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The radiative mechanism for the relaxation of two-level atoms is discussed, using the Keldysh 
technique. It is shown that an equilibrium state is established in strong fields as a result of 
radiative transitions between quasi-energy states and that complete saturation is not reached. 
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To describe two-level atoms in an external field one 
usually uses the density-matrix formalism proposed by 
Lamb1 together with a specified relaxation mechanism. Ra- 
diation damping is one of the possible relaxation mecha- 
nisms, and, although collisions provide the principal relaxa- 
tion mechanism for real gases, it is also important to have a 
consistent treatment of radiative processes. However, as will 
be shown below, the standard density-matrix formalism, in 
which radiative processes are taken into account by intro- 
ducing the width yo of the upper level, is valid only for rather 
weak fields: 

where wo is the transition frequency, d is the dipole-moment 
matrix element between the upper and lower levels, f i  is 
Planck's constant, c is the velocity of light, and S is the fre- 
quency mismatch. For stronger fields one must take account 
of the splitting of the atomic levels in the external alternating 
field, for the transition probability between the levels de- 
pends on that splitting. 

In this paper we give a systematic treatment of the inter- 
action of two-level atoms with a quantized electromagnetic 
field within the framework of the Keldysh diagram tech- 
n i q ~ e ~ . ~  for the cases of weak and strong fields. In the linear 
approximation in the gas density, the iower atomic level can 
be described by a nonrelativistic field p, and the upper level, 
by a nonrelativistic vector fieldx, . In the dipole approxima- 
tion, the interaction with the field is described by the Hamil- 
tonian 

As was shown in Ref. 4, the diagram expressions in the Kel- 
dysh technique for the equations for the Green's functions in 
the presence of the average field or of a Bose condensate are 
the same as those in the Belyaev technique5s6 for a Bose liq- 
uid. Neglecting the renormalization of the vertices and limit- 
ing ourselves to the resonance approximation, we obtain the 
set of diagram equations shown in Fig. 1 for the Green's 
functions in the Keldysh technique. In the figure all the 
heavy lines correspond to exact Green's functions, and the 
thin lines to free Green's functions. The Green's function for 
the lower atomic level is represented graphically by an ordi- 
nary arrow, that for the upper level, by a double arrow, that 
for the electromagnetic field in the A, = 0 gauge, by a dashed 
line, and that for the average field, by a wavy line with an 
asterisk at the end. The Green's function for the polarization 

where the T, are time ordered along the double contour K 
(Ref. 2) are represented by "forked" arrows. We shall limit 
ourselves to finding only stationary and spatially uniform 
solutions, for which it is convenient to work in the Fourier 
representation, since then all the Green's functions will de- 
pend only on the differences between the arguments. Such 
solutions exist in the resonance approximation when the ex- 
ternal field is a traveling wave, or when the atomic system is 
considered in a region that is smaller than the wavelength of 
the field. In what follows, therefore, we shall consider only 
plane monochromatic waves of the form 

8 0 j = 2 8 , ( ~ ,  k )  cos (at-kr) , &oj=2P;oj(a) cos (a t ) .  

In the case of a plane wave, only one component of the vector 
field of the upper level takes part in the interaction with the 
external electromagnetic field, so that in the case of a plane 
wave we can replace the vector Green's function for the up- 
per level by the Green's function for a scalar field. After all 
these simplifications we can obtain an explicit solution of the 
diagram equations without considering the kinetic equation, 
which would have to be taken into account in the case of 
fields of a more general type. It is known that the renormal- 
ization of the retarded electromagnetic Green's function D 
in the medium reduces to taking the dielectric constant x(w) 
into account,' and the dielectric constant can be found from 
the equation for the average field. The complete electromag- 
netic Green's function therefore has the following form: 

) ( a ' ~  (a) -k2+i0 sign w )  -', 

DijF (a ,  k )  =Di,++DijW= (DljR-DijA) (1+2i?(8a) ) sign a, 

where 2 (w) is the photon distribution function in the medium 
(here and below we use for all the intermediate calculations 
units in which f i  = c = 1). 

Generally speaking, it is necessary to solve the problem 
of finding the Green's functions for atoms with arbitrary 
values of x(w) and 2 (w) and then to find x(w) and 2 (w) from 
the last two diagram equations. In this manner we can obtain 
self-consistent equations for x(w)  and a(w), which can be 
easily solved for the region of transparency, where 
1 %  - 1 14 1. We can then neglect the deviation of x(w) from 
unity in calculating the Green's functions for the atoms. In 
that case, as will be shown below, the calculation yields 
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FIG. 1 .  A set of diagram equations for the interaction of atoms with a 
field. The photon Green's functions in the mass operators are denoted by 
solid lines. 

-= L+ :- 

where n is the gas density and 8 ( w )  is the average field. The 
condition Ix - 11 4 1 is therefore satisfied for rarefied gases 
for which nd ' 4  yo, or far from the resonance where nd ' 4  16 1, 
or for sufficiently strong fields 

[a, ( T O +  16 1 ) I 5 ,  I x-11 -nd2/oO-naoS<l ,  

where a, is the characteristic size of an atom. The last case is 
the most interesting, since in weak fields the approach under 
consideration is equivalent to the standard density-matrix 
formalism and yields no new results. In calculating the 
Green's functions for the atoms in the region of transparen- 
cy, therefore, we may use a free Green's function for the 
electromagnetic field with a Planck distribution for the pho- 
tons that arise from interactions with the thermostat. Taking 
the motion of the atoms into account reduces, in the density 
matrix formalism, to correcting 6 for the Doppler effect (if 
recoil is neglected), so it is sufficient to obtain a solution for 
the case in which the atoms are stationary in the reference 
system of the traveling wave and then to take the nonuni- 
form broadening into account. 

In the Keldysh technique, the Green's function for the 
lower level G and that for the upper level F have a matrix 
representation, for example 

where GA and GR are the advanced and retarded Green's 
functions and GF = G + + G - . ' v 3  The mass operators M ,  
and M2 corresponding to the diagrams of Fig. 2 can also be 
represented by matrices. In the first approximation one can 
neglect the Lamb shift and analyze the imaginary mass oper- 
ators in the form 

Now we have to find a solution of the algebraic set of 
diagram equations for arbitrary values of y, ,  y2 , f ,  andg and 
calculate the mass operators from it; this enables us to obtain 
self-consistent equations for y, ,  y2 , f ,  and g, whose solution 
enables us to find the nonlinear response of the medium to 
the average field. In the presence of radiation damping, the 
stationary solution of the algebraic set of diagram equations 

Fig. 2. The mass operators. 
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does not depend on the free distribution functions that occur 
in G c and F c .  The solution of the diagram equations for F~ 
and GR are as follows: 

E'+ S f  iy ,  (E1+6)  
FR ( E )  = 

[ ~ ' + 6 + i i ,  (E'+6) ] [E1+iy,(E') ]-a ' 

G" ( E )  = 
,E-6+iy, (E-6)  

[E-6+iyz(E-6)  ] [E+iyi ( E )  ] -a ' 

With accuracy up to terms of the order of ydw, and 
IS I/w,, these equations reduce to the form 

The solutions for FF and GF are as follows: 

- y2 (E')  [ ( E f + 6 )  '+ (71 ( E f ; t 6 ) ) 2 ] f  ( E )  +ayr ( E ' f  6 )  g  ( E - o )  
r2 (E') [ (Er+6)  '+ ( Y I  ( E f + 6 )  )'I +a71 ( E f f  6 )  

- - y, ( E )  [ (E-6)  '+ (7 ,  (E-G))'Ig(E) (E-6)  f ( E + o )  . 
7 ,  ( E )  [ (E-s)'+ ( y 2 ( E - 6 )  ) ' I + a y ~ ( E - 6 )  

In calculating the mass operators with these Green's func- 
tions we have to consider the problem of cutting off the inte- 
grals that arise in the calculation, since the interaction is 
treated in terms of a derivative and the integrals are strongly 
divergent. The dipole approximation is valid only when 
w 5c/ao, where a, is the characteristic dimension of the 
atom, so all the integrals must be cut off at the frequency 
a,,, -c/a,. As an example, let us show the calculation of 
the width of the upper level in the absence of an external 
field, in which, under the condition d-ea,, where e is the 
electron charge, the integral is independent of w,,, up to 
terms of the order of x( 1 : 

-,a= 
yo my w3dcJ =x 5 d o -  y  oo3+30ooL 

= ; J ( - o 0 ) + y 2  00' n 02+y2  . 
-"a -rnma. 

The ratio of the second term to the first in the expression for 
y is of the order yw,,,/w; -x(l, so y = y,(l + 0 (x)) and 
with good accuracy is independent of w,,, . Since the two- 
level atoms are treated only in fields dc<w,, the integrals are 
calculated in the external field with the same accuracy. 

Let us consider the explicit form of the self-consistency 
conditions, omitting the arguments for brevity: 

2 ( l f  d+g+2ag)  I+ d+ g 

From the solution of the diagram equations (1) we can ex- 
press f and g in terms offand g and obtain a set of integral 
equations for 7 and g. Having chosen the left-hand sides of 
the self-consistency conditions (2) at the poles of the Green's 
functions and having calculated the integrals, which are ex- 
pressed in terms of the quantitiesfand g at the poles of the 
Green's functions, we obtain a set of eight algebraic equa- 
tions for the occupation numbers and widths. In the pres- 
ence of the average field of frequency w, however, the part 
played by the thermal photons with the distribution function 
2 (w)g 1 is insignificant, so we shall first examine the solution 
of the self-consistency equations (2) for 2 = 0 and then find 
the correction due to the thermal photons. 

It is easy to see that when 2 = 0 the solution of the self- 
consistency conditions yields f = 0 and g = - 1. There re- 
main two equations for y, and y,, from which it is evident 
that y , ~  yo and y, =: - In the linear approximation in 
the occupation numbers, therefore, Eqs. (1) for the occupa- 
tion numbersjand g simplify as follows: 

a y ,  ( E f + 6 )  f"(L;)=-  -- 
y2 ( E ' )  ( E f + 6 )  ' 

We can set y, = 0 and y, = yo in the expressions for the 
retarded Green's functions for the integration. The mass op- 
erators at energies corresponding to the poles of the retarded 
Green's functions are calculated using the residues of the 
poles of the retarded Green's functions GR and FR with ac- 
curacy to terms of the order ofx( 1. After the integration we 
obtain the self-consistency conditions in the following form: 
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(in the resonance approximation we neglect transitions with 
widths 

On substituting the expression for y, into the first equation 
we obtain an equation  for?(^ ). Taking the values of the func- 
t i o n ? ( ~ )  at the poles of the retarded Green's function, we 
obtain the following relation between?+ and?-: 

It is also easy to find from (3) that 

Calculating the diagrams in the equation for the average 
field yields the following values for the polarization: 

After finding the occupation numbers we can neglect the 
difference between y, and yo, as well as that between y,  and 
zero. The occupation numbers are obtained from the follow- 
ing equation for the total number of particles: 

Having found the expressions for f+ ,?-, g + , and g - in the 
linear approximation in s/w from the above equations and 
Eqs. (4) and (5), we obtain the following expression for the 
polarization from (6): 

To simplify the notation we introduce the quantities 8, and 
$, defined as follows: 

In fields %'(%',, Eq. (7) for the polarization reduces to a 
formula that can easily be obtained in the density-matrix 
formalism. However, the expression for the polarization is 
substantially different in fields such that d%,<d% gtiw,. Let 
us consider in more detail why Eq. (7) differs from the stan- 
dard density-matrix formula. For this purpose we depict the 
structure of the levels of a two-level atom in an external field 
in Fig. 3, using the solution (1) found above. As should be 
expected on the basis of general considerations, the spec- 
trum of the atom in an external field has a quasi-energy form 
and consists of two harmonics corresponding to the quasi- 

FIG. 3. Level structure of a two-level atom: a-levels of the atom in the 
absence of an external field; b, c- quasi-energy levels corresponding to 
the quasi-energies 6 /2 + s. A dashed arrow corresponds to a transition 
from the state of quasi-energy S /2 + s to a state of quasi-energy 6 /Z - s; 
the arrow Cirected downward (upward) corresponds to the factor d + 1 
(d ), where d is the number of thermal photons. 

energies S /2 s. However, the numbers of particles in dif- 
ferent harmonics corresponding to the same quasi-energy 
are different. The number n z 2  of particles on each quasi- 
energy harmonic is shown at the right of that harmonic in 
Fig. 3. These numbers may be expressed as follows in terms 
of the?, and g , : 

As is evident from Eq. (5), the expressions for the occupation 
numbers simplify only in sufficiently strong fields % > % ,, 
since?+ zg,  , and one can even speak of a pair of quasi- 
energy levels, each of which is characterized by its own occu- 
pation number?, . As before, however, different harmonics 
of the same quasi-energy level have different occupation 
numbers. The self-consistency condition is a balance condi- 
tion by which transitions from the states?+ a n d L  depicted 
in Fig. 3 by arrows are compensated by transitions fromy- 
to ?+. Only in the limit %'> %, do both harmonics of the 
quasi-energy level have the same occupation number 
7 ,  /2 = n,+ = n? , while the self-consistency condition re- 
duces to the form 

Because the transition energies between the split levels 
are unequal, the transition probabilities between them are 
also unequal; as a result, the occupation numbers?+ and?- 
of these levels are unequal and this results in the appearance 
of the polarization 

We note that for any relaxation mechanism of width r in 
sufficiently strong fields, 

The main contribution to the polarization will come from 
radiative processes, and the simple expression (8) for the po- 
larization will be valid. The nonuniform broadening can be 
treated in the same way as in the density-matrix formalism, 
but in the case of a strong field it can be simply neglected. 
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Now let us consider the contribution to the polarization 
from thermal photons with the arbitrary distribution func- 
tion d (w)( 1. For simplicity we shall consider only the case in 
which 16 I % yo and $9 % $9 ,, for in that case we can simplify the 
Green's functions and obtain the following self-consistency 
condition in the linear approximation in the gas density in 
place of Eq. (4): 

This self-consistency condition is also the balance condition 
for transitions between quasi-energy levels, the factors 2 + 1 
and d corresponding, respectively, to the transitions indicat- 
ed in Fig. 3 by the downward- and upward-directed dashed 
arrows. The factors (8 f 2s)' are, respectively, proportional 
to the probability that the corresponding quasi-energy level 
is the upper or lower harmonic of the level involved in the 
transition. 

Let us consider the contribution of thermal photons to 
the polarization for the case of a strong field with $9) $,. It 
is easy to find from Eq. (6) that in this case 

3nd2 
P ( o )  = - [ I + $ ( o + 2 s )  +$(a-2s )  1- '&(a) ,  

t i o  

a' 
S = - 

t i '  

For the case $ , < $9 g F?, we similarly find that 

It is evident from these formulas that if the photon distribu- 
tion function 2 (a) is small (d ( w ) ( l )  and has the form of 
Planck's distribution for the temperature kT(fio,, where k 
is Boltzmann's constant, it will not contribute significantly 
to the polarization and will not lead to a Gibbs distribution 
for the quasi-energies: 

fio 

In concluding, let us consider a simple derivation of the 
polarization equation (8) for the case of resonance in a fairly 
strong field $9) $,. The complete wave function of the two- 
level atom breaks up into eigenfucntions 11) and (2)  of the 
internal Hamiltonian. The Schrodinger equation for the sta- 
tionary atom in the external field has the following form in 
the resonance approximation: 

On transforming to the functions 2112c,  = c ,  f c,, this 

equation breaks up into two independent equations with the 
energies + d$9, and the average value of the dipole moment 
in the states $ + , for which c ,  = c,, is - 

<$, I $1 $*)=Fd cos ( m o t ) .  
To describe the stationary state of a gas of two-level atoms 
one must know the number?+ of atoms in the state $+ and 
the number?- of atoms in the state $-; then the stationary 
polarization of the gas is 

P ( t )  = ( f  - - f + )  d  cos (mot).  
This equation is equivalent to Eq. (6) ,  which was obtained 
above for the polarization. The relation betweenj; andl- in 
the stationary case can be obtained from the balance condi- - 
tion f+r+ - = f-T- +, where r+ - and r- + are the proba- 
bilities for the transitions $++$- and $--+$+, respective- 
ly. Let us consider the radiative damping mechanism in 
which the widths of the levels are proportional to the third 
power of their separation. As is evident from Fig. 3, the qua- 
si-energy states $* correspond to two levels that are shifted 
from the corresponding levels of the unperturbed atom by 
the respective amounts -t d$9. A transition between two 
quasi-stationary states corresponds to the transition 
between the upper harmonic of the first quasi-energy level 
and the lower harmonic of the second quasi-energy level, 
since for radiative transitions the probability for such a pro- 
cess is proportional to 

Knowing the total number?+ +I- of atoms in the gas and 
the ratio f- 1'5; = r+ -/r- +, it is easy to find the following 
expression for the polarization of the medium: 

( A o 0 + 2 M )  3 -  (Am,-2a') 3d2n 
P ( t )  =nd cos (mot)  - 8 ( t ) .  

(fio0+2&) 3+ ( t ioo -2d8)  ti00 
(9)  

Equation (9)  agrees with Eq. (8), which was obtained earlier 
for the polarization in the case of a strong field. However, 
Eq. (9)  cannot be obtained using the density-matrix formal- 
ism, since in that formalism one considers transitions 
between levels that are not split and have a constant width 
yo, while the correction to the polarization obtained here is 
based on the behavior of transitions between split levels. 

Thus, proper allowance for radiative processes leads to 
the simple expression (9)  for the polarization in strong fields 
and to the conclusion that complete saturation is not 
reached in strong fields. 

The author thanks Academician L. V. Keldysh for for- 
mulating the problem and for fruitful discussions. 
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