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Using a macroscopic approach based upon the general principles of the electrodynamics of con- 
tinuous media we obtain an expression for the ponderomotive force of a high-frequency quasi- 
monochromatic electromagnetic field in media with temporal and spatial dispersion, including 
dissipative terms. We show that this force corresponds to a symmetric stress tensor which con- 
tains time-derivatives of the field amplitudes and the anti-Hermitean part of the dielectric tensor. 
We study the conditions for the equilibrium of a boundary between two media when there is a 
high-frequency field present. We show that under certain conditions equilibrium may be impossi- 
ble in the presence of dissipation and a change with time of the field amplitude. We obtain 
incidentally some relations of the electrodynamics of non-uniformly moving dispersive media. 

PACS numbers: 41.10.H~ 

1. INTRODUCTION 

There are a large number of papers devoted to the prob- 
lem of finding the ponderomotive force of a high-frequency 
(HF) field in dispersive media. There are two approaches to 
the calculation of this force. The first of them is microscopic 
and is usually applied to relatively simple models of plasmas 
and gases (see, for instance, Refs. 1 to 10 and the literature 
cited there). The other approach is macroscopic, uses the 
methods of the electrodynamics of continuous media and 
was considered in Refs. 11 to 13. Although this approach 
also has its limitations it has on the whole led to very general 
results applicable to a wide class of condensed media, gases 
and plasmas. At the same time a number of aspects of the 
theory of the ponderomotive force in dispersive media, in 
particular some terms containing time-derivatives of the 
slowly varying amplitude, are up to now the subject of dis- 
cussion which to an appreciable extent is connected with the 
problem of the symmetry of the stress tensor which is non- 
trivial even in the simpler case of non-dispersive media (see, 
e.g., Refs. 14, 15). Of great interest is also the calculation of 

terms with mixed derivatives with respect to r, and t. Some 
of those are the same as those proposed in Ref. 16. 

An important feature of the method applied is the use of 
energy relations in moving media, which lead to an expres- 
sion for the work done by the ponderomotive force f per unit 
time: (f . K). The functional derivative of this expression with 
respect to the velocity v gives the ponderomotive force. To 
obtain the symmetric stress tensor we must consider a veloc- 
ity field with curl v#O. After variation we put v = 0. The 
velocity v can thus be considered to be a small parameter. To 
realize this program we need a number of relations from the 
electrodynamics of non-uniformly moving dispersive media 
(Sec. 3). As far as we know, a number of them have not been 
considered before. Using these results and also auxiliary re- 
lations from Secs. 2 and 3 we obtain in Sec. 4 expressions for 
the ponderomotive force and the stress tensor for a medium 
with temporal dispersion (including dissipative terms). In 
Sec. 5 we consider the contribution to the ponderomotive 
force and the stress tensor from spatial dispersion in inho- 
mogeneous media. 

the contribution of dissipative effects to the ponderomotive 
force. Up to now even the possibility of finding such a contri- 

2. STARTING RELATIONS 

bution in the framework of the macroscopic approach re- The relation between the induction and the electric field 

mained unclear even when dissipation is weak (see $8 1 of strength can be written as 

Ref. 13). Taking spatial dispersion into account is also of Da(r, t )  
interest. 

Using a unified macroscopic approach, we obtain in the 
present paper expressions for the ponderomotive force and 
stress tensor of a (temporally) quasi-monochromatic H F  
field, taking into account time-derivatives of the amplitude 
and also dissipation and spatial dispersion (sufficiently far 
from resonances). It is important here that the stress tensor 
automatically turns out to be symmetric. The results are ap- 
plicable to any spatially-non-uniform fluids and, in particu- 
lar, to isotropic and anisotropic plasmas. In the appropriate 
particular cases they are the same as expressions obtained 
using microscopic approaches. As our stress tensor contains 
time-derivatives, the ponderomotive force also contains 

c 
t+t' rSr' 

= I dt' Idr' cpap ( t -  - ; r-r,  ( t  r ) .  (2.1) 
- cc 2 2 

For a (temporally) quasi-monochromatic wave 
# 

E (t, r) ='/,E (o, t ;  r )  e x p  ( - i o t )  + c.c., (2.2) 
where E(w, t;r) depends slowly ong  (so,far the r-dependence 
is arbitrary), Eq. (2.1) becomes 

OD 

f i ( t ) = L e - i o t ~ d  E ( ( 0 ,  t -T)  eio'+c.c. (2.3) 
2 

0 

The dependence of all quantities on the spatial coordinates is 
not written out explicitly and the quantity @ (7, t - r/2) is an 
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operator with kernel pap [T, t - ~ / 2 ; r  - r',(r + r1)/2], the 
action of which upon ED(@, t - r,rl)  includes summation 
over the discrete index p and integration over the spatial 
coordinate r' [see (2. I)]. 

By using other combinations of independent variables 
we can write the response function contained in Eq. (2. I), for 
instance, in the form Fap(t, t ';r,rf). The form of writing it 
which we chose in (2.1) is convenient, for in the limit of weak 
non-stationarity and inhomogeneity of the medium it is nec- 
essary to separate the variables t - t ' and r - r'. Moreover, 
when writing it thus we obtain in a natural way corrections 
to the permittivity in a non-stationary medium under condi- 
tions where the adiabatic invariant is conserved (see foot- 
notes 1 and 2 below). At the same time, writing (2.1) in this 
form does not yet assume that the adiabaticity condition is 
satisfied and it is general in nature until the dependence of 
the permittivity on the changing parameters of the medium 
is given a concrete form [see below Eqs. (2.10) and (2.17) and 
their discussion]. 

In a stationary medium, @ (7, t ) is independent oft. We 
shall consider a weakly non-stationary medium assuming 
that $ (7, t ) depends slowly on t. Expanding the slow func- 
tions in the integrand in (2.3) in powers of T up to second 
derivatives in the slow time we find - 

D='/,D exp (-iot) +c.c., 

where 
m 

i (a, t) = j  $(r,  t)exp(iwr) dr. 
0 

Below we consider only the case of a weakly dissipative 
medium, i.e., we assume that the anti-Hermitean term in the 
expansion of the permittivity operator in a Hermitean and an 
anti-Hermitean part E = 2' + iE" (E' and E" are Hermitean 
operators both in the indexes a, P and in the spatial variables 
r, r') is so small that we can neglect terms containing time- 
derivatives of C" and also products of the quantity &" with 
small time-derivatives of the amplitude." Substituting (2.4) 
into the relation 

and then integrating term by term over the whole volume 
occupied by the medium, we then find (after averaging over a 
period of the H F  field) 

Here and henceforth the angle brackets indicate the follow- 
ing operation: 

h 

for arbitrary vectors ~ ( w ,  t;r), Y(w, t;r) and operator T (w, t ) 
with kernel TaB (a ,  t;s,r) while 

It is important to note that in Eq. (2.7) the term contain- 
ing (E*(aEW/at )E) was canceled, while taking into account 
the term of the form (E*(a2E"/atam)aE/dt ) goes beyond the 
limits of the approximation used here. 

When 2" = 0, %/at = 0, the quantity Wis the electro- 
magnetic energy in the medium up to terms with a E/at in- 
clusive (see, e.g., Ref. 17). In order that W have the same 
meaning when E"#O one must require not only that E"/ 
E' ( 1 but, in general, also that the change in amplitude is 
sufficiently fast.2 The corresponding quantitative conditions 
may be different depending on the dissipation mechanism. 
For instance, for a uniform collisional plasma considered in 
Ref. 2 we must have v ( T -', where Tis the characteristic 
time for changes in the amplitude E and v the collision fre- 
quency. 

When %/at #O the quantity (2.9) has the meaning of an 
energy density, generally speaking, only when one can neg- 
lect deviations from adiabaticity. In this connection one 
must bear in mind that the operator C(w, t ) in the general case 
is not the same as E, [@,A (t  )I, where 2, (m,A ) is the permittivi- 
ty under stationary conditions whileA = A (t ) is the total set 
of independent parameters which at time t determine the 
state of the body. Up to terms of first order in aA /at we can 
write 

a hi z (o, t)=^e.(o. ~ ( t )  )+E C*, at 
t 

where the last term takes into account the non-adiabatic cor- 
rection. Generally speaking, it can occur in the general ex- 
pressions for the energy and dissipation densities in a non- 
stationary medium. Below we assume that the contribution 
from non-adiabatic effects is sufficiently small that we can 
neglect terms containing PA. The appropriate criterion is 
given at the end of the paper. We note also that it follows 
from Pitaevskii's result mentioned in footnote 1 that Pi 
= 0 if in the stationary state the medium is transparent. 

We now consider in more detail the formulae given 
above in the case of spatial dispersion. To do this we write 

U 

In a weakly non-uniform medium 
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In the case of a quasi-planar wave 

Eg ( a ,  t; r) =a8 ( a ,  t; k, r) exp (ikr) , (2.13) 

where gB weakly depends on r. Substituting (2.12) and (2.13) 
into (2.11) we find up to terms of first order2' 

{L (w, t) E ( a ,  t ) Iaz  { [Eae- ( i / 2 )  d2~aa/akrdrrl 8~ 

here 

eap=eaB ( a ,  t; k, r) =J  ds exp (-iks) ear ( o ,  t; s,  r) . (2.15) 

Expression (2.14) gives in detail the first term in Eq. (2.4) for 
the electrical induction. The remaining terms in (2.4) can be 
written according to (2.14) by appropriate differentiations 
with respect tow and t. 

Similarly, using (2.13), (2. IS), and (2.8) and expanding 
the amplitude fYp we get 

One must bear in mind that the kernel E , ~  (w, t;s,r) is, in 
general, not the same as the corresponding quantity 
E$ (a, t;s,A ) for a uniform medium with A = A (r, t ) even if 
we neglect in (2.10) the terms with aA /at. Let, for instance, 
A be a set of three parameters-the density p, the tempera- 
ture, and the average magnetic field BO. For a non-isother- 
ma1 medium we then have to first order in V,A 

In this case X and Y depend, in general, on the same param- 
eters as E : ~ .  For example, for a non-uniform plasma one can 
write down the coefficients X,Y using the general expres- 
sions from Ref. 20. The gradient terms (taking into account 
non-adiabaticity corrections) may turn out to be important 
ony when spatial dispersion is taken into account. One can 
therefore omit them when the latter is neglected. 

As one application of the relations written above we 
evaluate the magnetic moment density M(r, t ) induced by 
the HF field. Let the external magnetic field B0 and hence 
also 2 be variable but let the medium remain fixed. We can 
then use Eq. (2.7), where on the right-hand side we must 
substitute 

ai l  a 2  aB,o 8 2  d(V,ByO) 
-=-- + (2.18) 
at dB," dt d ( V a V 0 )  at 

On the other hand, the energy conservation law can in this 
case be written in the form 

where the last term with opposite sign is equal to the increase 

in energy due to the change in B0.13 Comparing (2.19) and 
(2.7) we get 

1 6 
M (r) = -- 

16n 6 (dBO/ldt) J drl {(E‘FE) 
(2.20) 

where S /S (a Bo/at ) indicates the functional derivative of 
a BO(r, t )/at at the point r (t is here a fixed parameter and for 
the sake of simplicity is not written down in the arguments). 
Substituting (2.18) and noting that after evaluating the func- 
tional derivative we must put 6' Bo/at = 0 we find 

1 6e' 
.(.I=- 16n Jar/{( E*-E) 6B0 (r) 

where 2 as a functional of B0 is given in (2.17) up to the first 
derivatives. Nelgecting spatial dispersion [in which case we 
can also neglect the gradient terms in (2.17)] we get from 
(2.21) 

(we remember that the r-dependence of the field E here is 
arbitrary). The second term on the right-hand side is a cor- 
rection to Pitaevskii's well known formula'' and is due to the 
time-dependence of E. 

If we take spatial dispersion into account for the quasi- 
planar wave (2.13), we get, using (2.21), (2.16) and restricting 
ourselves to terms of first order in the derivatives 

3. GENERALIZATION OF THE BASIC RELATIONS FOR THE 
CASE OF MOVING MEDIA 

Our next problem is to find the ponderomotive force, 
taking into account time-derivatives of the field amplitudes, 
dissipation, and spatial dispersion. To do this, however, it is 
necessary to generalize the formulae of Sec. 2 to the case of a 
moving medium with an arbitrary velocity field v(r). We 
shall express the ponderomotive force as a functional deriva- 
tive of a functional of v(r) and after differentiation we put 
v = 0. We can thus assume that v is small and that it is 
sufficient to take into account only terms linear in the veloc- 
ity and its spatial derivatives. As to terms with av/at we 
assume here that they are small of higher order and that we 
therefore can neglect them. Indeed, &/at cc V I El when 
there are no external forces. In the present section we assume 
that in the comoving reference frame in which the medium is 
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at rest we can neglect spatial dispersion. Let the field have 
the form (2.2) in the laboratory frame. As v is sufficiently 
small, the function E[w, t, r(rl, t, v)], where r' is the radius 
vector in the comoving reference frame, depends slowly on t 
although it is possible that (LIE /at ) ,  ) (aE /at ), . This fact 
will be used in what follows in an essential way. 

We shall now start from a generalization of Minkows- 
ki's formulae. For small constant v and aZ/at the first of 
them has the form2' 

where j is the unit tensor, 2 = i(a/at - v V) is the frequen- 
cy operator in the comoving reference frame [in the second 
term in (3.1) we can neglect the difference between 2' and 
2 = id/&]. When A,  vB #0, aZ/at # O  the substitution 
2 + 2' is insufficient as it does not take into account local 
rotation of the medium and its non-stationarity. When these 
factors are taken into account one must replace the first term 
in (3.1) by Eq. (2.4) where instead ofa E/at and %/at deriva- 
tives in the comoving frame of reference occur which we 
shalldenote by (a E/at ),, (%/at ),, and so on. For small v they 
can be expressed in terms of the derivatives in the laboratory 
frame a E/at, %/at through the formulae 

Terms containing (vV) are due to the translational motion of 
a volume element with its center at the point r with velocity 
v. The third term in (3.2) gives a contribution to (a E/at ), due 
to the rotation of the vector E with a local angular velocity 
- fl (where fl = 4 curl v) relative to the axes of the comov- 
ing frame. Of course, a formula of the form (3.2) does hold 
not only for E but also for any other vector. Similarly, a 
relation such as (3.3) holds for any tensor as one can easily 
verify by considering a tensor of the form A, A@ and taking 
into account that 

[rot V,X AIa=(VpUa-VaV~) Ap. 

Now substituting(c3 E/at ),and (a&,@ /at ),from (3.2) and (3.3) 
into (2.4) we get the first two corrections to the induction in 
the form 

The correction SID, is here due to the terms with (v . V) and 
S,D, occurred due to the rotational terms in Eqs. (3.2), (3.3). 
One checks easily that all terms in SID, can be obtained 
from the first term in (3.1) as corrections describing the spa- 
tial dispersion appearing due to the motion of the medium. 

However, we neglect here yet another correction due to 
the occurrence of spatial dispersion. To find it we assume to 
begin with that the wave is quasi-planar with wavevector k. 
In that case E , ~  ( W h ' )  - [W - k v(r)]. As there appears in 
.cap an additional r-dependence due to v(r) it is necessary to 
take into account the second term in (2.14). This leads to the 
fact that we must add to gap 

- ($2) d2~aplak7dr7. 

Substituting here E , ~  [W - k v(r)] and differentiating we get 
an additional term of the form 

(i/2) (a&,, ( a )  /do) div V. (3.7) 

As it does not contain k it can be applied to fields with any r- 
dependence. From (3.7) it follows that in the expression for D 
there must in a moving medium be a term 

) divv. (3.8) 

Together with S2Da this expression determines the cor- 
rections to D connected with the non-uniformity of the ve- 
locity field. Taking these corrections into account the effec- 
tive permittivity has at v = 0 and V, vo # O  the form 

The second term is in the particular case of an isotropic 
medium the same as those given in $102 of Ref. 13, while the 
third one, containing div v is a kinematic correction which, 
as far as we know, has not been discussed be f~ re .~ '  

Finally, we consider the fourth correction to the induc- 
tion arising from the second term in (3.1). For a quasi-mono- 
chromatic wave we can write it in the form 

The complete expression for the amplitude of the elec- 
trical induction in a moving medium thus has the form 

The quantity E$ is given in (3.9) and we can write a ~ , ~ / a t  in 
the form where 
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1 a ~ a g  --- 
2 dB0 

[rot v X BD]. 

In the first term on the right-hand side we assume summa- 
tion over all parameters A on which &,@ depends, while the 
derivative dA /at is taken in the laboratory frame. The sec- 
ond and third terms describe the contribution from the local 
rotation of axes of the tensor E , ~  relative to the laboratory 
frame with angular velocity 0 = 4 curl v as if it were rigidly 
fixed to the medium. However, the change in the magnetic 
field B0 which also contributes to the anisotropy does not 
reduce to a rotation with angular velocity fl. This fact is 
taken into account by the last term in (3.12) which cancels 
the contribution of the rotation of the vector B0 with angular 
velocity 0. However, the contribution from the complete 
change in the magnetic field is contained in the first term on 
the right-hand side of (3.12) and is considered in detail in the 
next section. 

If the anisotropy of the medium is caused solely by the 
field BO, i.e., 

where Sap,, is the totally antisymmetric tensor, one verifies 
easily that the last three terms in (3.12) cancel completely. 

We must supplement the formula for the electrical in- 
duction with an expression for the magnetic field strength in 
a moving medium which has the form 

We now consider the electromagnetic energy density in 
a moving medium. This is connected with the energy density 
w' in a medium at rest through the relation 

which is obtained through a Lorentz transformation using 
only terms linear in v. By w' we understand here the adiaba- 
tic expression for the energy density given by Eq. (2.9) where 
we must replace E and B by E' and B' which are connected 
with the field strengths in the laboratory frame through the 
relations 

Er=E+c-' [ V X  B ] ,  B ' = B - P  [ v x E ] .  (3.16) 

We must also recognize that the derivative (6' Ef/dt ), oc- 
curs in Eq. (2.9). As a result we get from (2.9), (3.15), (3.16), 
and (3.2) the following expression for the energy density in 
the laboratory frame of reference: 

1 d8(oeag')  
+ - 2 E; aa2 ET (Vav,-Vr~e) 1 . 
We find now an expression for the density of dissipation 

q per unit time in a moving medium. Here q = q'(1 - v2/ 
~ ~ ) ~ ' ~ z ~ ' ,  where q' is the volume density of dissipation in the 
comoving frame.I4 The adiabatic expression for q' is given by 
the formula 

q'= (1/4n) Re TE'* ( Z ~ ' / a t )  ,) ,,=,. 

Using Eqs. (3.2), (3.3) and (3.16) to express (8 D'/& ),El* in 
terms of (6' D/at )E* we find (neglecting high-order terms) 

o vo 
Q= - Ea'~ag"E~- - R ~ [ E I " E  X B * ]  

8n 4nc 

Substituting now into Eq. (2.6) (which is valid for a mov- 
ing medium after replacing B a ~ / d t  by H -6'  at the ex- 
pressions for 6 and H and using (3.1 I), (3.12), (3.17), and 
(3.18) we get 

de.; div v) 
X- E,'- Ek +iEaa--  

a t  ) 30 at  " ado 

It is here important that the quantity %/at itself contains, 
according to (3.12), derivatives with respect to the velocity. 
Equation (3.19) which expresses the energy conservation law 
in a moving medium will be the starting point for finding the 
ponderomotive force. 

4. THE PONDEROMOTIVE FORCE IN A MEDIUM WITH 
TEMPORAL DISPERSION 

One can find the ponderomotive force from the energy 
conservation law 
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where q is the dissipation density in the laboratory coordi- 
nate system, S the energy flux density, and f the volume 
density of the ponderomotive force. It follows from (4.1) that 
in a medium at rest 

where S /Sv(r) is the functional derivative. We assume here 
that the non-stationarity of the medium is caused solely by 
its motion so that the permittivity of a medium at rest is time- 
independent. Determining dw/dt + q from (3.19) and using 
(3.12), (2.2) we find from (4.2) 

where 

where we have varied terms containing v explicitly. We 
wrote in (4.4) 

while the vector M is given in (2.22). When obtaining (4.5) we 
used the fact that 

C 
[;"E X B*]a=i-(VaE<-V6Ea') eQ/ET. 

o 

To evaluate the functional derivative in (4.3) we must 
find the time-derivatives of the parameters on which E , ~  de- 
pends. Assuming for the sake of simplicity that these param- 
eters are the density p and the average magnetic field B0 we 
have 

The quantity dp/dt is determined from the continuity equa- 
tion dp/dt = - div(pv). As far as d Bo/dt is concerned, we 
consider here two cases: a non-conducting and a highly con- 
ducting medium. In the first case a Bo/at in the laboratory 
coordinate system when the medium is moving. In the sec- 

ond case we use the well known equation from magnetohy- 
drodynamics13 

where a is the static conductivity; as before we consider a 
medium withp = 1. We neglect the dissipative term in (4.7) 
as it leads to higher spatial derivatives in the ponderomotive 
force and the conductivity is assumed to be high. 

Taking what we have said into account and substituting 
(4.6) into the integral in (4.3) we find 

+l6ng(o) [BOX rot tk], 

where M is given by (2.22) and 

g(a) =O wheno=O, g(a) =Iwheno+w. (4.8b) 

Substituting (4.8a) into (4.3) we find finally, after simple 
transformations 

1 -- E ~ . ( G ~ E ~ ~ ' ) E ~ +  g ( 0 )  [BOX rot Mia+ M6VaB," 
16n 

where f(") and ed) are given by (4.4), (4.5). The term f :)is the 
divergence of an antisymmetric tensor. Below we see that 
just this term [together with the last term in (4.5)] guarantees 
in the general case the symmetry of the stress tensor. The 
term f f )  determines the contribution from dissipative ef- 
fects. In obtaining (4.9) we used the relation 

We discuss the expression for the ponderomotive force 
obtained here. We obtain Pitaevskii's formula1 without the 
term with f t' for non-conducting media with d E/dt = 0 and 
E : ~  = 0. This is connected with the fact that in Ref. 11 apart 
from a = 0 it was assumed that the anisotropy of the medi- 
um was caused solely by the magnetic field BO, i.e., Eq. (3.13) 
holds. As we saw earlier, in that case the last three terms on 
the right-hand side of (3.12) which just lead to f (a) cancel one 
another. The term B0 X curl M was found in Ref. 3 for a cold 
plasma and in Ref. 12 for any well conducting medium. 
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We turn now to the terms in (4.9) containing time-de- 
rivatives. The terms 

were found in Ref. 12 for media with temporal dispersion 
while the term 

up to now has been obtained only for microscopic models of 
a It vanishes in an isotropic medium for trans- 
verse waves. In the general case, however, and, in particular, 
for longitudinal waves this is not the case (this term was 
omitted by mistake in Refs. 9 and 12). 

To estimate the relative role played by the terms with 
time-derivatives we assume that the wave is quasi-planar 
with wavevector k and characteristic ranges of change in 
amplitude L and T. The ratio of the terms with a E/at to the 
first term in (4.9) is then of the order of magnitude kL / a .  T. 
For the first of the terms considered (the Abraham term in a 
non-dispersive medium) w. = w; for the others, containing 
ai /at ,  the quantity w. is a characteristic frequency scale of 
the dispersion (generally speaking, o. #w but one should 
always assume that w. T )  1). When kL ) 1 the parameter 
kL /w. T may not be small; in that case it is impossible to 
neglect the terms discussed here. Of course, taking polariza- 
tion effects into account may introduce important correc- 
tions in these estimates. 

Estimating similarly the terms containing mixed de- 
rivatives with respect to r and t [the second term in (4.9) is 
one of them, as are the corrections caused by taking into 
account terms with E/at contained in f(") and the magnetic 
moment) one can check that they are of order (w. T)-' ( 1 
relative to the first term in (4.9). Some of the terms with 
mixed derivatives, namely those which are contained in the 
first term in (4.4) were considered in Refs. 6 and 16. 

We consider finally the contribution to the ponderomo- 
tive force from the dissipative terms e d ' .  It is given by Eq. 
(4.5). For a quasi-planar wave when kL ) 1 the last term in 
(4.5) can be neglected. In that case 

f w r r -  ( 1 1 8 ~ )  Im[ ( V  E,') E,,"E,] - (118n) kE,*&,,"E,. (4.11) 

In an isotropic medium this last expression is the same as 
those obtained in Refs. 7 and 8 for a collisionless plasma. In 
that particular case one can obtain it also by the method of 
Ref. 5. Its ratio to the first term in (4.9) is of order ~ L E " / E ' .  
The magnitude of that parameter is limited by the possibility 
to interpret q and w as densities of dissipation and of electro- 
magnetic energy which is the basis of our approach. It is 
difficult to write down the condition for such an interpreta- 
tion in general form. For a uniform collisional isotropic plas- 
ma with characteristic collision frequency v the condition 
v ( T - ' was obtained in Ref. 2. In that case the order of the 
ratio off (d '  to the first term in (4.9) in a collisional plasma is 
limited by the condition 

k L e U / & ' - k L v / o ~ k L / o T .  (4.12) 

For a collisionless plasma the quantity ~ L E " / E '  may be 
comparable with kL /wT. 

If E& depends linearly on the densityp as is the case for 
gases and plasmas one can simplify Eq. (4.9) since 

pdea8'/dp=eagf-6,~. 

The second term in (4.9) then vanishes. 
We now consider the stress tensor corresponding to the 

force (4.9). Substituting in (4.9) the relations 

Eg' ( v a ~ a ~ ' ) E , = V a  (Eg*~gr'Er) 

-2 Re { (  VaEpn) [ D ~ - i ( d & ~ , ' / d o )  d E r / d t - i ~ e , " E ~ ] ) ,  (4.13) 

[B" Xrot Mla+MBVaB,O=VB (GaBBoM-B,,OMa) ; (4.15) 

(the first of them is obtained using (2.4) and the second using 
(2.4) and the Maxwell equations) and using (4.4), (4.5) we get 

where aa8 is the desired stress tensor: 

d de,' 
-1m E,'-- p - -  [ a , (  ap 

Here Ha = Bo - 47rM is the average magnetic field strength. 
In obtaining (4.17) we used the fact that curl HO = 0 when 
a = 0. 

We see that the tensor ua8 turns out automatically to be 
symmetric. If is given by Eq. (3.13) and B = 0, E : ~  = 0, 
 at = 0, = 0, (4.17) is the same as PitaevskiYs for- 
mula. " 

We now consider the tensor (4.17) on the boundary 
between two media (1 and 2). The force through which a HF 
field acts per unit area equals Fa = aa8 no where n is the unit 
vector along the external normal to the surface (directed 
from region 1 to region 2). At the boundary of two media the 
HF field, and with it the force F, is, generally speaking dis- 
continuous: ( F J  ,, = F(l)  - F(2). In an equilibrium state the 
magnitude of that discontinuity must equal, with opposite 
sign, the sum of the jumps in the other forces (for instance, of 
hydrodynamic origin). For instance, in isotropic media the 
quantity [ F ,  J ,, = (ua8na n8 J ,, is equal with opposite sign 
to the jump in pressure ( p( p)  J This condition determines 
the jump in the density ( p J ,, on the boundary caused by the 
action of an HF field (see, i.e., 9 15 of Ref. 13). As regards the 
jump in the tangential component of the force 
(F, ) ,, = ( F x n  J ,, in an isotropic medium this jump 
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(F, j ,, = 0 when E" = 0 and a E/at = 0. This follows from 
(4.17) and the relations ( D, ) ,, = 0, (E, ) ,, = 0. 

In the general case, however, [ F, ) ,,#O. Indeed, from 
(4.17) we obtain 

(4.18) 

If &ED = 0, a E/at = 0 and E , ~  is given by Eq. (3.13), i.e., the 
anisotropy of the medium is determined solely by the field 
BO, one checks easily that 

For a non-conducting medium g(u) = 0 and the tangential 
component of the force F is continuous, in agreement with 
Ref. 11. As o + w , when g(a) = 1, the jump ( F, 1 ,, is com- 
pensated by a jump in the tangential component of the force 
caused by the average magnetic field BO. In that case 

{B,O) ,,= {H,O) ,,+4n {M,) ,,=4n {M,) ,,. 
In the general case, however, the jump IF, j ,, may not 

be compensated by jumps in other forces and this means the 
impossibility of equilibrium under the action of the H F  field. 
As a simple example we consider isotropic media without an 
external magnetic field (in that case the average field 
B O a I El ,). We can then write (4.18) in the form 

From this we see that if the wave is elliptically polarized the 
jump (F, ) ,, is, in general, non-vanishing and can be com- 
pensated only when the fluid moves (when there appear off- 
diagonal terms in the stress tensor due to viscosity or due to a 
dynamical momentum transfer) or due to the generation of a 
magnetic field. 

This result is of interest, for instance, for the heating of a 
plasma by an H F  field as it shows that even if 6' E/at = 0 the 
plasma may start to move when it is heated by a wave with 
elliptical (or circular) polarization because b" # 0. 

5. THE PONDEROMOTIVE FORCE IN A MEDIUM WITH 
SPATIAL DISPERSION 

In this section we assume everywhere that the field of 
the wave has the form (2.13) and we restrict ourselves merely 
to terms containing the first derivatives of gD with respect 
to r and t (we also neglect their products). 

To obtain the corresponding corrections to the induc- 
tion, generalizing Eq. (3.1) to the case of spatial dispersion 
we change in (2.13) to a spatial variable r' defined in the local 
comoving frame of reference in the vicinity of the point r,. 
Let at time to the comoving and the laboratory frames be the 
same in the vicinity of r,. We then have at time t for small 
A t = t - t 0 a n d A r ' = r 1 - r o  

r=ro+v(rT) At+Arrf 'Iz [rot v (ro) x Ar'] At. (5.1) 

Substituting (5.1) into (2.13) we get 

E (r', t) =A (r', t) exp (ikr') , (5.2) -. i 
ikv(rf) At+ - ([kxrot  v(ro) ] Ar') At , 2 1 

(5.3) 
where we have used the fact that k[curl v ~ A r ' ]  = [k 
X curl v]Arl. It follows from (5.2) and (5.3) that wken we use 
the variables r', t we must replace the amplitude %'(r'+, t ) by 
the "effective" amplitude A(rf, t ) which differs from $(r', t ) 
by the additional phase factor occurring in (5.3). 

We now verify easily that taking spatial dispersion into 
account in the approximation considered leads to the follow- 
ing correction to the amplitude of the induction D, which 
supplements (3.11): 

deaa dAe d 2 ~ u e  a2Ap 
e-ik"6 D --i-- 

s a- , + ----- - 
ak, dr, d o  ak, a t  ar,' 

Where the origin of all terms is clear from Eqs. (2.4), (2.14), 
and (3. I), taking into account that the operator 2 acts upon 
functions expressed in terms of r' and t. In (5.4) and in what 
follows we drop terms containing ab/at as they lead to terms 
of higher order of smallness (v2, a2g/ar', and so on). 

When v = 0, &?/at = 0, it follows from (5.4) that 

as, = - 
16n 

where Sw and SS, are corrections to the energy density and 
its flux caused by the spatial dispersion in a non-moving me- 
dium. 

When v + O  we get instead of (5.5) after some calcula- 
tions 

where S,H = c-'[v(S,D)] [compare (3.14)] while S S and Sw 
retain the same meaning as above but now have the following 
form [compare (5.6), (5.7)]: 
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Here A' is the amplitude of the electrical field in the comov- 
ing frame of reference which is connected with A through a 
relation similar to (3.16). 

Now adding (5.8) to the right-hand side of (3.19) and 
using the general formula (4.2) we get in the expression for 
the ponderomotive force the following additional term due 
to the spatial dispersion: 

Expression (5.11) has the form of a divergence, but it 
does not lead to a correction to the stress tensor. This is 
connected with the fact that when spatial dispersion is taken 
into account Eq. (4.13) is changed and takes the form 

where 

. a ~ s r '  
- 6 , -  

aka 

It then follows from Eq. (4.9), supplemented by the term 
(5.11) and taking (5.12) and (4.14) into account, that the 
expression for the stress tensor retains the form (4.17) also 
when spatial dispersion is taken into account. 

T& contribution of the spatial dispersion to the pon- 
deromotive force was recently considered in Ref. 8 for an 
isotropic collisionless plasma. Using a microscopic ap- 
proach the authors arrived at a term which differed from 
(5.1 1) in its sign. 

Finally we consider the problem of corrections to the 
ponderomotive force and the magnetic moment arising due 
to non-adiabatic corrections to &. Together with terms con- 
taining dAi/dt in (2.10) we must also take into account the 
possibility of the appearance of additional terms in (2.17) 
which contain gradients of the velocity. An example of the 
latter is a term of the form 

2, div v. (5.13) 

Expression (5.13) may be caused by adiabatic effects in con- 
vective spatial dispersion which is not taken into account 
when we obtained the term (3.7). In contrast to other addi- 
tional terms in (2.17) the term (5.13) may be non-vanishing 
also when one can neglect spatial dispersion in a medium at 
rest. 

In a number of cases, for instance, for a collisionless 
plasma the Hermitean part of the additional terms consid- 
ered completely enters into the expression for w and the anti7 
Hermitean part into q. The additional terms in & in that case 
do not lead to a change in the expressions found above for the 
ponderomotive force f and the magnetic moment M.4' If, 

however, the corrections to & discussed here do not or only 
partly enter into w and q we must add to f and M additional 
terms which one can easily estimate using the conservation 
laws (2.19) and (4.1). As to order of magnitude these terms 
are equal to 

A A A A 

where JV; , X  : and iPi , iX :' ar%the Hepitean and anti- 
Hermitean parts of the operators P,, and X , .  

The first terms in (5.14) and (5.15) lead in the expression 
of the ponderomotive force (4.9) to additional terms contain- 
ing mixed derivatives with respect to r and t. Earlier we veri- 
fied that such terms are smaller by a factor w .  T than the 
main terms in the ponderom%tive forc5 As w ,  T ) 1 these 
terms are small, provided wA !PA and w X :  are not too large. 

The contribution from the second terms in (5.14) and 
(5.15) to the ponderomotive force are comparable with ed' 
from (4.5). As a result we find that we can neglect those 
corrections provided 

1 o ( p ~ " , " - ~ / )  1 < k ~ i " ,  o ~ ~ ~ B a N < k L e N .  (5.16) 

These conditions are certainly satisfied for sufficiently large 
values of kL. 

One obtains easily similar criteria also for the magnetic 
moment, comparing (5.14) with (2.22). 

We emphasize that these conditions are sufficient but 
not necessary as 6 M and S f may turn out to be appreciably 
smaller than the right-hand sides of (5.14) and (5.15); in par- 
ticular, as mentioned above, S M and 6 f may vanish com- 
pletely. 

The authors express their sincere gratitude to L. P. Pi- 
taevskii for fruitful discussions and useful advice. 

"If the medium is transparent in the stationary state, one obtains the anti- 
Hermitean term (i/2)d 22/dwdt from the condition that the adiabatic in- 
variant be conserved, as was shown first of all by Pitaevskii." 

2'The term with li(d2.c,/dkydry) in (2.14) corresponds to the adiabatic 
correction to Im E , ~  due to the inhomogeneity of the m e d i ~ m . ' ~ - ~ ~  

3'In this case the quantity E, in (3.9) may also contain terms with V, us of 
a dynamic origin (see 8 102 of Ref. 13). 

4'As an example we can also cite terms with derivatives with respect to the 
velocity in the operator 2 which are dynamic of origin; they describ'e the 
Maxwell effect and Coriolis effects ($102 of Ref. 13) and do not change 
the expressions found above for f and M. 
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