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We show in this paper that helical hydrodynamic turbulence can magnify perturbation seed 
eddies and that this can lead to the appearance of large-scale structures. The characteristic size of 
the structures which appear is much larger than the size of the turbulence containing the energy 
and it is determined by the ratio of the topological invariant to the turbulence energy. The 
evolution of the instability found in this paper is accompanied by a transfer of energy from small- 
scale to large-scale fluid motions. 

PACS numbers: 47.25.Cg, 47.20. + m 

INTRODUCTION 

The problem of the origin of structures in non-equilibri- 
um systems has recently attracted a great deal of attention. 
(See in this connection the monographs 1 to 3 and the litera- 
ture cited there.) Hydrodynamic turbulence is clearly one of 
the most widespread distributed non-equilibrium systems in 
nature. It is well known that turbulence is characterized by 
two scales: A,, the external scale which contains the main 
energy and the dissipation scale A, 4A,  where the energy is 
dissipated into heat. A turbulent system is thus an open non- 
equilibrium system. 

The traditional presentation of turbulence is connected 
with that kind of disordered fluid motion in which any large- 
scale perturbation transfers its energy through random 
chaotic motions to ever smaller scales. It would seem that 
such ideas about turbulence are incompatible with the exis- 
tence of coherent structures in it. However, recent papers 
(see, e.g., Refs. 4 to 7) indicate that there may appear in tur- 
bulence large-scale vortex formations, the nature of which in 
final analysis is not explained. 

In a homogeneous isotropic turbulence a large-scale 
perturbation (fluctuation) transfers its energy, apparently, to 
small-scale pulsations, owing to damping by turbulent vis- 
cosity. If, however, the turbulence is helical, i.e., homogen- 
eous, isotropic, but without being invariant under reflection, 
the situation is greatly changed, as we show in the present 
paper. In that case the amplification of large-scale turbulent 
fluctuation nuclei is possible and this leads to the appearance 
of large-scale coherent structure. The characteristic size L of 
the vortex structure is determined by the internal properties 
of the turbulence: L - ' -I, /E, where I, = $ (V curl V)dr, 
E = $V2dr are, respectively, the topological and the normal 
invariant. In other words, the size of the structure is in some 
sense determined by the "thermodynamic" parameters of 
the turbulence. It is thus possible in helical turbulence to 
transfer energy from small-scale to large-scale motions. We 
note that up to the evolution of the instability (V) = 0 and 
the structures found are therefore not "relics" of the average 
flow (such as the von Karman vortices) but are produced by 
the helical turbulence itself. Their characteristic size L is 
thus naturally connected only with the integral characteris- 
tics of the turbulence. The result obtained is interesting al- 
ready for the reason that it is possible to obtain it systemati- 

cally from the Navier-Stokes equations without having 
recourse to phenomenological models. 

Generally speaking, the transfer of energy to large vor- 
tices is characteristic also of two-dimensional turbulence, 
but in that case there does not appear a well-defined scale of 
the long-wavelength fluctuations and there occurs a contin- 
uous transfer along the spectrum (see, e.g., Ref. 8). We note 
that the mechanism considered in the present paper for the 
generation of large-scale vortices is impossible as a matter of 
principle in two dimensional turbulence as in that case 
V curl V = 0. 

1. BASIC EQUATIONS 

We shall assume that the initial turbulence is described 
by the Navier-Stokes equation for the random velocity Vf 
and by the equation of continuity for turbulent pulsations of 
densityp'. For the sake of simplicity we consider a polytro- 
pic gas with polytropic index equal to two: 

where P i s  the pressure and c, the sound velocity forp = p,. 
In that case the initial equations have the form 

where A is the Laplace operator and yo the kinematic viscos- 
ity. Since we assume the turbulence to be homogeneous and 
isotropic, (Vt ) = 0, ( p' ) = const = p,. 

The appearance of a large-scale vortex structure must 
mean the existence of an instability leading to the magnifica- 
tion and support of large-scale perturbations at the expense 
of the small-scale turbulence. We shall understand by large- 
scale perturbations an average field (V) with characteristic 
size L ,A. 

Let us at t, = 0 create a small large-scale perturbation 
(V,). When t > 0, after (V,) has interacted with the turbu- 
lent velocity field V', the average (V,(x,O)) is changed to 
(V(x,t )) and the random part of the velocity has acquired an 
addition ~ ( x , t  ). This means that the total velocity at any time 
can identically be written in the form 

vi=<v,>+vi+v,t, <V>=<vi>=o. (3) 
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Similarly we can write the total density p also in the form 
p=(p)+p+,pf, (pt>=const=p,, (p)=O. (4) 

Clearly, the total velocity as well as the velocity Vf 
satisfy the Navier-Stokes equation, and the total density the 
continuity equation. We shall understand by the average val- 
ue everywhere the result of averaging over an ensemble of 
realizations of the turbulent pulsations V f andp' . Our prob- 
lem consists in obtaining closed equations for the average 
velocity ( Vi ) and density ( p) .  To do this we use the ap- 
proach developed in Refs. 9 and 10 and operate on the Novi- 
kov-Furutsu fo rm~la . "~ '~  

Substituting (3) and (4) into the Navier-Stokes and con- 
tinuity equations and after that taking the ensemble average 
we get the equations 

We still need also equations for the quantities andb. 
To obtain them we again substitute (3) and (4) into the Na- 
vier-Stokes and continuity equations and subtract from 
them the equations which we have obtained for the total 
velocity and density, (I), (2) and (5), (6). As a result we get 

a Vi' 
+(V,>- 

at 8% 
a<vi> a vi' a vi coZ dl3 +V,'- +Vk- +Vkt-  -v,APi- - -- 

a xk a ~ k  a ~ k  P o  axi 

We shall assume that the turbulence is stationary, ho- 
mogeneous, isotropic, but not invariant under reflection. In 
that case the correlators of the random fields V' andp' have 
the form 

< V,' ( X I ,  ti) Vjf (x2 ,  t Z )  )=Ki j (xI ,  x z ) q  ( t i - t , ) ,  (9) 
(P'  (xi,  t ~ )  vi' (xzt t2) )=Ri(xt,  x z ) ~ ( t l - t z )  (10) 

where Kg and R, are the spatial parts of the correlators and 

Kik ( x l ,  x2) =C ( r )  &+B ( r )  rirk+g ( r )  eiklrlr (11) 
Ri(x tr  x Z)  =D ( r )  rc, I=x,-XZ. (12) 

The quantities C, B, and D in Eqs. (1 I), (12) are scalars 
and g is a pseudoscalar. We note that the last term in (1 1) is 
the consequence of the fact that the turbulence is not invar- 
iant under reflection (helical), while g(0) has the meaning of 
the average value of the product of the turbulent velocity and 
its curl. Indeed, one easily finds from (9), (1 1) that 

We note also that under the assumptions made about 
the properties of the turbulence the following relation holds 

as a consequence of which the following average vanishes: 

It also follows from (12) that 
a 

-<pt ( x )  Vk1(X) )=O. 
axk 

These averages therefore do not appear in Eqs. (5) and (6). 
Equations (5), (6) and (7), (8) are the basis of what follows. 

2. CLOSURE OF THE AVERAGED EQUATIONS 

The basic problem consists in the closure of Eqs. (5) and 
(6). As we consider the case with a small average velocity 
against the background of initially homogeneous and iso- 
tropic turbulence, i.e., 

( V > < <  ( v t ) 2 > " a c o ,  (14) 

in the initial stage we can neglect in (5) the non-linear terms 
proportional to ( V, ) ( Vk ). As ( V) is small compared to 
((V'  )') ' I 2  we may also assume that the inhomogeneous per- 
turbations of the random field V' produced by the average 
velocity ( V ) are also small: 

(az)"< [ ( v t ) ~ ] " a  (15) 

and neglect in (5) and (6) the non-linear terms proportional to 
( pi pk ) and @pk ). The main non-linear terms in (5) thus 
have the structure (p l f  ). Below we verify that inequality 
(15) is satisfied. As we sball be interested in a large-scale 
instability leading to the generation of structures of the aver- 
age field (V) we shall later consider the case when 

L>ho, T>T, (16) 

where L is the characteristic spatial scale of (V), A, the char- 
acteristic energy-containing scale of the turbulence, T the 
characteristic correlation time of the turbulent velocity, and 
T the characteristic time scale of ( V ). 

Later we shall indicate the criterion for satisfying in- 
equalities (16). The condition -7 allows us to separate the 
slow evolution of ( V) from the fast turbulent pulsations. In 
that case we can assume the turbulent pulsations V' to be, to 
a first approximation, delta-function-correlated in time as 
compared to the slow evolution of the average velocity (V), 
i.e., we shall assume that p(t, - t,) = S(t, - t,): 

(vit (xi ,  t i )  V i  (xzr tz) )=Ku (xi ,  X Z )  6 ( t i -&)  
(17) 

(p t  (xi ,  t i )  V: (xz, tz) )=Ri (xi ,  X Z )  6 ( t i - - t z )  , 

where KO and R, are given by Eqs. (1 I), (12). 
In the present paper we consider the case which is the 

simplest one from a formal point of view when the random 
field of the turbulent fluctuations in the velocity can be con- 
sidered to be Gaussian. Turbulence consisting mainly of vor- 
tices with characteristic size A, can serve as an example of 
such a situation. The velocity field after the lapse of a suffi- 
ciently long time is also Gaussian, if the turbulence source is 
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switched off or even if we do not consider strong turbulence, 
but small hydrodynamic fluctuations. 

To close Eqs. (5) and (6) we must evaluate the averages 

The quantities pk andp are functionals of the random fields 
V f ,  and p' . The way pk and p depend on V f ,  and p' is given 
by Eqs. (7), (8). In our statement of the problem the random 
fields are assumed to be given and decribed by the correla- 
tors (9), (10). To evaluate the averages in which we are inter- 
ested we can use the Novikov-Furutsu f o r m ~ l a ~ ' . ' ~  (see also 
Ref. 13): 

where z is a Gaussian random process and F [z] a functional 
of this random process. 

The application of Eq. (1 8) gives in our case 

The integration in Eqs. (19) to (21) is over the whole of 
space while the integrals over time are taken from zero to t, 
which reflects the causality principle. (The quantities V, j5 
can depend on V' , p' only at earlier times.) The averages of 
interest to us which occur in Eq. (5) are found from (19). For 
instance, 

[In Eqs. (5), (6) the averages are all taken at one point 
x, = x, = x.] As we assume the random processes V' andp' 
to be delta-function-correlated we can evaluate the func- 
tional derivatives which occur in Eqs. (19) to (21) at a single 
time t = t '. Integrating Eqs. (7) and (8) over time and assum- 
ing that the functional derivatives of v andp with respect to 
p' and V' do not contain singularities with respect to the 
time we let the lower limit of integration tend to the upper 
one which is equal tot  and we obtain the first approximation 
in T/T  expressions for the functional derivatives: 

Substituting (17) and (22) to (25) into Eqs. (19) to (21) and 
integrating we get for the averages 

d 1 
-<ptV >--D(O)div(V). 

XA - 4 
(28) 

We used Eq. (13) in obtaining Eqs. (26) to (28). 
Substituting (26) to (28) into Eqs. (5), (6) we finally get 

where Y = v0 = C (0)/4. We note that there occurs in Eq. (30) 
a term proportional to D (0) div(V). The presence of that 
term leads to a change in the constant part of the average 
density: 

(p)o=po+D (0)/2 

and, as a consequence of this, to a change in the sound veloc- 
ity 

c.=co [I+D (0) /2po] ". 
For small Mach numbers M = (( V )2)/cz ( 1 this change in 
the sound speed is small. 

3. LARGE-SCALE INSTABILITY AND APPEARANCE OF 
STRUCTURE 

The solenoidal part of the velocity is split off from the 
potential part in Eq. (29). As we are interested in the genera- 
tion of vortex structures we consider the solenoidal part of 
the velocity. Operating with the curl on Eq. (29) and intro- 
ducing the notation fi = curl(V) we get 

It follows from Eq. (3 1) that if the helicity of the turbulence is 
equal to zero there remains in the equation of motion only 
the turbulent viscosity which corresponds to the damping of 
large-scale perturbations by turbulence. We consider the 
problem with large-scale perturbations can be amplified and 
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supported by turbulence and, hence, lead to the appearance 
of coherent structures. 

( V V ) -  J d t , d t , ( v t v l )  ( v ( v ) ) . .  

Fourier-transforming Eq. (3 1 )  leads to The correlator ( V (x , , t , )  I." (x,,t,)) taken in one point 
(x, = x2) depends on t, - t2-T and the characteristic time 

-iw.Qj(k) -'12ig [kXP ( k ) ]  j+vk2Qj(k)  =O.  (32) scale of ( V )  is T. Therefore 
Choosing the system of coordinates such that the z-axis is 
directed along the vector k and using the relation k X  fl = 0 
we get the dispersion equation 

o=i(-'12gk-vk"). (33) 

From this equation it is clear that Reu = 0.  The insta- 
bility growth rate y is equal to 

7 ( k )  =-'/,gk-vkZ. (34) 

We easily find from (34) the largest value of the growth 
rate y,,, and the value k, for which the growth rate has its 
maximum 

y,,=y (ko )  =g2/16v, (35) 

ko= 1 g 1 /4v ,  (36) 
g-<Vf rot V 1 ) t ,  v-vT-< ( V ' ) 2 ) t - E T t .  (37) 

As a result we get an estimate for the characteristic size of 
the instability: 

L-'=(Vf rot V1) /ET-I , /E.  (38) 
Formula (38) is interesting because in it there appears 

only the ratio of two integrals of motion: the topological 
invariant and the normal invariant. The topological invar- 
iant I, characterizes the number of linkages of vortex lines 
with flow lines. The characteristic size of unstable fluctu- 
ations is thus determined by the "natural" characteristics of 
the turbulence, its invariants, and it is an internal property of 
the turbulence itself. 

Since assumed from the outset the instability to be 
large-scale, we must require that 

Inequality (39) is the condition on the correlator parameter 
of the turbulence velocity field ( 1  1): 

ko-g/C<<ho-', g/C- < V f  rot V t ) / E T .  (40) 

Apart from condition (39) we assumed that the large-scale 
instability was slow, i.e., 

i.e., (42) follows from (40). Thus, a long-wavelength instabil- 
ity is automatically slow, i.e., it can be considered in the 
delta-function-correlated random process approximation. 
One can estimate from Eq. (7) the characteristic magnitude 
of the velocity p: 

yha;v(v2>'12. 

The main terms in (7) give 

whence we find 

<V2) -T t (  ( V t ) ' )  (V<V>) '  or P I -  ( t /T)IhVt.  (44) 

As T ~ T  we have pg V as we assumed earlier. We can re- 
write the estimate (44) as 

We note that from the estimates (44), (45) it follows that 
V -(A /L ) ( T / T ) (  V )  and, as we consider the case ( V )  4 I.", 
hence 

(h lL)  ( T / t )  29 1 .  (46) 

From (42) it follows that T / T -  ( L  /A,)' and hence condition 
(46) is equivalent to L)A, and is satisfied automatically. 
Then (45) gives 

We can introduce the spectrum of the quantity p: 
<va>= j ~ ( k ) d k .  

We then get from (44) an estimate for the spectral density: 

E ( k ) - ( d T ) E T ( k ) .  
Hence it follows that the characteristic scale of the fluctu- 
ations p i s  the same as the external scale of turbulence A,,. 
The characteristic time of these fluctuations is of order .r 
because of the transfer of v by the velocity V' . In the long- 
wavelength part of the spectrum we have F ( L  ) g  ( V ) as the 
energy-containing part of p i s  concentrated at a scale A, and 
satisfies the estimate (47). We note that we can use Eq. (3 1 )  to 
find the actual configuration of the structure in x-space. To 
do this it is necessary to assign to it an actual boundary value 
problem. 

CONCLUSION 

We note that in magnetohydrodynamics helical turbu- 
lence has the capacity to magnify initially small magnetic 
fields.14.15 The equation of the "dynamo" theory which is 
then obtained has the same structure as Eq. (31). The growth 
rates of the two instabilities then turn out to be of the same 
order of magnitude. 

The results obtained show that there occurs in helical 
turbulence a large-scale instability leading to the appearance 
of vortex structures. It follows from Eq. (3 1) that these struc- 
tures themselves are helical and it is natural to call them "g- 
structures." The evolution of the instability found here is 
accompanied by the transfer of energy from small-scale to 
large-scale sizes. We emphasize that the g-structures are not 
relics of the average flow such as the von Karman vortices 
and the instability found in this paper is not a modification of 
the instability of shear flows. The magnification of a coher- 
ent structure occurs merely due to the fact that the turbu- 
lence is not invariant under reflection. 

It is important that the characteristic size of the struc- 
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tures which occur is determined by the internal characteris- 
tics of the turbulence: the ratio of the topological invariant to 
the energy of the turbulence. In the present paper we consid- 
ered the Gaussian case which, apparently, contains the basic 
physical traits of the process of the appearance of a large- 
scale structure in turbulence. It is nevertheless interesting 
that an isotropic velocity field is able to magnify large-scale 
regular motions. 

The case of non-Gaussian velocity field is more compli- 
cated from a formal point of view. However, also in that case 
it is possible to obtain closed averaged equations of motion. 
The basic features of the large-scale instability are apparent- 
ly retained. We note merely that the moments 
(V; Vk . . . Vi curl V' ) which characterize higher order he- 
licity contribute to the growth rate of the instability. We 
shall consider the case of non-Gaussian turbulence in an- 
other paper. 

Note added in proof (31 October 1983 ). In the present 
paper we considered a model in which the velocity of the 
turbulent pulsations is assumed to be a random process, S- 
correlated in time. In the case of a small, but finite correla- 
tion time instead ofg(0) there occurs in Eq. (3 1) Mg(0) where 
M = ((P )') ll2/cO is the Mach number, and corresponding- 
ly, the growth rate y [see (35)] is multiplied by M '. 
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