 

CONCLUSION 

We have thus shown that if one takes into account the 
fluctuational corrections, one must change radically one's 
conceptions on the spectrum of smectics. As far as the sec- 
ond sound is concerned, its dispersion law is determined by 
the poles of the Greens functions G of Eq. (33) and has the 
form 

o= (-igk2ztEk,/k), (53) 

E= [~k,2+bk~-g~k~k,~]%. (54) 

Taking into account the large magnitude of the logarithm L 
we have ln(b /b,) > 1, so that Eq. (40) implies b - gZ < 0. 
Thus, for 

k,> [ (g2-b)/a] '"k2 

the frequency of second sound has a real part, i.e., it de- 
scribes the propagation of a wave, whereas for the opposite 
inequality the corresponds to two purely diffusional modes, 
and as the frequency decreases the diffusion region in- 

creases. 
In a realistic experimental ~ i t ua t i on '~ - ' ~  k, is of the or- 

der of k l ,  and therefore, on account of the inequality 
ak z>bk: implied by it, the damping of the second sound 
described by Eq. (32) becomes weak. Thus the case k, -k, 
requires separate discussion. The expressions for II and 2 in 
this limit can again be obtained from the diagrams of Fig. 2 
and Fig. 3, respectively, in which one must consider terms 
proportional to k f : 

This integral cannot be calculated explicitly, however, for 
k, -wk / ~ ' / ~ k ,  one can obtain an estimate for it, similar to 
Eq. (A12): 

Im Z--10-2T I o I P"2/x8t21a I o I L-'. 

The fact that this expression is linearly proportional to the 
frequency shows that for k, - k, too the imaginary part of 
the spectrum has a purely fluctuational origin. 

As already mentioned, the first sound spectrum is de- 
termined by the poles of the Green's functions Gik , Eq. (49). 
The real part of the self-energy function 2, , Eq. (5 1) gives 
rise to an anisotropic correction to the speed of sound. 

This correction is small of order cz/c: compared to c,. 
The imaginary part of the self-energy function deter- 

mines the damping of first sound. In traditional terminol- 
ogy the presence of I d i k  , Eq. (52), is equivalent to the 
existence of a fluctuational contribution to the following vis- 
cosity coefficients: 

6q1y-2=6qsy-'=6qi, (56) 

-1m Zll=2 (yk+k,) 26qtp-L. (57) 

The imaginary part of the longitudinal self-energy function 
2, which appears in Eq. (57) determines directly a damping 
decrement of first sound related to the contribution of fluc- 
tuations. 

The expression of an, can be obtained from Eq. (48) and 
is listed in the Appendix. In the limit g2/b) 1 the integration 
can be carried out to the end (see the Appendix), and yields 

For values ofg2/b which are not too large and have a doubly 
logarithmic scale (40), the proportionality is preserved: 

Gqia 1 o 1 -'L-9/y. (59) 
The expression (58) remains a good approximation to 87,. 
We note that, in distinction from Rd,, I d ,  does not 
contain the small parameter ci/c:. However, the contribu- 
tion of the fluctuations to the imaginary part of the spectrum 
is small, on account of the smallness of the thermal energy T 
compared to the elastic energy pc:1 3. For typical values of 
the parameters T- 10-l4 erg, 1- lo-' cm, p-g/cm3, 
c, - lo5 cm/s, we obtain the estimate I d  - 

As can be seen from Eq. (59) the contribution of the 
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fluctuations to the viscosity coefficient (and accordingly the 
damping of sound) increases as the frequency decreases and 
at low frequencies it exceeds substantially the bare con- 
stants. This allows one to explain the experimentally ob- 

deviations from the o2 law for the damping of 
first sound in smectics. However, in interpreting experimen- 
tal data one should keep in mind that for the frequencies 
used in the experiments the bare constant viscosity coeffi- 
cients may compete with the fluctuational contribution 
(which contains the smallness indicated above), so that in 
handling the experimental data both terms must be taken 
into account. 

A preliminary communication about the phenomena 
discussed above has been previously published in Ref. 13. 

APPENDIX 

Making use of the expressions for the vertex and 
Green's functions from the main text we obtain for the dia- 
grams represented in Figs. 1-3 

d"dv 1 
-bk4+2igk20+12 j--;-a2- 

(2n) o f v  

The arrow in Eq. (A3) signifies that in the integral of the 
right-hand side one must subtract an infinite constant, as 
described in the body of the paper. 

The integrals with respect to the frequency are easily 
calculated by the residue method and yield: 

b 
-iov+-gq'o+i-[q4-(q+k)'l}-i-. . .] , 

2 (A61 
where 

z= [q2-g2q4]'h, v*=-igqz*tl 

and the ellipsis (. . . ) denotes an expression obtained from 
the one explicitly written by substituting u- for v,. Separat- 
ing in (A6) the terms linear in o and of fourth degree in k, we 
obtain 

Introducing polar variables in the q, , q2 plane: 

Q =?a-'" s. in X, q2=qb-'" cos x (A91 
and taking into account that 

we obtain for (A4), (A5), (A7), and (A8) 

(A l l )  
By differentiation these expressions yield the equations (38) 
of the text. 

We now calculate the integral which occurs in the ex- 
pressions (48) and (56) for the fluctuational corrections to the 
viscosity: 

Making use of the expression for the Green's function and 
calculating the integral over the frequencies, we obtain 

1+xZ+4g2 b-*xZ COS' x 
X 

( I f  x'g2b-* cos2 X )  [ (I-x2) 2+4g2b-'x2 cos2 X] (A 13) 

Making use of the ratio ~ / g  from Eq. (41) and the relations of 
b with x and a with /? from Eq. (30), we obtain in the limit 
g2b -'> 1 we obtain from (A13) the equation (58) of the text. 
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