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It is stated that thermal action of a concentrated energy flux (CEF) with specific power lo5-10' 
W/cm2 on a metal gives rise to thermal oscillations of the surface temperature and of the vapor- 
cloud density near the metal surface. Equations for the frequency and amplitude of the self- 
oscillations are obtained and the calculated and experimental data are compared. It is shown that 
this effect is a characteristic property of heating of matter by a CEF and is due to the screening of 
the CEF by the vapor of the material and to the instability of the free laminar outflow of the vapor. 

PACS numbers: 44.50. + f, 79.20.Ds, 68.40. + e 

INTRODUCTION 

The action of a concentrated energy flux (CEF) on met- 
als produces a host of interesting and meaningful physical 
effects. Some of these phenomena, which are directly con- 
nected with the thermal action of a beam on a metal, i.e., 
with production of a temperature field in the latter, have not 
yet been sufficiently well studied. This has been pointed out 
in the survey by Bunkin and Tribel'skii.' 

It is known24 that screening of a beam by the matter 
evaporated from the surface of a substance plays a substan- 
tial role in the heating process. It was found that under cer- 
tain condition this screening excites self-~scillations.~-~ 

Thus, when a metal is heated by time-invariant CEF 
larger than a certain critical value, the character of the vari- 
ation of the metal surface temperature differs substantially 
from the usual one: it does not tend to be constant but fluc- 
tuates about a stationary value. This is due to the onset of 
self-oscillations of the metal temperature and of the density 
of its vapor produced in the course of the heating. The self- 
oscillation mechanism consists in screening of the CEF by 
vapor of the material and in instability of the laminar free 
outflow of the vapor from the heating zone. The excitation 
threshold, amplitude, and frequency of the self-oscillations 
depend on the energy-flux parameters, on the thermophysi- 
cal properties of the metal, on the gas-dynamic properties of 
its vapor, and on the interaction of the energy flux with the 
vapor. 

Since the temperature field determines the thermophy- 
sical processes in the target (melting, evaporation, hydrody- 
namic phenomena in the melt, and others), study of the be- 
havior of the self-excitation of the temperature-field 
oscillations allow us to examine the physics of these pro- 
cesses from a qualitatively new viewpoint. This leads, in par- 
ticular, to the conclusion that there exist resonant "stab- 
bing" regimes, which were observed in experiment in the 
case of an electron beam. 

1. FORMULATION OF PROBLEM AND BASIC PHYSICAL 
ASSUMPTIONS 

A number of experimental investigations of the thermal 
action on metals by a CEF (electron beam,4-8 laser beam9-") 
with specific power lo5-lo7 W/cm2 have shown the follow- 

ing: (a) If the CEF is constant in time, oscillations are pro- 
duced in the physical parameters that describe the beam + 
metal system, viz., the vapor flux, the intensity of the optical 
radiation, electron emission from the beam-action zone, and 
others. (b) A critical value of the CEF exists for the excitation 
of the oscillations. The actual critical value depends on the 
type of metal and on the beam parameters. This behavior is 
typical of self-oscillating systems.I2 

We make the following assumptions. The motion of the 
vapor-melt and melt-solid phase boundaries is due to the 
melting and evaporation of the material. We neglect them in 
comparison with the beam-energy dissipation by heat con- 
duction (in other words, we introduce an effective heat-con- 
duction coefficient that takes into account all the mecha- 
nisms whereby heat is transferred out of the 
beam-interaction region). 

We locate the origin on the matter-vapor interface and 
direct the z axis counter to the motion of the beam particles. 
We consider the kinetics of the vapor only in the half-space 
z > 0 (see Fig. 1). 

The intensity of the interaction of the beam particles 
with the vapor at an arbitrary point of the half-space z > 0 is 
proportional to the vapor density at this point. Since the 
vapor density is a maximum at the target surface (near the 

FIG. 1 .  
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beam spot) and tends to zero on the periphery, we can single 
out a near-surface region that makes a substantially larger 
contribution to the interaction of the beam with the vapor 
than the remainder of the half-space. (It is shown in the Ap- 
pendix that the "size" of the vapor cloud is S z  10R, where R 
is the beam radius.) 

The size of the vapor cloud is - 1-lo-' cm. The ther- 
mal velocity of the vapor atoms at temperatures on the order 
of 5000 K is lo5-lo6 cm/sec. The relaxation time of the va- 
por density in the vapor cloud is then longer than the 

sec. Consequently the beam-particle distribution func- 
tion has time to attune itself to the vapor-density distribu- 
tion. 

We denote by - El(z) the beam energy flux through a 
unit area in a unit time along the z axis at z > 0. We define a 
flux energy absorption coefficient a ,  (hereafter simply "ab- 
sorption coefficient") and a coefficient a, of the beam-parti- 
cle-flux scattering (hereafter simply "scattering coefficient") 
by the equations 

dE,ldz=--a,,p (t, r)  E,, (1) 

dIi/dz=-acc,p (t, r)  I,, (2) 

where I, is the beam-particle flux andp(t,r) is the vapor den- 
sity. Then 

The coefficients a ,  and a, depend on the parameters that 
describe the incident beam (energy for electrons, wavelength 
for photons) and the parameters that describe the state of the 
vapor cloud (density, temperature, degree of ionization, 
etc.). 

We define on the basis of Eq. (4) the defocusing Rs of 
the beam on account of scattering (see Fig. 1): 

S 

J j  [ ~ X P  ( -  j ag( t ,  r) b ) ]  do=zR2, 
Qs o 

Ps= {x2+yZdRs2; z=O). 

With allowance for all the assumptions, the equation 
system that describes the target heating takes the form 

r= {x2+y2dD2;, -L<z<O), Ta=T(tl 0, 0, 0), T(0, r) =To, 

T (t, xa+y2=D2; z) =T (t, x,, y, -L) =To, 
(7) 

where T is the temperature of the metallic target, cs the 
specific heat, p, the density, A, the thermal conductivity, D 
the target radius, L the target thickness,f, ( T )  a function that 
determines the heat extraction from the metal surface, k (T, , 
E,(O)) < 1 the coefficient of energy absorption by the surface, 
which takes into account the reflection of the incident beam 
from the surface, and E, the energy flux density produced by 
the energy source (see Fig. 1). 

A CEF having an intensity lo5-10' W/cm2 produces a 
temperature 5 x lo3 K in the beam-action zone. At these 
temperatures the saturated vapor density is such that the 
atom mean free path in the vapor becomes smaller than the 
size of the beam spot (the latter is usually 10- ' to cm). 
The interaction of the atoms with one another must there- 
fore be taken into account in the gasdynamics of the vapor,' 
i.e., a gas jet escapes from the spot where the beam acts and 
produces a vapor cloud (flare) near the metal surface. 

Free laminar escape of gas becomes unstable at small 
Reynolds numbers.I3 Stochastic density and velocity pulsa- 
tions are present in the gas jet, and the most energetic of 
them are pulsations with a scale determined by the size of the 
entire flux as a whole.14 In this case this is the size of the 
vapor cloud. 

The use of gasdynamic equations that describe the in- 
stability of the gas cloud and its evolution is rather compli- 
cated, for an important role is played in this case the fact that 
the motion is three-dimensional.15 

We use the following approach to the description of the 
vapor kinetics. For instability to occur in the freely escaping 
vapor the Reynolds number must be at least larger than uni- 
ty: 

vpSlq>l, (11) 

where v is the velocity and 7 is the viscosity of the vapor. We 
assume that the pulsation is produced within a time r, and 
vanishes after a time T, , where 

.&"pS2/q, T ~ ~ S / U .  (I3) 

The dependence of the vapor stream near the target sur- 
face on its characteristics and on the surface temperature can 
be written in various forms that take into account both the 
free outflow of the vapor as well as its diffusion over the 
periphery. We have chosen a relation [Eq. (15)] shown by 
analysis to lead to agreement with the experimental data 
without a rigorous allowance for other important factors 
such as development of turbulence of the vapor stream, con- 
densation, etc., which would complicate without justifica- 
tion the mathematical description of the phenomenon. 

Assume that 

j= (0, 0, i), 
71(Ts) dp j=n (T. (t-T) ) v (T,) - -- 

p dz ' 

Here T, is the surface temperature at the beam spot, n(T) is 
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the saturated vapor pressure, An and Bn are constants deter- 
mined from the temperature dependence of the saturated- 
vapor pressure, and u(T,) the thermal velocity of the vapor 
atom in the surface region. 

The first term in (15) corresponds to the limiting case of 
outflow of a rarefied gas, and the second to the limiting case 
of self-diffusion of a dense gas. We assume that (15) yields a 
good approximation also in the intermediate region. The sat- 
isfactory agreement between the calculation and the experi- 
mental data justifies this assumption which, generally speak- 
ing, should be corroborated by the gasdynamic equations. 

2. INSTABILITY OF THE HEATING PROCESS 

We assume for simplicity that the coefficients a ,  and a,  
do not depend on the temperature and on the density of the 
vapor, and that the coefficient k (T,, E , )  = 1. Averaging the 
system (5)-(17) over the spatial coordinates, we reduce it to a 
system of two ordinary first-order differential equations: 

dT g 
-=-- 
dt L,Z (T-T,) + Q exp (-cc,pS), (1 8) 

where g is the effective thermal-diffusivity coefficient, Q is 
the effective heating intensity, and L, is the effective "ther- 
mal" length. For sufficiently large t we can write 

n ( T )  -n (T  ( t - z )  ) z ~ d n l d t .  (20) 
Let us test the solution (18)-(20) for stability. From the 

linear theory of stability we obtain the criterion for the oscil- 
lation excitation: 

Here Te ,p, = (nTe ) constitute the stationary solution of the 
system (18), (19). 

No oscillations are excited if the vapor absorbs very 
little of the incident-beam energy, a ,  + 0, or if the viscosity 
is very high, 77-CC. Since the saturated vapor density n(T,) 
decreases with decreasing temperature T, much more rapid- 
ly than the viscosity v(T, ) and the velocity u(Te ), there exists 
a value Tb such that at T, < Tb 

Slv,-p,s=/q,>O. (22) 

It follows from (21) and (22) that no oscillations are ex- 
cited at T, < Tb . It is easy to verify that the equality T, = Tb 
corresponds to an atom-vapor mean free path of the order of 
S, so that the behavior of the viscosity for T, < Tb becomes 
incorrect. Thus the transition to the limit as 7-0 corre- 
sponds to the transition Te+Tb in (21). 

The criterion (21) does not take into account the depen- 
dence of the relaxation time of the temperature in the target, 
(g/L :)-I,  on the frequency of the excited oscillations. To 
take this effect into account we must consider the case when 
the wavelength of the perturbation of the temperature field is 
substantially less than the target thickness. 

Let us consider the stability of the stationary solution of 
the following system of equations: 

We introduce the notation 

Eo 
Hz=a,p,S - exp (-alp$) =a,p,S -- 

AsTse Tse  aTe  32 I z=o 

in the approximation where y> 1 the condition for the oscil- 
lation excitation is 

g[Hz(r-4) (BnlT,e-1)lz>4p, 

and the largest growth rate will be possessed by the mode 

62'=A, exp g Hz(y-1) - - 1 t { I  : ) I Z  

Thus, the effective thermal length decreases far beyond 
the self-oscillation excitation threshold (at E, much larger 
than the threshold value, and accordingly at large T, > 1 and 
~ $ 1 ) :  

L,= [H2(y-I )  (B,IT,,-I)]-', (23) 

and the oscillations of the target temperature field become 
localized near the region where the material becomes heated 
by the beam. 

3. SELF-OSCILLATIONS IN A BEAM + EVAPORATING 
MATTER (VAPOR) + SUBSTANCE SYSTEM 

We shall calculate the amplitude and frequency of the 
self-oscillations by starting from the system (18, 19). After a 
number of approximations that make the calculations less 
cumbersome, we obtain 

h , / d t = [  (7-1) h+p] xz+ [ (7-1) H - p ] ~ i  

-p1,~2+pxi~+pxZx,~-px,~, (25) 

where 

p ( t )  =P.+P.x, ( t ) ,  n ( t )  =pe-bexz ( 0 ,  
oo2=p(H+h), E= [(y-1)  H-h-p]loo. 

From the theorem for bifurcation in the vicinity of a complex 
single focus it follows that the system (24), (25) has a stable 
limit cycle at E > 0. l 6  The parameter E is equal to the ratio of 
the growth rate of the oscillation amplitude to the cyclic 
frequency of the oscillations near the equilibrium position. If 
E( 1, the self-oscillations are close to harmonic. At E> 1 re- 
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laxation oscillation set in. 
For the case E <  1 we have from (24) and (25) in the first- 

order approximation of the averaging method1' 

h 00 
p (t) =p, - - p,A, cos met + - p,A, sin met, 

H  H  
n ( t )  =p.+p,A, cos met, 

We shall analyze the relaxation oscillations by the 
method described in Ref. 18. At E )  1 the variable x,  is fast 
andx, is slow. The variation ofx, is determined by the linear 
terms near the origin and by the cubic ones at appreciable 
distances. Since the existence of a limit cycle at E > 0 has been 
proved, we simplify the calculations by neglecting the qua- 
dratic terms in the right-hand side of (25). In the discontin- 
uous-oscillations approximation the period of the oscilla- 
tions at h ) H  is 

Tr l~ l .6h- ' ,  

and the amplitudes are 

~ 2 ~ = - x ~ ~ i , , ~ 0 . 6 7  (Hlh)  ( yH/p )  %, 

~lrnar=-~imin~l,2  HIP) 'Iz. 

Similarly, at H)h ,  

T,,xH-'(Hlh)" ln(H/h)'", 

x ~ , , - = - x ~ ~ ~ , ~ O . ~  (H/h)  ( yhlp) I h ,  

~ , - = - ~ , , ~ , = 0 . 2 5  (yH2/ph)'". 

In the results we must take into account the dependence 
of the "thermal" effective length on the frequency of the 
exciting oscillations via Eq. (23). 

4. DISCUSSION OF RESULTS 

Calculation of the frequency of the self-oscillations by 
means of the derived equations leads to satisfactory agree- 
ment with the experimental  result^.^^^^'^^^' The frequencies 
of the self-oscillations range from lo2 to lo4 Hz and the am- 
plitudes are in the range (1-5) x 10, K. 

We represent the physical mechanism of the self-oscil- 
lations in the following manner. For each fixed value of the 
CEF, the screening of the beam by the evaporating matter 
makes the stationary temperature T, lower than its maxi- 
mum value T,,, in the absence of screening. Assume that the 
temperature in the beam spot has increased on account of the 
CEF fluctuations. The dissipative heat-extraction processes 
then cause the surface temperature to tend to a stationary 
value T, . Since the surface temperature has risen, the evapo- 
ration of matter from the surface increases. The change of 
the density of the vapor clouds is determined by the competi- 
tion of two processes: the rate of accumulation of vapor in 
the vapor and the rate of spreading of the cloud through 
outflow of the vapor over the periphery. Let the stochastic 
pulsation of the vapor cloud be such that during the positive 

surface temperature rise the vapor-cloud density becomes so 
much smaller than the stationary valuep, that the increase 
of the intensity of heating the target matter as a result of the 
decrease of the screening of the beam by the vapor will pre- 
dominate over the rate of heat dissipation. The spot-tem- 
perature rise will increase, i.e., the stationary state will be- 
come unstable. The amplitude of the excited oscillations is 
limited: the temperature cannot exceed T,,, ; with increasing 
vapor density the rate of spreading increases and the screen- 
ing increases. 

Since the vapor flow, electron emission, optical-radi- 
ation emission from the action zone, etc., depend on the sur- 
face temperature of the material, oscillations of the spot tem- 
perature cause these quantities likewise to oscillate. 

Equations (6)  and (8) correspond to heating of the target 
material by a surface heat source (the heating of the metal by 
a laser or by an electron beam). The approach described, 
however, is valid also in the case of heating by a three-dimen- 
sional source. One can likewise not exclude in principle the 
dependences of the coefficients a , ,  a,, and k on the vapor 
temperature and density, or on the form of the CEF. 

CONCLUSION 

The existence of self-oscillations of the temperature of a 
substance and of its vapor is a characteristic property of 
heating of a substance by a concentrated energy flux. From 
our point of view it is ofinterest to develop further the results 
of the present paper along the following directions. 

Analysis of the influence of the self-oscillations on the 
shape of the penetration zone, i.e., clarification of the role of 
the self-oscillations in the existence of the "stabbing" 
zone. This calls for consideration of spatially three-dimen- 
sional (two-dimensional) heat conduction equations for solid 
and liquid phases in the target material (the Stefan problem), 
and for the use of the mathematical approach proposed in 
the present paper to describe the interaction between the 
vapor and the beam and of the gasdynamics of the vapor. 

Analysis of the influence of self-oscillations on the mo- 
tion of the melt-vapor phase boundary, including a study of 
the influence of the plasma in the vapor, of condensation in 
the vapor, and others on the parameters of the self-oscilla- 
tions, on the basis of the gasdynamic equations and in final 
analysis of the kinetic microscopic equations. It is appropri- 
ate to note here that in the vapor cloud the length of the 
perturbation wave that has the largest growth rate is approx- 
imately equal to the size of the cloud, since the beam particle 
interacts on its way to the surface of the material with the 
entire thickness of the vapor, and consequently short-wave 
perturbations (shorter than the size of the cloud) will not be 
effective. 

Generally speaking, it is of interest to investigate the 
effect of self-oscillations on physical phenomena that are 
connected with the effectiveness of heat transfer from the 
beam-action region. In this case one can expect formation in 
the target material of a spatial region that has some physical 
property predominantly in the beam direction, as is the case 
in the "stabbing" effect. 
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APPENDIX 

Let the evaporation region be a circle of radius R. We 
obtain the distribution of the vapor density on the z axis, 
using the cosine law. Let the temperature of the surface in 
the spot be constant and equal to T. The vapor mass flux 
along the z axis is then 

Consequently 

j ( z ) = n ( T ) v ( T ) H V ( R 2 + z 2 ) .  

Assuming that u, z v ( T ) ,  we have 

p ( z )  = n ( T )  R21 ( R 2 + z 2 ) .  

Then 
1 OR 

m, = p ( 2 )  dz=Rn ( T )  arctg 10, 
0 

The greatest effect on the beam is thus exerted by a vapor 
"column" approximately 10 R high. 
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