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The dynamics of creation, annihilation, and transformation of topological defects in a closed 
system with a vector-type order parameter is studied both theoretically and experimentally. The 
particular case of a drop of a nematic with varying boundary conditions is considered. In the 
theoretical part, the concept of a continuously defined topological description of surface defects 
(e.g., boojums) is introduced. It leads to conservation laws that control the dynamics of the 
restructuring of the director field in a nematic drop when the boundary conditions vary. It is 
shown experimentally that when the boundary conditions for a nematic drop are changed, the 
defects (boojums, hedgehogs, and disclinations) transform into each other and are created from or 
annihilated into the homogeneous state. All the processes can be described within the scope of the 
theoretical method developed in the paper. 

PACS numbers: 6 1.30.Jf 

I. INTRODUCTION the boundary conditions (a procedure that makes this possi- 

ordered systems located in a bounded volume can con- ble is described in Sec. I11 of the paper) we can observe di- 

tain at equilibrium a definite number of structure defects rectly the dynamics of mutual transformations of the defects 

that are stable because of the conditions on the surface. using a polarization microscope. 

Thus, for example, superfluid 3He-A in a spherical vessel In Sec. I1 we derive theoretically the general topological 

must contain at equilibrium a point vortex-~oojum~on laws that govern the topological-dynamics processes, using 

the a result, an undamped superfluid current as the example point and linear defects in a nematic drop 

always circulates around a defect in a 3He-A drop, even at with arbitrary boundary conditions. To this end, we intro- 

equilibrium. It is also known that in a drop of a nematic duce for surface defects continuously defined topological 

liquid crystal (NLC) with normal boundary conditions there characteristics that depend on the given boundary condi- 

must exist at equilibrium another point defect-hedgehog- tions. The action of the deduced laws is illustrated by very 

which can be either inside the drop or on its surface2s3 (see simp1e 

Fig. la). In Sec. IV we present an experimental confirmation of 

The boojum and hedgehog are typical examples of two the action of these laws in nematic drops. 

different types of defect in bounded volumes of condensed We note that our choice of a concrete model (nematic 

media. Their fopological classification is given in Ref 4 The not mean that the be 

defects of the first type exist only on the surface of the system used to solve similar problems for other media and geome- 

and cannot go into the volume. The defects of the second tries. 

type exist in the volume, but do not vanish on the surface if II. THEORY OF DEFECTS IN A DROP 
they land on it. In the general case, therefore, the defects on VARYIN= BOUNDARY COND~TIONS 
the surface comprise a combination of the indicated two 
types and are characterized by two topological invariants 5'- POint defects on the surface Of a 

(surface-defect charge and volume-defect charge). According to Ref. 4., topologically stable point defects 
In principle, such defects can be transformed into one on the boundary of an ordered systems are described by ele- 

another via various processes: for example, a boojum can ments of the relative homotopic group T,(R,R ) where R is 
absorb a hedgehog and be transformed into another boojum. 
The conservation laws of the topological charges must be 
satisfied in such processes. 

Our task is to investigate theoretically and experimen- 
tally the defect topological dynamics connected with their 
mutual transformations. 

From the experimental viewpoint, the most convenient 
objects are nematic drops with controllable boundary condi- a b 
tions. When the latter change from normal to tangential, the 
equilibrium state in the drop should change in such a way FIG. 1. Distribution of the director field in a nematic drop with normal (a) 

and tangential (b) boundary conditions: a) radial structure with pointlike 
that the interior defect of Fig. l a  is annihilated and is re- ,,olume defect-hedgehog, b) bipolar structure with two surface point 
placed by two surface defects (Fig. lb). By varying smoothly defects-boojums. 
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the space of degenerate states of the system in the volume, 
and R is the system of the states that can be possessed by the 
system on the surface. Usually, and this is the case for NLC, 
this group can be represented as a product of two groups: 

nZ (R, a) =PXQ. (1) 

The elements of group P describe those point defects 
which can exist only on the surface and cannot go into the 
interior because of topological restrictions. This type of de- 
fect includes boojums in superfluid 3He (Ref. 1); we shall use 
this designation also for similar defects in other media, in- 
cluding NLC. 

Group Q describes point defects that have arrived from 
the interior and do not vanish on the surface by virtue of 
topological restrictions imposed by the boundary condi- 
tions. In the general case a surface defect is a combination of 
the indicated defect types and has by the same token two 
topological charges: an element of group P and an element of 
group Q. 

Let us obtain the corresponding charges for the defects 
on an NLC surface with arbitrary boundary conditions. Let 
a, be the equilibrium angle between the director n on the 
surface of the nematic and the normal Y to it. In this case the 
region R over which the vector n varies on the surface is a 
point at a, = 0 and a circle at a, # 0; for a, = ?r/2 diametral- 
ly opposite points on this circle are equivalent. Thus, 

0, ao=o, 

Si, O<a0<n/2, (2) 
S1/Z,. ao=x/2. 

Group P, which describes the boojums, is the kernel of 
the homomorphism T,(R )-+T,(R ). Therefore, recognizing 
that R = S,/Z,, we find that group P consists of integers m 
at a, > 0 and is trivial at a, = 0. In other words, boojums 
exist at all conical boundary conditions with a ,#O and are 
described by integer topological charges m, which are the 
numbers of revolutions of the projection of the vector n on 
the surface on circling around the boojum along a closed 
contour located on the boundary [or, in other words it is the 
index of the planar vector field n - v(n-v)]. 

Group Q is the factor-group4 

n, (R) IIm (n2 (a )  +nz ( R )  ) .. 

In NLC this group coincides with r,(R ), i.e., with a group 
that describes point defects in the interior-hedgehogs. This 
means that any hedgehog that arrives from the interior does 
not vanish likewise on the surface, owing to the boundary 
conditions. Hedgehogs are characterized by integer topo- 
logical charges N: 

where 8 and q, are arbitrary coordinates on a closed surface a 
surrounding the point defect in the volume. 

Thus, any point defect on the surface is characterized 
by two charges m and N at a ,#O and by one charge N at 
a, = 0. 

To determine the topological charge N of a point defect 
on the NLC surface it suffices to surround it by a hemisphere 

5 on the volume side and calculate the integral (3) over this 
hemisphere. The resultant quantity A is connected with m, 
N, and the projection of n on the normal v near the boojum 
(n-v = cow,) by the relation 

Here we regard n not as a director, but as a vector, as is the 
case in the absence of disclinations in the interior of the ne- 
matic, and the vector v normal to the surface is regarded is 
directed outward from the NLC. With the aid of (4) we ob- 
tain from A the value of N, since the charge m is determined 
independently from the index of the vector field n - v(n.v) 
on the surface. 

The quantity A,,, is an important characteristic of 
boojums. If it is an integer (a, = 0) the defect can break away 
from the surface or even vanish ifA = 0. But ifA,,, is not an 
integer, the defect can neither vanish nor go off into the inte- 
rior. 

It is interesting to track the deformation of a surface 
defect as the boundary conditions change from a , # O  to 
a, = 0. Two cases are possible here: either A-0 orA tends to 
an integer different from zero (Figs. 2 and 3). In the latter 
case the defect goes over gradually into a pure hedgehog, 
which can then go off into the interior. In the former case the 
boojum gradually disperses. Ultimately the boojum core, 
whose radius 6, (a,) depends on a,, increases with decreas- 
ing a, and becomes infinite at a, = 0. The core of a surface 
defect is the region near the boojum center where, owing to 
the large gradient energy, the boundary conditions are vio- 
lated. To find 6, (a,) it is necessary to compare the gradient 
energy with the surface energy. If the density of the latter is 
expressed in the form 

C 

FIG. 2. Dynamics of the vanishing of a boojum with A = sin2(a,/2) and 
establishment of a defect-free state when the boundary conditions change 
from tangential to normal. The change of the distribution of the field of n 
in the intersection with a vertical plane is shown. The structures are sym- 
metric about the vertical axis (m = 1 for Figs. a and b and m = 0 for Fig. 
4. 
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FIG. 3. Dynamics of transformation of a boojum with A = cos2(ad2) and 
m = 1 into a hedgehog under the same condition as in Fig. 2. 

then 

Eb (a,) mEb/sin2 aa, (6) 

where 6, is the dimension of the core at a, = ~ / 2 .  

52. Point defects in nematic drops 

We consider the nematic drop as a whole. Assume that 
there are p boojums on its surface and q hedgehogs in its 
interior. Besides the hedgehogs, the interior may contain an- 
nular disclinations, which are topologically equivalent to 
hedgehogs with integer charges N. These are singular points 
stretched out into rings, and they do not change the results 
obtained in the present subsection. 

We surround the defects in the interior by a surface a, 
and the entire surface of the drop, together with the boo- 
jums, by a surface a,. Obviously, then, the degree of map- 
pings of the surfaces o, and a, on the unit sphere of the 
vector n are equal in magnitude and of opposite sign. The 
degree of mapping of the surface a, is equal to the total 
charge ZN, of the hedgehogs in the interior. The degree of 
mapping of a, is equal to the sum of the characteristics A for 
the boojums and the characteristic As of the drop surface 
itself, which differs from zero because of the curvature of the 
surface. The characteristic As is the integral (3) over the 
drop surface with the locations of the boojums punched out. 
This integral is equal to the integral, multiplied by - n.v/ 
477, of the curvature of the surface, which is equal to 4~ in the 
case of a sphere (see Ref. 1). Thus, 

As=-n-v. (7) 

As a result we obtain the equality 

From (8) follow restrictions on the charges m ,  at a , # O  
and on the charges N, : 

The first equality of (9) is the PoincarC theorem: the sum 
of the indices m,  of a vector field is equal to the Euler char- 
acteristic of the drop surface, e.g., to two. 

The second equality is a consequence of the Gauss 
theorem and of the indestructibility of the hedgehogs on the 
surface. Indeed, since the hedgehogs do not vanish on the 
boundary, their total charge remains the same as under nor- 
mal boundary conditions. In this case the total charge N is 
equal to the integral (3)  over the surface of the system-with 
n = v, and this is none other than the integral, divided by 4n-, 
of the surface curvature, the latter being equal by virtue of 
the Gauss theorem to half the Euler characteristic, i.e., to 
unity (see Ref. 1). 

Relations (4) and (9) allow us to describe the dynamics 
of the defects in a nematic drop when the boundary condi- 
tions are changed. Under normal boundary conditions 
(a, = 0) there are no boojums, and the sum of the charges of 
the hedgehogs is unity. The equilibrium state of the drop can 
correspond to one hedgehog (or to a vortex ring having the 
same charge). Experiment shows that it is more advanta- 
geous for the hedgehog to be at the center of the 
Under tangential conditions (a, = 77/2) the equilibrium 
states correspond to two boojums at diametrally opposite 
points on the We consider one of the possible scenar- 
ios for a transition from tangential to normal boundary con- 
ditions. 

Choosing the boojum charges m ,  = m ,  = 1, N ,  = 1, 
N,  = 0, we get A ,  = - A 2  = 1/2 at a, = 77/2. At a , # ~ / 2  
the values of A,  and A, are no longer equal, inasmuch as 
according to (4) 

As a,--tO, the second boojum disperses, whereas the first is 
transformed into a hedgehog with charge N =  1, which 
breaks away at a, = 0 and goes off to the center of the drop. 

This simple scenario becomes more complicated if ac- 
count is taken of the possible formation of surface disclina- 
tions. 

$3. Disclinations on the surface of a nematic 

According to Ref. 4, linear defects on the surface of an 
ordered medium are described by elements of the relative 
homotopic group T,(R,R ). Using the form of R [see (2)] we 
obtain 

nl (R) =Zz, aoPnl2, 
( 7  { 0, a0=n/2, 

i.e., disclinations exist on the surface at all but the tangential 
boundary conditions, and these disclinations are described 
by the elements of the same group T,(R ) as the disclinations 
in the interior. Consequently these are those linear disclina- 
tions which arrived from the interior and did not vanish on 
the surface on account of the boundary conditions. 

As a0+77/2, the surface disclinations disperse. This is 
manifest by the fact that their cores increase to infinity as 
a ,+~/2 .  The character of the increase of the cores is ob- 
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tained, just as in the case of boojums, by comparing the gra- 
dient and surface energies (5): 

Ed(a0) mtd/cos2 ao, (11) 

where 6, is the radius of the disclination core on the surface 
at a, = 0. Thus, when the boundary conditions are changed 
from normal to tangential, a surface disclination disperses, 
and a boojum is enhanced. Conversely, for the reverse transi- 
tion the boojum is dispersed and the disclination is en- 
hanced, appearing "from nowhere." 

We call attention to the fact that topologically speaking 
nothing prevents a surface disclination from going off to the 
interior, since it is described by the same element of the ho- 
motopic group P,(R ) as a volume disclination. Nonetheless, 
such a move can be difficult. The reason is that entry into the 
volume calls for formation of the hard core typical of volume 
disclinations. This calls for great expenditure, particularly 
large when a, is far from zero and the core of the surface 
disclination is friable. 

Let us examine the possible influence of annular disclin- 
ations on the dynamics of defects in a drop. We shall not 
consider the exotic case of an open surface disclination, i.e., 
an annular disclination part of which is on the surface and 
part in the volume. Inasmuch as both boojums and hedge- 
hogs can be continuously distributed on a closed surface dis- 
clination, this surface has likewise charges m and N. Owing 
to the curvature of the drop surface, however, the character- 
istic A of a disclination is expressed in terms of m and N in a 
complicated manner that depends on the form of the disclin- 
ation. 

We confine ourselves to the simplest case which, as will 
be seen from Sec. IV, is in fact realized in experiment. Name- 
ly, we take one disclination with zero charges m = 0 and 
N = 0. In this case, if the disclination is on a geodesic, say on 
the equator, its characteristic is A, = 0. The disclination di- 
vides the drop surface S into two parts, S+ and S-, with 
opposite signs of the values of n.v:nWv > 0 on S+ and n0v < 0 
on S-. If the disclination is on the equator, the characteris- 
tics of these surfaces cancel out, As+ +As- = 0, since the 
areas of S+ and S- are equal. Let now the disclination shift 
away from the equator. By virtue of the conservation of the 
quantity Ad +As+ + A s  = 0 we have for the characteris- 
tic A, the expression 

If the disclination is on a parallel with latitude 8, we 
have according to ( 12) 

Ad=+sin p cos ao. 

The conservation laws change in the presence of a dis- 
clination. Since no account need be taken ofAd +As = 0 in 
(8), we have instead of (9) 

C -+= E m - ,  
(13) 

where m + and m - are the charges of boojums located on S+ 
and S-, respectively. 

We describe now the second possible scenario of a tran- 
sition from tangential to normal conditions in the drop, with 
participation of the disclination. We choose at a, = ~ / 2 ,  as 
before, a state with two boojums on opposite poles of the 
drop, with charges m, = m2 = 1, N, = 1, N, = 0, so that 
A, = - A, = 1/2. In this scenario, as a,decreases smoothly 
from n-/2, a disclination is produced "out of nothing" on the 
equator and becomes gradually enhanced. Putting 
m, = m -, m, = m+, i.e., (n-v), = cos ad(n*v), = - cos a,, 
we obtain the following characteristics A for the boojums: 

i.e., in contrast to the preceding scenario, the boojums vary 
in like fashion. 

As a, is decreased, the process can follow different 
paths: 

a) The boojums disperse gradually whereas the disclina- 
tion moves and is squeezed towards one of the poles. Accord- 
ing to (12), A, tends in this case to + cos a,+ + 1, forming 
a pointlike hedgehog that goes off subsequently into the inte- 
rior. 

b) The disclination contracts to one of the boojums, say 
the first, forming a defect with A, = cos2(ao/2), after which 
everything follows the first scenario. 

Which of the scenarios is realized depends on the actual 
energy parameters of the system. This can be determined 
either by an exact calculation of the various textures in the 
drop, or by experiment. 

We proceed now to the results of an experimental inves- 
tigation of the topological dynamics of the defects in drops of 
a nematic when the boundary conditions change from strict- 
ly tangential to strictly normal and vice versa. 

Ill. EXPERIMENTAL PROCEDURE 

We investigated a number of nonylhydrobenzoic-acid 
esters, a common feature of which is that the molecules have 
hydrophobic end chains and hydrophilic rigid nuclei. Figure 
4 shows the phase diagram and the structural formula of one 
(n-butoxyphenyl) ester. All the experimental results cited in 
this paper pertain to just this substance. 

Spherical volumes of the nematic were produced by dis- 
persing the latter in the form of droplets of radius 5-50pm in 
an isotropic liquid. If this matrix is taken to be glycerin, 
tangential boundary conditions for n are ensured on the dro- 
plet surfaces. The reason is that the hydroxyl OH groups 
contained in the glycerin molecules interact more strongly 
with the hydrophilic nuclei of the nematic molecules than 

87(Oc) 
SC 62,5_ SLCA +% NLC - IL 

4 4  b2 
SLCC 

FIG. 4. Structural formula and diagram of states of n-butoxyphenyl ester 
of ionyloxybenzoic acid. 
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with their hydrophobic ends. Addition of lecithin solutions 
to the matrix can change the boundary conditions into nor- 
mal,3 for now it is the hydrophobic terminations of the mole- 
cules that make the largest contribution to the interaction 
between the liquid crystal and the matrix (the lecithin mole- 
cule is a glycerine molecule in which the OH groups are 
replaced by hydrophobic  chain^.^ 

Thus, a glycerin-lecithin matrix of constant composi- 
tion is potentially capable of setting different boundary con- 
ditions, in view of the presence of forces responsible for nor- 
mal orientation of the NLC and forces that produce 
tangential orientation. Obviously, the temperature depen- 
dences of these forces need not necessarily coincide. It is this 
idea on which the procedure employed is based: the bound- 
ary conditions on the droplet surfaces were set by varying 
the sample temperature. The procedure ensured uniform 
and controllable orientation of the NLC at the droplet sur- 
face, as well as good reproducibility of the results. 

It was observed that for the investigated substances 
such a matrix sets up strictly tangential boundary conditions 
in the region preceeding the transition from an NLC to an 
isotropic liquid, and strictly normal ones in the lower part of 
the temperature interval of existence of the nematic phase. A 
smooth lowering of the temperature within the indicated 
limits led to a smooth variation of the angle a, between the 
director n and the normal v to the droplet surface from ?r/2 
to 0; the reverse occurs when the sample is heated. That the 
dependence of a, on the temperature T is monotonic is con- 
firmed by measurements of the light transmissivity of a thin 
(20-40 pm) NLC layer placed between transparent plates 
coated beforehand by a layer of the indicated matrix (Fig. 5). 

From the same measurements one can determine also 
the a,(T) dependence quantitatively, but it can be deter- 
mined more directly from the deviation of the extinction 
branches in the droplet textures on direction of polarization 
of nicols as viewed through a microscope (Fig. 5). The meth- 
od is based on the fact that the extinction branches are local- 
ized at those texture spots where the optical axes of the mole- 
cules are oriented along the nicol directions. 

On the whole, from the known features of the behavior 
of optically homogeneous media in different investigation 
regimes6 permit an unambiguous reconstruction of the dis- 
tribution of the field of n in the drops, meaning a determina- 
tion of the topological characteristics of the defects. By way 
of example we consider the method of determining the val- 
ues of m andA for boojums of the type shown in Figs. 2b and 
3b. 

FIG. 5. Dependence of the relative optical transmission I / I ,  (solid curve) 
and of the angle a, on the temperature for NLC drops in a glycerin- 
lecithin matrix. 

The value of m is determined from the number m of the 
extinction branches that start out from the center of the boo- 
jum, if they are observed along the symmetry axis of the 
structure (from above): in the general case7 

and m > 0 if the branches remain stationary when the sample 
is rotated in the horizontal plane, or if they turn in the same 
direction as the sample. 

To determine A it is necessary to determine first, from 
the inclination of the extinction branches, the value of a,. It 
remains next to ascertain the boojum type [with 
A = sin2(a,J2) or with A = cos2(ao/2)]. To this end it is nec- 
essary to orient the sample in such a way that the boojum 
symmetry axis is parallel to the polarization of one of the 
nicols. Then, as can be easily seen from Figs. 2b and 3b, two 
extinction branches emerging from the center are observed 
for the second boojum, while for the boojum with 
A = sin2(ao/2) there will be none if twist strains are present 
in the volume (see Sec. IV, $ I), or else three and one, respec- 
tively, if there are no such strains. This determines A (apart 
from the sign). 

The topological characteristics of a hedgehog and of a 
disclination are determined analogously. The value of N for 
boojums is determined from (4). 

The texture evolution with changing temperature was 
observed using an NU-2E polarization microscope with 
orthoscopic ray arrangement. The temperature was record- 
ed accurate to 0.02 "C and varied at a rate 0.1 "C/min. 

IV. EXPERIMENTAL RESULTS AND THEIR DISCUSSION 

This section consists of several subsections. $$2 and 3 
deal respectively with the defect topological dynamics prop- 
er for the transition from tangential to normal boundary 
conditions and the reverse. They are preceded by $1, in 
which are discussed bipolar structure realized in drops at 
strictly tangential boundary conditions. Radial structures 
(normal conditions of director orientation) are discussed at 
the end of $2. 

61. eipolar structure 

A bipolar structure is produced in an NLC drop when it 
is cooled from the isotropic phase, and is characterized by 
the presence of two surface point defects (boojums) at diame- 
trally opposite poles of the drop (Fig. 6); the boundary condi- 
tions are strictly tangential in this case. Similar structures 
were observed earlier for different types of nemati~s,'.~ and it 
was indicated in Ref. 2 that the director distribution for 
them is of the form shown in Fig. lb. Such a structure con- 
tains only two types of deformation: transverse and longitu- 
dinal bends. The results of the present investigation indicate 
that bipolar structures can be more complicated and contain 
twist deformations. 

Indeed, when the drop axis is oriented in the horizontal 
plane along the polarization direction of one of the nicols 
crossed at right angle, the central part of its structure is not 
extinguished [as would be the case for the distribution in Fig. 
lb  (Ref. 2)], and the extinction occurs only when the nicols 
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FIG. 6. Bipolar structures in NLC drops with twist deformations: a) nicols 
crossed at right angle (the polarization directions are oriented along the 
edges of the photograph); b) nicols crossed at an angle 70"; c) distribution 
of director field on the drop surface-along loxodromes that cross the 
meridians at constant angle 10"; d) twist deformation in the distribution of 
the molecules inside the drop (intersection with vertical plane). 

are turned through some relative angle y different from 90" 
(Fig. 6, a,b). Connected with y is the angle y' of rotation of 
the plane of polarization of the beam passing through the 
drop, as well as the angle y" between the directions of the 
director in the lower and upper hemispheres of the surface of 
the drop (Fig. 6c): 

y"=yf=n/2-y. 

From the last relation we can determine the angle y". For the 
drops of Fig. 6 we have y = 70" and y" = 20". The nonzero 
value of y", which is set by the ratio of the Frank elastic 
constants, attests to the presence of twist deformations in- 
side the nematic, with the director oriented in the central 
part of the drop along the symmetry axis that joins the boo- 
jums. Indeed, in the absence of twists linear defects that go 
off in the interior would appear near the boojums, in contra- 
diction to the experiment. 

The field of n on the drop surface is thus distributed 

along loxodrome helices (Fig. 6c). The corresponding distri- 
bution of the molecules inside the drop is shown in Fig. 6d. 

The indicated distortions of the bipolar structure, how- 
ever, do not change its topological characteristics--one of 
the boojums act as the source of the field of n, and the other 
as the sink; in this case 

We examine now how the boojums are annihilated and 
a hedgehog created when the boundary conditions are 
changed. 

52. Transition from bipolar to radial structure 

The transition takes place as the equilibrium value of 
the angle a, changes from 7~/2 to 0. The experimental results 
are shown in Fig. 7. 

In the initial state we have a purely bipolar structure 
(Fig. 7a). When a, begins to decrease, the orientation of the 
molecules near the boojums changes in symmetric fashion 
and, as seen from Fig. 7b, the boojums acquire the character- 
istics m- = 1, A, = sin2(ad2), m+ = 1, A, = - sin2(ao/2). 
Two islands with different signs of n-v are thus produced on 
the surface: n-v < 0 near the source boojum and nWv > 0 near 
the sink boojum. This manifests itself in experiment right 
away in the appearance of an annular disclination that ef- 
fects the transition between the islands with opposite direc- 
tions of n. As follows from experiment, the disclination re- 
mains on the equator until a, decreases to 0; the only 
changes in the systems are the dispersal of the boojums with 
A, = - A, = s in2 (ao /2 )4  and the enhancement of the dis- 
clination (cf. Figs. 7a-7c). It must be noted here that the 
dispersal and enhancement of the defects, according to the 
theory, must be accompanied by a corresponding increase or 
decrease of their cores (6) and (1 1). This is confirmed by ex- 
periment, but quantitative measurements are made difficult 
because these quantities amount to only a few microns. 

It appears that the reason why the disclination does not 
move away from the equator at a , # O  is its interaction with 
the boojums (repulsion). Since the boojums have equal values 
of A, their repulsions are equal and as a result the equilibri- 
um position of the disclination is on the equator. The exis- 
tence of repulsion between a boojum and a disclination is 
confirmed also by the process described in $ 3  below. 

The situation changes at a, = 0 (Fig 7d). Both boojums 
disperse by that time to form a uniform distribution, 
m+ = m- = 0, A, = A ,  = 0 with, according to (4) 
N, = N, = 0. The conservation laws (13) hold in this case. In 
the absence of boojums, the contraction of the disclination 
into a point on the surface becomes energywise preferred, 
since the only consequence of this process is a decrease of the 
disclination length. The disclination contracts, preserving 
the form of a flat ring. In accord with (12), its topological 
characteristicd, varies in this case like Ad = sir$ from 0 to 
1 (A, is taken with a plus sign, since the island with n-v < 0 is 
cancelled). As a result of the contraction we get a point hed- 
gehog on the surface (Fig. 7e) with N = 1, which goes off 
subsequently to the interior of the drop (Fig. 7fj. The second 
of the conservation laws (9) is then satisfied. 

From the topological point of view, the replacement of 
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FIG. 7. Topological dynamics of defects in a nematic drop on going from 
tangential to normal boundary conditions. First column-microphoto- 
graphs of textures of one of the same drop of 32 p m  radius, second- 
schemes of corresponding distributions of the director fields. The cores of 
the boojums, hedgehogs, and disclinations are marked respectively by 
semicircles, circles, and rectangles. The microphotographs in Figs. a, b, 
and f were taken with crossed nicols, the others without nicols. 
a) a, = r/2; two boojums on the poles with respective charges m, = 1, 
A, = 1/2, N = 1 and m, = 1, A, = - 1/2, N, = 0; there are no hedge- 
hogs or disclinations. 
b) a, < r/2; a disclination with charged, = 0 appears on the equator "out 
of nowhere"; the boojum charges are respectively m, = 1, A, = sin2(ao/ 
2), N, = 1 and m, = 1, A, = sin2(ad2), Nz = 0. 
c) a, = 0; the boojums were smoothly annihilated after which the disclina- 
tion shifts towards the north pole; its charge increases like A, = sin B-1. 
e) a, = 0; disclination contracted into a hedgehog on the north pole, hed- 
gehog charge N = A, = 1. 
f )  a, = 0; the only defect in the system is a hedgehog (N = 1) which went 
over from the surface into the interior. 

FIG. 8. Topological dynamics of defects in a nematic drop of radius 37pm 
on going from normal to tangential boundary conditions. The notation is 
the same as in Fig. 7. The microphotographs a, b, and f were obtained with 
crossed nicols, c and d with parallel and e with obliquely oriented nicols. 
a) a, = 0; hedgehog with charge N = 1 at the center of the drop; there are 
no boojums or hedgehogs. 
b) a, = r/6; boojums appear at the poles with respective charges m, = 1, 
A ,  = - sinz(a,/2), N, = 0 and m, = 1, A, = - sin2(a,/2), N, = 0; hed- 
gehog (N = 1) moves towards the northern boojum. 
c) a, = r/4; hedgehog and northern boojum coalesce to form a new boo- 
jum with m, = 1, A, = cosz(ad2), N, = 1; the southern boojum has as 
before m, = 1, A,  = - sin2(ao/2), N2 = 0. 
d) a, = ~ / 3 ;  the boojum formed with A, = cosz(ad2) breaks up into a 
boojum with m, = 1, A, = sin2(ao/2), N, = 1 and a disclination ring with 
charge A, = s inp cos a,, which moves from the north pole to the equa- 
tor; the boojum on the south pole has the same characteristics as before. 
e) a0+r/2; the boojums are enhanced, m, = 1, A, = sinz(ad2)-1/2, 
N, = 1 and m, = 1, A,  = - sin2(ad2)+ - 1/2, N, = 0; the disclination 
vanishes smoothly: A, = sin B cos a 0 4 .  
f )  a, = r/2; the disclination vanished, a bipolar structure remains with 
two boojums carrying charges m, = 1, A, = 1/2, N, = 1 and m, = 1, 
A, = - 1/2, Nz = 0. 
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two boojums by one hedgehog is effect by a surface annular 
1s en- disclination: the disclination, arising "from nowhere," ' 

hanced simultaneously with the dispersal of the boojums, 
after which it is transformed into a hedgehog. It follows from 
Fig. 7 that the experimentally observed process agrees fully 
with the scenario described in $3 of the theoretical part. 

On the graphic scheme in Fig. 7f the structure near the 
hedgehog is represented for simplicity as purely radial. A 
similar distribution of the field of n is realized in principle in 
the smecticd phase 8 and possibly in a narrow region of the 
nematic phase directly past the transition from smecticd. In 
the general case, however, the radial character of the struc- 
tures in the NLC drops at a, = 0 is preserved only at dis- 
tances on the order of several microns from the surface, i.e., 
over scales at which the action of the surface orientation of n 
still manifests itself. As for the center of the drop, two basic 
types of defect distortions can be distinguished here: struc- 
tures with strong helical twist and structures with linear ring 
defects (in particular, two disclination rings linked with each 
other are observed). We note that for an NLC drop taken by 
itself it would be possible to observe, even at a fixed tempera- 
ture, transitions of the indicated structures into one another, 
as well as into more complicated ones, thus attesting to negli- 
gible differences between the elastic energies of such distor- 
tions. On the whole, however, any of the possible structures 
has, as follows from the Gauss theorem [see (9)], a charge 
N = 1 and is in fact equivalent to the usual hedgehog. 

94. Transition from radial to bipolar structure 

In the defect dynamics described above no account 
whatever is taken of the possibility of topological interaction 
of a hedgehog with a boojum as well as of a boojum with a 
disclination, which might cause the structure and topologi- 
cal charge of the boojums to change jumpwise. Such an inter- 
action is realized on going from normal to tangential bound- 
ary conditions (Fig. 8). The gist of the process is the 
following. 

equator and disperses gradually-simultaneously with the 
enhancement of the boojums (Fig. 8e). In the final state there 
remain in the drop two boojums withA, = - A, = 1/2 (Fig. 
8f). 

Thus, transformations of boojums of various types into 
one another, as a result of topological interaction of boojums 
with hedgehogs and with dislocation rings, manifest them- 
selves in the given transition. It can be easily seen that all 
these processes proceed with conservation of the total topo- 
logical charges and are subject to the conservation laws de- 
rived in theoretical section of the paper. 

V. CONCLUSION 

We have experimentally observed and theoretically de- 
scribed the topological dynamics of defects under smoothly 
varying external conditions. When these conditions are var- 
ied in a nematic, defects of different topological types (hed- 
gehogs, boojums, dislocations) and of different homotopic 
classes are smoothly transformed into one another. The de- 
fects are characterized by continuous charges A expressed in 
terms of integer topological charges and a continuous exter- 
nal-conditions parameter (boundary conditions). When the 
boundary conditions are changed, the charges A  become 
continuously redistributed among the defects, with the total 
charge in the drop conserved. The mutual transformation of 
the defects takes place when A goes through an integer value; 
for example, the boojums are transformed into hedgehogs at 
A = 1. As A-+O continuous annihilation of a defect takes 
place, accompanied by an increase of the size of its core to 
infinity. We assume that these features are typical of the 
topological dynamics of defects in other physical systems. 

One of us (O.L.) thanks M. V. Kurik for constant inter- 
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