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The quasiclassical perturbation theory is considered for the discrete spectrum when the variables 
can be separated in the unperturbed system. The analysis is largely confined to classically degen- 
erate systems. Approximate wave functions, energy levels, and matrix elements of physical quan- 
tities are found. Highly-excited states of the hydrogen atom in a magnetic field are examined as a 
specific application of the theory. The density of states and the polarizability of this system are 
investigated in the case where the classical perturbation theory is valid. It is shown that the 
hydrogen atom exhibits paraelectric properties in the longitudinal direction and dielectric prop- 
erties in the transverse direction. 

PACS numbers: 03.65.Sq, 31.15. + q, 31.50. + w, 32.60. + i 
The procedure involving averaging over fast variables is 

well known in classical mechanics. It is used when the unper- 
turbed system has separable variables. The general classical 
perturbation theory was developed by Born and Paulil with 
allowance for degeneracy in frequency. When a system is 
classically nondegenerate, the action variables of the unper- 
turbed Hamiltonian are adiabatic invariants, i.e., they are 
approximately conserved when the perturbation is turned on 
(see, for example, Ref. 2). In the case of degeneracy, not all 
the action variables are adiabatic invariants, and some of 
them vary slowly. The conjugate angle variables are also 
slowly varying. If we average the Hamiltonian over the fast 
angle variables, we obtain the Hamiltonian in the slow varia- 
bles, i.e., the problem is reduced. A rigorous justification of 
the averaging procedure has been given by Bogolyubov and 
Mitr~pol'ski'i.~ 

The present paper is devoted to the development of a 
perturbation theory for highly -excited quantum-mechanical 
states in the discrete spectrum. Classically degenerate sys- 
tems will be of primary interest. Approximate wave func- 
tions, energy levels, and matrix elements of physical quanti- 
ties will be found. 

The Rydberg atom in an external field is the most inter- 
esting object to which general methods can be applied. High- 
ly-excited atoms with n - 30-50 in an external magnetic field 
(quadratic Zeeman effect) have been investigated experimen- 
tally and theoretically by Zimmerman et a1.4.5 and Delande 
and Gay.6 They found that variation of the magnetic field 
was accompanied by the quasicrossing of levels, but level 
repulsion was very small and decreased with increasing n. 
Additional symmetry was therefore proposed for the prob- 
lem.4" Solov'ev7 applied classical perturbation theory to the 
problem and found a new adiabatic invariant and the energy 
levels. The spectrum of the hydrogen atom with allowance 
for the quadratic Zeeman effect was subsequently investigat- 
ed by various methods by H e r r i ~ k , ~  Bergou et uI . ,~  ') and 
Delos et a1.12 Bergou et al.9 noted the absence of the linear 
Stark effects for all states except for roughly one-third of 
states with m/n < 1 / 6 .  

However, the wave functions of the new states and their 
physical characteristics were not determined. It will be 
shown below that the average potential energy of the pertur- 

bation is a new constant of motion, and expressions will be 
found for the quasiclassical wave functions and polarizabili- 
ties of states. 

1. FORMULATION OF THE PROBLEM. ONE-DIMENSIONAL 
CASE 

We shall take the Hamiltonian for the system in the 
form of the sum 

where the variables in Ho are separable and V is small in 
comparison with Ho. Let us introduce the action and angle 
variables for the Hamiltonian Ho. They will be denoted by 
n,, n,, ... , n, and w,, w,, ... , ws. The wave functions 
$n,,n2, ,., ,, corresponding to integers n,, n,, ... , n, have the 
simple form 

812 inw .  
% = ( 2 3 t ) -  e , n=n,, n,, . . . , n,, w=w,, w,,. . , w,. (2) 

The Schrodinger equation is then conveniently written in the 
n-representation: 

where V:' are the matrix elements of the perturbation, c, are 
the amplitudes of the corresponding states, and E 2) are the 
energy levels of the Hamiltonian H,. 

For highly-excited states in which all the quantum 
numbers ni are large, the perturbation matrix elements are 
equal to the Fourier components of the classical potential to 
within l/n: 

1 
v n n V  = -J v (w) eivw dw, 

where vi = ni - nj. It is implied that the function V is ex- 
pressed in terms of the action and angle variables. We shall 
now develop a method for finding the amplitudes c, when 
V<E. 

We begin with a simple one-dimensional case. We shall 
suppose that the state is a wave packet in n-space with its 
center at no. We now introduce the new variable v = n - no 
and write c, instead of cn0 + , assuming that v<no. Equation 
(3)  then assumes the much simpler form 
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where w = dE f'/dn is the frequency of the classical motion. 
To solve (5), it is convenient to use the w-representation in 
which (5) assumes the form 

This has the following elementary solution: 

0 

By definition, +h(w) is a periodic function of w with period 21r. 
The periodicity condition imposes a restriction on the possi- 
ble values of E: 

e=( V>,+lo, 

where the angle brackets indicate averaging over w and I is 
an arbitrary integer that can be set equal to zero, since the 
choice of the center of the packet, no, is arbitrary. The ampli- 
tudes c, can be found with the aid of the inverse Fourier 
transformation 

This expression for the amplitudes c, and the expression for 
the energy 

together provide the complete solution of the above problem 
in the one-dimensional case. It is natural to normalize the 
amplitude c, so that the sum of the squares of its moduli is 
equal to unity. By Parseval's theorem, 

'v 0 

We shall assume henceforth that $(0) = 1. 
We now note that the energy E is determined by the 

average value of the classical perturbation or, in other 
words, by the diagonal matrix element, whatever the value of 
the perturbation-theory parameter V/w, provided 
Vgn@ -E. This result is in agreement with the correspond- 
ing note in Landau and Lifshitz.l0 

It is instructive to consider how all the perturbation- 
theory approximations for the energy tend to zero except the 
first. We begin with the second approximation: 

The numerator in this expression is an even function of v, 
whereas the denominator is an odd function of this variable. 
This ensures that thesum tends to zero to within terms 0 (V/ 
E ). The same argument is valid for any term of even order. 
To see how terms of odd order tend to zero, let us consider 
the third-order contribution 

(1 1) 
The sum in this expression has the form of a contraction and 
can therefore be written in the form of an integral with re- 
spect to w: 

The integrand in this expression is the total derivative of a 
periodic function. The integral is therefore equal to zero. 

These considerations do not, of course, apply to the am- 
plitudes c,, which depend essentially on the perturbation 
theory parameter V/o. In the limiting case where V/w(l, 
the equation given by (8) yields the results of quantum per- 
turbation theory, whereas, for V/w>l, we obtain a wave 
packet of width2' 

Let us now find the next correction to the energy level. 
There are two sources of correction of this kind. Firstly, we 
must take into account the quadratic terms in the expansion 
for the energy E e+, in powers of v. Secondly, we must take 
into account the fact that n and w do not commute in the 
perturbation energy. 

The general form of the Hermitian operator V (w,h) that 
is a periodic function of w with period 21r is: 

k--co 

The matrix elements of this operator are given by the follow- 
ing expression to within l/n: 

The corrected equation for +h(w) is 

We now seek +h in the form $ = +hoeix, where +ho is the solu- 
tion of the zeroth approximation, given by (7). For X ,  we 
obtain the equation 

and the energy correction is 

All the terms in (14) are small in comparison with the phase 
+ho(w) [see Eq. (7)]. Moreover, the last two terms are of the 
order of the quantities V/nw - V/E( 1 and are therefore un- 
important. The first term is of the order of V2/nw2 and, in 
general, it is not small but changes only the phase of the wave 
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function. Thus, only the quadratic correction to the energy a,, ( 8s. 3s. ) (( d v  as0 d v  aso )) +- - + -- +-- 
turns out to be important. dn, dw, dw, an, dw, an2 dw, I 

2. MULTIDIMENSIONAL SYSTEMS IN THE NONDEGENERATE where '0 is given by (20)- 

CASE 

We now examine the case of a classically nondegenerate 
system. This means that the frequency ratios are irrational 
numbers. For simplicity, we confine our attention to the case 
of two degrees of freedom because the more general situation 
does not introduce anything essentially new. The Schro- 
dinger equation, obtained under the same assumptions as 
before, has the form 

Transforming from the amplitudes cut, to their Fourier 
transforms *(wI,w2), we obtain 

(17) 
We shall seek the function $(wl,w2) in the form 

$!wi, wz) =exp [iS(wl, 20,) I .  
The equation for S that ensues from (17) is 

The function +(W,,W,) is a period function of its arguments 
with period 277. When any of the arguments wi changes by 
277, the function S (w,,w,) can only change by 2771i, where Ii is 
an integer. The number li can be set equal to zero, as before, 
by suitably choosing the center of the packet nlo,n:. The 
left-hand side of (18) is then a periodic function with zero 
mean. The right-hand side should have the same properties. 
Consequently, 

3. DOUBLY DEGENERATE SYSTEM 

Consider a system with two degrees of freedom. We 
assume that, by virtue of symmetry, the frequencies of classi- 
cal motion associated with the Hamiltonian H,, are equal for 
all the values of the action variables n,, n,. This means that 
the energy levels E t:,n2 actually depend only on the sum 
n = n, + n,. In classical motion, the variable 
w = J(w, + w,), which is the conjugate of n, varies rapidly, 
whereas @ = (w, - w,)/2, the conjugate of k = n, - n,, var- 
ies slowly when the perturbation Vis turned on. It is natural 
to transform to these variables, and describe the quantum 
state by the amplitudes c,,. As before, we assume that the 
wave packet is sufficiently narrow in n but, of course, this is 
not true of the variable k which, even in classical motion, 
varies within a wide range of the order of n. Let us take the 
center of the packet in n at no and, instead of cn0 + , ,  , write 
C U , ~  9 as before. In the leading approximation, the Schro- 
dinger equation then assumes the form x V.-vr,~-k~~v.,p..= (I-YW) CV,~ .  (21) 

v',k' 

where, as in Sec. 1, w = dE  :'/an I , = no is the classical (dou- 
bly degenerate) frequency of the motion and Vu, -, are the 
Fourier components of the perturbation potential V(w,@ ) 
with no and k as parameters. We now transform in (21) to the 
mixed (w,k )-representation and, to achieve this, multiply 
both sides of the equation by eiu" and sum over v. The result 
is 

E=(V(W~,  w2) )w,, (19) (22) 

As in the previous case, this first approximation of quantum ck ( w) - cVAeb. 
perturbation theory is valid when the condition V(E for the v 

validity of the classical perturbation theory is satisfied. We shall seek c, (w) in the form 
The solution of (18) that is identical with the result of CA ( W) =exp [isk (w) 1. 

the classical perturbation theory for the action S (see, for 
Dividing both sides of (22) by c, (w), and taking into account example, Ref. 1) is 
the fact that the principal contribution to the sum on the left- , s.=C VV'V, 

hand side of (22) is provided by terms with Ik ' - k I (k, we 
expti(vlwi+vZw~> 1 

V ~ O ~ + V Z O Z  obtain 

This solution implies that the small denominators 
u,w, + u2w2 appear with small weights VUIu2. When this is 
not so, the variable vlwl + v,o, must be regarded as slow. 
This situation either corresponds to classical degeneracy or 
is close to it (see Sec. 6). 

The expression for the correction in the next approxi- 
mation to the energy is 

where V(w,@ ) = 2, V, (w)e - @ . 
Equation (23) is none other than the approximate Ham- 

ilton-Jacobi equation in the (w,k )-representation. 
'The solution of (23) can be found by approximate separ- 

ation of variables. In particular, we writes, (w) in the form of 
the sum of two terms 

1 do. 
&=-- of which the first, S,(wlk ), depends on w and is a slowly- : ad:: ( (%, ) . ) + 5 dn, ( ( % ) ) ) varying function of k, so that aS,/dk( 1. whereas the second, 

11 16 Sov. Phys. JETP 58 (6), December 1983 A. P. Kazantsev and V. L. Pokrovskil 11 16 



S2(k ), is independent ofw and is a rapidly-varying function of 
k. To within quantities of the order of l/n, we then have 

Substituting this in (23), and subtracting terms that are inde- 
pendent of w, we obtain 

where, as before, the angle brackets indicate averaging over 
w. Equation (25) defines ak as a function of k and, conse- 
quently, S2(k ) as a function of k and E .  The remaining terms 
give the equation for S,: 

odS,law=-B ( w ,  @ h )  = -V(W,  @ k )  + V O ( @ R ) .  (26) 
The solution of this equation is precisely the same as for the 
one-dimensional system: 

In principle, the same constant a can be added to the right- 
hand side of (25) and (26). However, since ck (w) is periodic, it 
follows that this constant must be equal to Iw, where I is an 
arbitrary integer. This integer can be set equal to zero by 
suitably choosing the center no of the packet. 

Equation (25) has real solutions in a certain range of 
classically allowed values of k. Suppose k,, k, define the 
boundaries of this region. The Bohr-Sommerfeld quantiza- 
tion condition 

bA dK= (s+'lz)n+ kz@k,-ki@k, (27) 
4 

determines the energy levels as functions of the new quan- 
tum number s. 

In the simplest case, where 

V o ( @ )  = a ( k )  + b  ( k )  cosp@ 

( p  is an integer), we obtain the three-term recurrence rela- 
tions used by Sazonov13 and Braun. l4 They were used in Ref. 
9 to investigate the splitting of highly-excited states of the 
hydrogen atom in a magnetic field within the framework of 
perturbation theory. We emphasize that the results obtained 
here are valid throughout the region V4E, and not only in 
the region V4w, in which perturbation theory is valid. 

Let us consider the correction to the above result in the 
next order in V/E. Corrections for the fact that A and w do 
not commute, and for the quadratic term in the expansion of 
En0 + , in powers of Y, were actually examined in Sec. 1. They 
retain their form in the present case if V(w) in (14) and (15) is 
replaced with V (w,@, ). 

As already noted, these corrections reduce to a slight 
change in the energy and an addition to the phase of the wave 
function or, in other words, to S,(w,k ). With the precision 
indicated above, the effective potential is 

All that remains is to consider the corrections to S2(k ). 
These corrections arise, above all, because k and @ do not 
commute and because of the term in the expansion of 
S2(k + x )  - S2(k ) that is quadratic in x. The result is 

1 
c, ( w )  = ( I  d V o / ~ @ k l ) ' l '  is, (w, k) +i k4:" } , (29) 

where 

The physical significance of the pre-exponential factor in 
(29) is quite clear. The derivative dVo/d@ is the particle ve- 
locity in k-space, since Vo(@ ) plays the role of energy and @ 
the role of momentum. Thus, the factor (dVo/d@k )-'I2 en- 
sures that the number of particles is conserved, i.e., the flux 
is the same at all points in k-space. The dependence on w in 
ck (w) can be isolated in the form of the phase factor 

ck(w) = S ( W  I k ) C k ,  

so that the function $(w I k ) is normalized by the usual condi- 
tion 

In the Y-space, the packet has a finite width described by (1 3), 
where Vm,,,,i,, must be interpreted as the extrema of 
V(w,@, ) in w for fixed @, . 

From (25) and (27), we can readily find a simple formula 
for the level density p(&) for fixed n: 

This is identical with the reciprocal frequency f2 -' of the 
slow motion. 

All the results obtained so far are, essentially, purely 
classical. The distinguishing feature of our approach ap- 
pears in the region in which classical results are invalid, i.e., 
for small values of the new quantum numbers. In this region, 
motion in the fast variable w is, as before, quasiclassical, but 
the slow variable @ is fundamentally quantum-mechanical. 
This region lies near the absolute maximum or minimum of 
the function Vo(@,k ). To be specific, let us suppose that the 
values of @ and k at this point are both zero. For simplicity, 
we confine our attention to a function Vo(@,k ) that is even in 
@. Near the above points, we then have the approximate 
result 

Vo ( Q ,  k )  =aQ2+bkz, 

wherea - V,b- v/ni and we have assumed that Vo(O,O) = 0. 
To describe the quantum states, we must regard @ and k as 
operators satisfying canonical commutation relations. The 
complete wave function in this approximation takes the 
form ofthe product $(w,@ ) = $,(@ )$,(w,@ ), where $,(@ )is 
the oscillator wave function and 

Thus, near the extrema we obtain the standard quan- 
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tum oscillator equation for the slow motion. We emphasize 
that this approximate analysis is valid for low-lying excited 
states of the oscillator and for the ground state. In particular, 
for the ground state, we have 

co= (ab) '"-V/n, Ak-n'", A@-lln'", 

which justifies the harmonic approximation. This approxi- 
mation is valid for s(n and smoothly goes over into the qua- 
siclassical approximation for 1 ( s o .  

Thus, we can now formulate the following r$e; the 
slow-motion Hamiltonian is the perturbation ( V (w,@,k )), 
averaged over the fast phase w. This is, in fact, the quantum- 
mechanical generalization of the classical method of averag- 
ing over a rapidly-varying variable. 

We note in conclusion that, to the accuracy to which the 
above appzoxim!tion is valid, the question of the order of the 
operator @ and k in the average Hamiltonian does not arise. 

4. MULTIPLY DEGENERATE SYSTEMS 

Suppose that the energy of a system with m degrees of 
freedom depends only on the sum n = n, + n, + ... + n, . 
The frequencies of all the motions are then equal, and we can 
introduce a "fast" classical phase 

m 

w= wl/n 
i 

and the slow phases @,(r = 1, ... ,m - l), having defined 
them, for example, as being w, - w,. The corresponding 
adiabatic invariants are the k,. The equation for the wave 
function in the (w,k )-representation is identical with (22) if k 
is taken to be the (m - 1)-dimensional vector with integer 
components k,,k,, ... ,k, - , . Approximate separation of 
variables leads to the Schrodinger equation with the average 
Hamiltonian 

~ ~ ( 6 ,  k)lp(k) = ~ g ( k ) ,  

just as in the case of two-fold degeneracy. In the classical 
limit, the problem reduces to quantization along closed clas- 
sical trajectories r: 
9 @. dk-2ns. 
r 

The trajectoriesr themselves are determined with the aid of 
the Hamiltonian Vo(@,k ). 

Near a known classical trajectory, we can construct a 
coordinate system in which the variables can be approxi- 
mately separated by the methods developed in the theory of 
the parabolic equation (see the book by Babich and Bul- 
dyrev16). 

5. MATRIX ELEMENTS 

In applications, one often has to evaluate matrix ele- 
ments of different physical quantities. This can be done in a 
relatively general form. We begin with the case of one degree 
of freedom. Within the framework of classical mechanics, 
the quantity under investigation, A (w,n), can be expanded 
into a Fourier series: 

A (w, n) = z A. (n) eivw. 
Y 

It is convenient to use the w-representation. By definition, 
the required matrix element (nO1lA Ino) is then given by 

2n 

(nof IA lno)= ip,. (w) $no' (w) A (w, no) ei("0'-"" d w  
0 

The term of the relative order of V/E becomes important 
when the main term in (3 1) becomes equal to zero. The aver- 
age of A over the state no 

is equal to the average over the classical state, and is a special 
case of (3 1). 

We now turn to the case of two-fold degeneracy. In this 
case, we must find the matrix elements of A which, in the 
classical limit, is a function of w and @ and of their conju- 
gates n and k. It can be expanded into a Fourier series: 

A (w, b 1 n, k) = Edl (n, k) ei(vw+x@). 

The matrix elements in which we are interested can now be 
written down in the form of integrals: 

1 
= - J dw z $:os(~, k)$rv.. (w, kl )Ak~-k(wlnok)e i~nor-no'w.  

2n 0 k.k' 

where 

and $,, (w,k ) is the wave function in the (w,k )-representa- 
tion, which is equal to c, (w), given by (22). The subscripts no 
and s are new quantum numbers defining the state (see Sec. 
3). Using the results of Sec. 3 for the wave function $,, (w,k ), 
we obtain the following intermediate result: 

A. ( b  1 n, k) = z A*. (n, k) eix@ , 
X 

where we have omitted all but the leading term. In particu- 
lar, we have omitted the correction included in (3 1). If neces- 
sary, this correction can readily be reinstated. We now intro- 
duce the new variable 

where the density of states p(&) is given by (30) and A is the 
frequency of slow motion. The variablex plays the role of the 
phase in the slow motion. If we use (25) and (27), we can 
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express dS2/dn in terms of X :  

The matrix element given by (32) can now be rewritten in the 
following form with the aid of the variable X :  

It is implied that @ has been determined with the aid of (25) 
and (33) as a function ofx. Equation (34) solves our problem 
in the case of two-fold degeneracy. 

Let us suppose, for example, that the operator A is a 
small addition to the Hamiltonian (1). The energy correction 
that is of the first order in A is then equal to the diagonal 
matrix element. It is often important to be able to evaluate 
the energy correction of the second order in A. We shall do 
this for the one-dimensional case: 

I(no'IAlnO>l2 IA,I2 
'") = E(O)-E(O) 

no' no no' 
wv+'l, (doldn) v2 

Thus, to calculate the second-order correction, we must 
evaluate the average of 12 '(w)(. 

In the case of two-fold degeneracy, a similar procedure 
yields 

where L! = - V/n is the frequency of the slow motion. 
Since the "fast" frequency o is greater than the "slow" fre- 
quency L! by a factor approximately equal to E /V, we need 
only retain the terms with Y = 0 in the above sum. This final- 
ly yields the following expression for the correction: 

where A,(@ ) is the harmonic of A (w,@ ) of zero order in w. 

6. RANDOM DEGENERACY 

It was assumed in Secs. 3 and 4 that equal frequencies 
for all values of the action variables n,, n,, ... were a conse- 
quence of additional symmetry of the system. The best 
known example is the hydrogen atom, whose symmetry 
group is 0, (see Ref. 15). We shall now consider random 
degeneracy, i.e., the coincidence of two frequencies for parti- 
cular values of the quantum numbers. Generalizing a little, 

we assume that the condition qG, = pZ2 is satisfied for some 
values ni = iii, where p, q are mutually primitive integers 
and Zi = dE (O'/dni are frequencies taken at ni = Ei . Our 
problem is to investigate quantum states centered near Ei. 
We shall confine our attention to the case of two variables, 
since the other variables are unimportant. Let us introduce 
the new action variables 

n=pnl+qn2, k=-qn,+pn,. (36) 

The energy levels - E ',q! of the Hamiltonian - Ho will be ex- 
panded near (E,k), where ii =pE, + qE,,k = - qii, +pE2: 

- 
where u = n - E,x = k - k, 

To be specific, we shall suppose that d2E (O)/dk ' 1 > 0. The 
Schrodinger equation is then conveniently written in the re- 
presentation of w,@ which are conjugates of n and k: 

where 

Equation (37) is none other than the parabolic equation in- 
troduced by M. A. Leontovich and V. A. Fock into diffrac- 
tion theory, and which has since been widely used in the 
theory of wave propagation (see, for example, the book by 
Babich and Buldyrev16). We note that Eq. (22) is the differ- 
ence analog of the parabolic equation. 

The slight difference as compared with the previous 
analysis is that we are now using an expansion about the 
point Ei rather than the center of the packet. When, in classi- 
cal mechanics, the system passes through resonance, the 
variable @ varies slowly and w rapidly near resonance. The 
variable n is then the adiabatic invariant, and k varies slowly. 
However, when k has changed by a sufficiently large 
amount, the resonance condition is violated, and we should 
see a return to the resonance value E .  In quantum mechanics, 
a stationary state is established instead of the oscillations, in 
which the characteristic value 7c is greater than v. The wave 
function qb(w,@ ) should therefore vary with w much more 
rapidly than with @. Let us write the solution of (37) in the 
form 

where,asbefore,F(w,@ ) = V(w,@) - (V(w,@ )), . Wethen 
obtain the following equation for $: 
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where Z = E - avo. It is readily seen that dS/dQi -d2S / 
dQi ,- V/w. It will be shown later that d$/a@(n$. Hence, 
the term containing the brackets in (38) is negligible. As a 
result, we have the one-dimensional Schrodinger equation 
for the w-independent wave function: 

The motion in Qi can also be exclusively quantum-mechani- 
cal. 

The admissible values of Z are restricted by the condi- 
tion for the validity of our approximation: Z(E. When Von2/ 
E5.1, the ground-state energy in (39) is E,-E /n2. When 
Von2/E) 1, the ground and low-lying excited states are oscil- 
latory so that, z m i n  Vo(@ ) and the oscillation frequency is 
- ( VE )'12/n. The characteristic interval of variation of k is 

then 
Ak- (Vn2/E)"- (Vn/o)'".  

It is clear that Ak)An- V/a, which we have, in fact, as- 
sumed. 

When Von2/E) 1 and Z) V, the phase of the function 
$(Qi ) can be expanded in powers of V,. The result is the ap- 
proximate formula given by (20) for the nondegenerate case 
of a packet centered on yo: 

Since the width of the packet ink is of the order of (Vn/ 
and the width in Qi is therefore of the order of (Vn/ 

a)-1/2 , stochastic phenomena, which take place in an expon- 

entially narrow layer near the separatrices, do not appear to 
play a significant role for the quantum states. On the other 
hand, the vanishing of the frequency 0 = dE /dk signifies a 
higher density of states. Since random resonances in a non- 
linear system can be encountered at any point in the spec- 
trum, the density of states is a very strange function of ener- 
gy. This problem requires careful investigation. 

7. THE HYDROGEN ATOM IN A MAGNETIC FIELD 

The Hamiltonian for this system is: 
H=Ho+V, H,=p2/2-l/r,  V='/,o,Zp2, (40) 

where we are using the atomic system of units in which 
f i  = m = e = 1, w, = Z / c  is the cyclotron frequency, andp 
is the component of the radius vector perpendicular to the 
magnetic field. The term ma, /2 has been omitted from (40), 
where m is the component of the orbital angular momentum 
along the z axis, since the inclusion of this term is a trivial 
matter. The azimuthal quantum number m is, as before, a 
strictly conserved quantity. 

Let us now transform to the parabolic coordinates {,v 
(see, for example, Ref. 10). It is well known that, in the 
Keppler problem, the variables are separable in the parabol- 
ic set of coordinates. Instead of the original variables 6 , ~  and 
the conjugate momenta, we can introduce the angle varia- 

bles w,, w, and the respective conjugate action variables 
(quantum numbers) n,, n,. The Hamiltonian Ho can then be 
expressed in terms of n, and n, alone: 

We thus have before us the case of two-fold degeneracy3' that 
was examined in a general form in Sec. 2. According to the 
general recipe, we must transform to the quantum numbers 
n = n, + n,, k = n, - n, and the corresponding angle varia- 
bles w = (w, + w2)/2 and Qi = (w, - w2)/2, and then use 
them to separate fast and slow motions. The following para- 
metrization is convenient in calculation: 

g=n(n+k-r+ cos u ) ,  q=n (n-k-r- cos v ) ,  

r*= [(n*k)2--m2]'".  (41) 

The phase variables w and Qi are related to the parameters u 
and v as follows: 

w=$-y s in (q+a) ,  
where 

1 
y 2  = --(r+2+r-2+2r+r- cos 2 D ) .  

4nZ 

We must now averagep2 = 6 ~  over w: 

In the last equation we used (43). Using the parametrization 
defined by (41) together with (42)-(44), we obtain 

This result is in agreement with accurate evaluations of the 
matrix elements of V, performed by Clark17 and Bergou et 
aL9 The energy levels are determined by (25) which, in the 
present case, assumes the form 

V ,  ( 0 )  ='/ ,o ,"nz(~znz-3/zkz-' /zm2+r+r-  cos 2 0 )  =E ,  (46) 

and the quantization rule (27), in which we must now substi- 
tute 

The turning points k,, k, are determined by setting the argu- 
ment of the arccosine equal to + 1. 

The expressions (46) and (47) were obtained in Ref. 9 
within the framework of quantum perturbation theory 
(a, 'n7( 1). As we have already shown (see Secs. 1 and 2), the 
range of their validity is much broader and is determined by 
the condition w, 'n66: 1 alone. This is why our energy spec- 
trum is identical with that found earlier by Solov'ev.' How- 
ever, it is important to note that Solov'ev used a different 
representation (spherical set of coordinates and the adiabatic 
invariants associated with it). In this representation, the 
quantized phases are written in the form of hyperelliptic in- 
tegrals (the roots of polynomials of degree eight are integrat- 
ed). These integrals become the ordinary elliptic integrals in 
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FIG. 1 .  Branches of the effective potential U, as a function of k: a) 
n<mfi,b)n>mfi,c)rn=~.~ere&,= - 3 / 2 ( n 2 + m 2 ) + n m 6 .  

the representation that we have used. In particular, the inte- 
gral given by (47) is transformed into a complete elliptic inte- 
gral of the third kind. The density of states looks simpler 
still: 

d s  8 K ( h )  2 (nz+mz)  +3e1 
p ( e ) = - =  

ae nm,2nzR ' RZ 9 

(48) 
where K (A ) is the complete elliptic integral and 

We now wish to emphasize that the two-fold degeneracy of 
the frequencies is lifted in the corresponding classical prob- 
lem and, as shown in Sec. 3, in addition to the "old" adiaba- 
tic invariants m, n, we have a further approximately con- 
served quantity that arises in a very general way. This is the 
average ( V (w,@ )), , evaluated over w, or the corresponding 
action variables. There are no other additional conservation 
laws. 

We shall now reproduce some of the results given in 
Ref. 9 and needed in the discussion below. The equations for 
the turning points are 

~ ' = - ~ / ~ k ~ _ + r + r - = U ,  ( k ) .  

These curves are shown in Fig. 1 for different values of the 
ratio m/n. When m/n > 1 / 6 ,  there are two series of states 
corresponding to the upper and lower branches of the curve, 
and all the states are symmetric in k. This means, in particu- 
lar, that the dipole moment of such oscillations is zero. The 
values of the angles @, ko at the turning points f ko are 

equal, and are both zero or ~ / 2 .  Asymmetric states with 
nonzero dipole moments appear for m/n < 1 / 6 .  They cor- 
respond to energies E' < - n2 + m'. The corresponding 
states are doubly degenerate. This degeneracy is, of course, 
removed in the course of quantum tunneling, and slightly 
split doublets of even and odd states appear. As usual, the 
splitting is exponentially small and can be neglected even in 
relatively weak electric fields. The number of asymmetric 
states for n = 0 is 

Let us examine in greater detail the behavior of the den- 
sity of states in different regions. The formula given by (48) is 
valid for any n and m and for energies in the range 
- (n2 - m2)(&'(n2 - m2. When m/n > 1 / 6 ,  this interval 

covers the entire range of allowed energies. When 
m/n < 1 / 6 ,  the density in the region of asymmetric states 

is found from the equation (where we have taken two-fold 
degeneracy into account) 

The density of states (48) and (49) becomes logarithmically 
infinite for E' = - n2 + m2(A = 1). 

8. STARK EFFECT 

It is shown in Ref. 9 that, when a weak additional field 
8 (&mn2/c2 is applied in the same direction as the magnetic 
field, the Stark effect is always quadratic for states with 
m/n > l / 6  and is linear for states with m/n < 1 / 6  and 
E' < - n2 + m2. We shall now confirm this result by directly 
evaluating the dipole moment, and we shall demonstrate 
that its magnitude is inversely proportional top(&). 

According to the general formulas in Sec. 3, we must 
evaluate the average of the coordinatez over the fast variable 
w and the slow variablex. Using the parametrization defined 
by (41), we have 

z='/,(E-q) = n  [k-- l /Z (r+ cos u-r- cos v)] . (50) 

Let us begin with averaging over w: 
an 

(z) ,=nk - - [ r ,  cos ($+(I)) -r- cos($-@) 1 J 
4n o 

Using (44), we obtain 

( ~ > , = ~ / , n k .  

The next step is to evaluate 

[see (32) for s' = s, no' = no and (33)l. If the limits of integra- 
tion are symmetric in k, the average (z), ,  vanishes, since 
@, are even functions of k. Hence, a nonzero result emerges 
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only for the asymmetric trajectories. According to (46), 

dVo o,2nZ 
-=- 

3 o'nz Lr+zr-2- ( + - k2) '1 'I2 
am 4 

r+r- sin 2 0 k  = - 
4 2 

The integral in (52) can be evaluated in an elementary man- 
ner, and we find that 

3nn{RZ- [2 (nZ+ mZ) 4- 3~' ] )"*  6 [p (E)  ] -' < z > , ,  = - 
8K ( l lh)  o,2n - (53) 

The quantity i9 ( z ) , ,  is equal to the Stark level shift. 
Thus, the magnetic field annuls the linear Stark effect 

for most of the states. However, states that can be obtained 
from the ground state by moderately multiple excitation 
with lasers have small m and, as we have already pointed out, 
approximately one-third of them are asymmetric. The con- 
nection between the density of states&) and the linear Stark 
effect [Eq. (53)] can be verified experimentally. 

The linear Stark effect is absent when 
- n2 + m2<&'<n2 - m2. When the electric and magnetic 

field are parallel, the energy correction SEI? can be evaluated 
by direct utilization of (35). 

In the general case, the result is very unwieldy but, for 
the physically interesting case where mgn, it becomes much 
simpler and assumes the form 

where E (A ) is the complete elliptic integral of the second 
kind. 

When the electric and magnetic fields are perpendicu- 
lar, the formula given by (35) cannot be used directly because 
the perturbation operator A = $x  produces a change in the 
azimuthal quantum number by + 1. However, proceeding 
by analogy, we can show that the level shift in the transverse 
Stark effect is 

Specific calculations will be performed only for m/n(wc n3. 
The last term in (55) can then be neglected, and the result has 
the form (see Appendix) 

E (h) 2 (16h4+6h2f 3) 
=- 9 {9-4hz - - 

32 (l+4kz) K (A) [ 1+4hz 

where 

j (h) =h (7-8h2-64h4) (I+&')-%. 

FIG. 2. Graph of density of states. =pwCZnZ/16, 2 = &'/nZ: a-m = 0, 
b--m/n = l / f i  (curve 1 )  and m/n = 1/* (curve 2). 

developed in Ref. 1. When the unperturbed system allows 
the use of separation of variables, one can identify simple 
rules for finding the level shifts produced by the perturba- 
tion, and the matrix elements of physical quantities. The 
case of classically degenerate frequencies is of particular in- 
terest in connection with the problem of the hydrogen atom. 
We have used the theory given above to solve the problem of 
highly-excited states of the hydrogen atom in an external 
magnetic field. The condition for the validity of the above 
results is the criterion for the validity of classical perturba- 
tion theory, namely, wcn3gl. The quantization rules, ex- 
pressed by (47), are equivalent to those obtained earlier by 
Solov'ev7 by a different method. The energy levels are char- 
acterized by the three quantum numbers n, m, and s, of 
which only s is a new specific number. The level shift in the 
magnetic field can be written in the form 

~ = o , ~ n ' f  (mln, sln) 

The explicit form of the function f is given in the Appendix. 
It is clear that, when the magnetic field is varied, levels cor- 
responding to different n and s (but constant m) will cross. 
The repulsion of these levels is a consequence of the noncon- 
servation of adiabatic invariants. It is well known from clas- 
sical mechanics (see Ref. 20, Sec. 51) that these invariants 
vary as -e-cOnSt(E'V) . Th e exponentially small repulsion of 
the levels due to the classical nonconservation of the adiaba- 

9. DISCUSSION FIG. 3. Longitudinal and transverse energy shift in an electric field (qua- 
w 2  - 32 

Thus, for highly-excited discrete states, we can use a dratic Stark effect) for m = 0. 6 ~ 1 1  = ~ J & I  -3  EL = - - 
9 9  27n69" 

theory close to the classical perturbation theory, which was s = &'/n2. 

I 
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tic invariant must be compared with the quantum-mechani- 
cal tunneling effect, which is of the order of e-cOn"n. The 
latter was examined by Solov'ev.' It is clear that the argu- 
ments of these exponentials are of the same order of magni- 
tude when the perturbation V approaches w, i.e., when the 
condition for a level crossing is satisfied. Thereafter, the 
classical effect becomes more important for V>w. Thus, the 
classical estimate for the repulsion of levels, e-cO""(E'v), is 
valid throughout the region in which the levels can cross. 
For given m and n, the addition to the Coulomb energy lies 
between limits defined by 

-nZ+m2<~f<n2--m2, m/n>l/VT, 
--'I2 (n2+m2) +nmfi<ef<nz--m2. 

The magnetic field leads to the symmetrization of the wave 
function and to the vanishing of the dipole moment for all 
states with m/n > 1 / 6  and states with m/n < 1/1,6 and 
E' > - n2 + m2. The Stark effect has interesting features 
when the electric field is small, i.e., 8 <wc2n2. When 
wcn3-1 andn-50, wehave 8 < n P 4 - l o 2  V.cm-'. 

The linear level shift 8 ( z ) , , ~ ,  given by (53), appears in 
asymmetric states. Its magnitude is of the order of n2 and is 
independent of the magnetic field. 

Symmetric states are characterized by the polarizability 
defined by (54) and (56). The transverse polarizability is inde- 
pendent of the magnetic field and is of the order of -n6. The 
longitudinal polarizability is inversely proportional to the 
square of the magnetic field, and depends only on the ratios 
m/n and s/n. Thus, the transverse polarizability is smaller 
than the longitudinal polarizability by the factor w, 'n6( 1. 
Moreover, they have different signs: the atom has paraelec- 
tric and dielectric properties in the longitudinal and trans- 
verse directions, respectively. 

We are indebted to E. A. Solov'ev for careful reading of 
this paper in manuscript and for a number of useful sugges- 
tions. 

APPENDIX 

To find d '&/dm2, we use the formula for the density of 
states, given by (48). Integration with respect to the energy 
then gives 

j p (8) de=ns, ~ ~ = ~ / ~ . o ~ n ~ ( 5 n ' - 3 m ' ) .  
* 

Taking the derivative with respect to m2 for fixed s, we ob- 
tain 

We have thus replaced integration with respect to E by inte- 
gration with respect toil. As m 2 4 ,  this gives the expression 
used in (56). 

"Bergou et aL9 used the quasiclassical procedure for solving the three- 
term relations discussed by Sazonov" and Braun.14 

2 ' ~ h i s  relation was obtained in a paper by Shuryak," devoted to the time- 
dependent quasiclassical perturbation theory. 

" ~ n  reality, the frequency of Coulomb motion is triply degenerate (includ- 
ing azimuthal motion). Since the azimuthal quantum number m is strict- 
ly conserved, we need only consider two degrees of freedom. 

'M. Born and W. Pauli, Z. Phys. 10, 137 (1922); W. Pauli, Papers on 
Quantum Theory [Russian transl., Nauka, Moscow, 19751. 

*L. D. Landau and E. M. Lifshitz, Mekhanika (Mechanics), Nauka, Mos- 
cow, 1973 [English transl. by Pergamon Press, 19751. 

'N. N. Bogolyubov and Yu. M. Mitropol'skii, Asimptoticheskie metody 
v teorii nelineinykh kolebanii (Asymmetric Methods in the Theory of 
Nonlinear Oscillations), Nauka, Moscow, 1974. 

4J. C. Castro, M. L. Zimmerman, R. G. Hulet, and D. Kleppner, Phys. 
Rev. Lett. 45, 1780 (1980). 

5M. L. Zimmerman, M. M. Kash, and D. Kleppner, Phys. Rev. Lett. 45, 
1092 (1980). 

6D. Delande and J. C. Gay, Phys. Lett. A 82, 393, 399 (1981). 
7E. A. Solov'ev, Pis'ma ~ h .  ~ k s ~ .  Teor. Fiz. 34, 278 (1981) [JETP Lett. 
34, 265 (1981)l. 
Zh. Eksp. Teor. Fiz. 82, 1762 (1982) [Sov. Phys. JETP 55, 1017 (1982)l. 

'D. R. Herrick, Phys. Rev. A 26,323 (1982). 
'A. P. Kazantsev, V. L. Pokrovsky, and J. Bergou, Preprint KFKI, 1983, 
01. 

'OL. D. Landau and E. M. Lifshitz, Kvantovaya Mekhanika (Quantum 
Mechanics), Nauka, Moscow, 1974 (English transl. by Pergamon Press, 
1975). 

"E. V. Shuryak, Zh. Eksp. Teor. Fiz. 71,2039 (1976) [Sov. Phys. JETP 44, 
1070 (1976)l. 

12J. B. Delos, S. H. Knudson, and D. N. Noid, Phys. Rev. Lett. 50, 583 
(1983). 

"V. N. Sazonov, Teor. Mat. Fiz. 35, 361 (1978). 
I4P. A. Braun, Teor. Mat. Fiz. 37, 355 (1978). 
15V. A. Fock, Izv. Akad. Nauk SSSR Ser. Fiz. 2, 169 (1935); Z. Phys. 98, 

145 (1935). 
I6V. M. Babich and V. S. Buldyrev, Asimptoticheskie metody v zada- 

chakh difraktsii korotkikh voln (Asymptotic Methods in Problems of 
Short-Wave Diffraction), Nauka Moscow, 1972. 

17C. W. Clark, Phys. Rev. A 24, 605 (1981). 

Translated by S. Chomet 

1123 Sov. Phys. JETP 58 (6), December 1983 A. P. Kazantsev and V. L. Pokrovskil 1123 


