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A homogeneous anisotropic nonsingular space-time metric with a six-parameter symmetry group 
is found which can be created by the polarization of the vacuum of the quantum fields of matter by 
a self-consistent gravitational field in the absence of classical matter. The mean values of the 
energy-momentum tensors for massless conformally covariant fields and a massive scalar field are 
computed in this metric. The Green function for a massive scalar field is constructed. 
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1. Recently cosmological models in which the contribu- 1 4 
R i k = - - h i k ,  R = - - ,  

tions of the quantum effects of particle production and the a2 aZ 
polarization of vacuum by a strong gravitational field are 
taken into account in the effective energy-momentum tensor 
of matter have attracted much attention. As is well known 
(see, for example, the discussion of this question in Refs. 1 
and 2), in the single-loop approximation, to take these con- 
tributions into account, it is sufficient to add to the right- 
hand sides of the Einstein equations the mean vacuum value 
( T : )  of the energy-momentum tensor for all the quantized 
fields. In this case if the number of elementary fields of mat- 
ter N > 1, then, in the leading approximation in 1/N, we can 
neglect the contribution to ( T f )  from the gravitons, a con- 
tribution whose computation meets with certain difficulties 
because of the dependence of the result on the gauge (this 
contribution should, however, be taken into account in the 
next order in 1/N ). 

As a result, the problem reduces to the solution of the 
system of equations 

~ i k - ' / ~ ~ i k ~ = 8 n ~  (T , :~ ,+(T:) ) ,  (1) 

where Tio, is the energy-momentum tensor for classical 
matter and (T f )  is a complicated functional of the mean 
(self-consistent) space-time metric gik .I) If T:o) = 0, but 
( T f )  # O  and real, we shall say that the metric g ,  is created 
by the polarization of vacuum (and also by particle produc- 
tion if this process occurs). 

Earlier, the equations (1) were considered either for iso- 
tropic cosmological  model^,^-^ or in a class of homogeneous 
anisotropic metrics close to the classical Kasner metric with 
R : = 0 (Refs. 6-8). In the present paper we shall find for the 
equations (1) with T :o) = 0, a new homogeneous anisotropic 
solution that does not reduce to the vacuum or isotropic 
solution. 

2. Let us consider the "two-sphere metric" 

ds2=a2 (dtZ-ch2 tdx2- dOZ-sin2 0drp2), (2) 
where a = const, - cc < t < cc , 0 < 8 < r ,  O<q~<2r, and the 
range ofx will be specified below. The corresponding space- 
time is geodesically complete, symmetric (Riklm;" = O), and 
anisotropic: 

This space-time has the six-parameter symmetry group 
0 (2,l) X 0 (3), and is a particular case of the spatially homo- 
geneous T  metrics9.'0 that for formal reasons do not fall 
within the Bianchi classification of three-dimensional ho- 
mogeneous spaces. The metric (2) covers the entire space- 
time. The two-sphere metric as previously encountered as 
the solution to the Einstein equations with a cosmological 
constant."*12 In the present paper we assume the cosmologi- 
cal constant to be equal to zero (or very small compared to 
the Planck scales). 

Let us now make the following identification of points 
(splicing) in the metric2' (2): 

( t ,  x, 0 ,  cp)=(t, x+2n, 0 ,  cp). (3) 
Then below we can assume that - r < x  < r .  The conformal 
diagram of the resulting space-time is shown in Fig. 1. In the 
general case ( T : )  does not have to have the same structure 
as R f - 4 6: R ,  and then the equations (1) are inconsistent. 
Let us show that, for the metric (2) with the identification (3), 
the vacuum average ( T  f )  cc 6:. Here we shall not assume 
that the quantized matter fields making a contribution to 
( T  :) are free fields; in particular, ( T  :) may also include 
internal graviton loops. Therefore, the assertion made above 
essentially falls outside the limits of the single-loop approxi- 
mation. 

Let us perform an Euclidean rotation: r = r / 2  + it. 
Then (2) assumes the form 

ds2=-a2 (drZ+sin2 rdx2+d02 + sin2 0drp2). (4) 

The condition (3) guarantees the absence of a conical singu- 
larity at r = 0,r. We shall assume that there exists a state 

C,kl,,,Czk'm= 1 6/3a4,  FIG. 1. Conformal diagram of the space-time continuum described by the 
metric (2) with the splicing (3). The lines x = f .rr are identified. Each 
point of the diagram represents a two-dimensional sphere (0,q) with radi- 

where Cikh is the Weyl tensor; the Ricci tensor is us a'. The region covered by the metric (I.  1 )  is hatched. 
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vector that is invariant under the operations of the full sym- 
metry group of the metric (4). Then it follows from the invar- 
iance under 0 (3) X 0 (3) and the conservation condition T Ilk 
= 0 that the only nonzero components of the average value 
( T : )  as computed over this state are 

< T , ' ) = < T X ) = A ,  ( T e e ) = ( T V P > = B ,  A, B=const. 

Furthermore, since the radii of the two spheres are equal, 
there also exists a discrete symmetry connected with the in- 
terchange of the coordinates of the two spheres: (r, x, 
8,p ) -+ (8,p - a ,  r, x + a). Hence we have A = B. 

Thus, 

where f is some function. This result remains valid when we 
return from r to t; in this case the range of x ( - ?r<x < T )  

remains the same as before. For the quantity a2 we obtain 
from (1) the algebraic equation 

l/aZ=8nGf ( a z ) ,  (6) 

the positive roots of which determine self-consistent metrics 
of the form (2), which are created by vacuum polarization. 
The negative roots (a2 < 0) also have a physical meaning: 
they furnish self-consistent "two-pseudosphere metrics": 

ds2= 1 a2 1 (shZ rdtz-dr2-d0z-~hZ 0dq2) ,  (7) 
where - co < t < co , O(r, 6 < 03, 0<q < 27~ (the metric (7) 
does not cover all space-time: there is a horizon at r = 0). In 
the metric (7), in contrast to (2), the energy density ( T :  ) < 0. 
Therefore, the metric (7) is less interesting from the physical 
point of view: from it we cannot go over to the Friedmann 
solutions. 

Perhaps the complex roots of (6) can be interpreted as 
describing the unstable solutions, the imaginary part of a2  
being connected with the decay probability. But this point 
needs to be investigated further. 

Let us note that homogeneous metrics with splicings 
have been considered before (see, for example, Refs. 13 and 
14), but the type and parameters of the splicing were always 
chosen arbitrarily, and imposed as initial conditions. Here 
we, apparently for the first time, encounter a situation in 
which the identification condition (3) follows unambigously 
from the equations (1) and the form of the metric (2). For 
other identifications, the metric (2) does not satisfy the equa- 
tions (1) with T:o, = 0. 

3. Let us proceed to consider those cases in which we 
can compute f and find the roots of Eq. (6). Let us, to begin 
with, assume that all the quantized fields of matter are mass- 
less, noninteracting, and conformally covariant. Then in the 
single-loop approximation the trace ( T )  of the energy-mo- 
mentum tensor is completely determined by the well-known 
conformal anomaly: 

The constants k,, k,, and k, depend on the form of the quan- 
tum field; the formula (8) contains their sum over all the 
fields that have been taken into consideration. For the metric 
(2) 

4f=(T>=(kz-4k,) /2160n2a' .  (9) 

If, following Starobin~ky,~ we introduce the quantity 
H = 360?r/Gk2, the curvature on de Sitter's self-consistent 
quantum-mechanical solution, then we finally obtain 

The single-loop approximation is applicable if la2 1 , G, 
i.e., when the quantity (k2 - 4k, ( is sufficiently large. The 
root a2 > 0 if k2 > 4k1, which is the case for, for example, 
photons (k, = - 13; k2 = 62). Therefore, the polarization of 
the vacuum of a sufficiently large number of vector fields can 
sustain the metric (2). For scalar and spinor particles 
k2 < 4k,, and for them we arrive at a solution of the form (7). 
Let us note that the ratio of (TE)  in themetric (2) to (TE)  in 
de Sitter's quantum-mechanical solution is equal to 
(1 - 4kl/k2)-'. For k1 = 0 the vacuum energy densities in 
the two self-consistent solutions are equal. 

4. Let us investigate the role played by a nonzero rest 
mass of quantized fields for the particular case of a massive 
free scalar field satisfying the equation 

( V,V'f m2-R/6) @=0, (11) 

which, as is well known, is conformally covariant in the 
m = 0 case. To determicef, we first find the causal Green 
function of this field in the metric (2) (such a problem has not 
been solved before). Let us go over to the Euclidean version 
of the metric (2), i.e., to the metric (4). We have 

where the 0, are the regular solutions to the equation 

( ViV'+m2-R/6) @,=A@, (13) 

with the normalization 

J d'z g'1a@A@~s'=6u. 

In the metric (4) 

@ A ( x ~ )  =a-2Ylm(10, cp) Y1,,, ( r ,  z) , 

~ = a - ~  [ l ( l+  1)  + 1' (11+1) + (ma)  2 + z / , ] ,  

Then 

G (xii,  x i )  

1 (21+1) (21'+1) P I  (cos a) P I ,  (cos 6 )  E ~ ( i + + 1 ) + l ~ ( 1 ~ + 1 )  +(mo)z+zir (43ta) 1 ,  
1 (15) 

cos a=cos 0 ,  cos @,+sin 0, sin 0, cos (qi-cp,), 

cos ~ = C O S  r, cos r'tsin r ,  sin r, cos (x i -xz)  . 
The invariance of G under the interchange (a e S ) of the two 
spheres can be seen from (15). Let us simplify (15), using 
Dougall's expansion15: 
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We obtain 

Now we can return to the correct signature by setting r = ?r/ 

2 + it. In the metric (2) 

cos 6=-sh ti sh tz+ch t i  ch tz cos (xi-x,) (18) 
and (17) gives the causal Green function (apart from the fac- 
tor i). In Appendix I the formula (17) is derived in other 
coordinates. 

Let us note that, outside the light cone (i.e., for 
cos S < I), Im G = 0, as in flat space-time, which indicates 
that scalar-particle production does not occur in the metric 
(2). The Green function inside the light cone (i.e., for 
cos S > 1 and imaginary S ) can be obtained through the ana- 
lytic continuation of (17) as a function of cos S; in this case 
the shift cos 6 -+ cos 6 - i ~ ,  E > 0 must be made. 

As the points approach each other, the function 
G (xi, x i )  diverges. Let us compute (@ 2),g. The regulariza- 
tion of (@ 2, requires two subtractions. We shall use the gen- 
erally covariant regularization method consisting in the sub- 
traction from G of the first two terms of the de Witt- 
Christensen expansion'.'6: 

where dx', , xk) is one half the square of the geodesic interval 
between the points x', and xi  and y is the Euler constant. In 
(19) the interval between the points is assumed to be space- 
like, i.e., that a> 0. 

It follows from the de Witt-Christensen expansion that, 
asm2+ co, 

Since the Green function obtained in (17) is in the form 
of a series, it is convenient to use the following computa- 
tional procedure: We represent the subtrahends in (19) also 
in the form of power series in 1. Assuming that the points x', 
and xi  are separated only on one of the spheres (i.e., that 
a = 0, (S I ( 1, o = a2S 2/2), and using the Heine formula,15 
we have 

1 - 1 
= (21+1)Qi ( 2  - cos 6 ) -  7 + O(6 ' )  ; 

6a 

l n l q l = l n T  (ma)' + I n ( l  - cos 6)+ O(6')  

= In- P ,  (cos 6 )  + 0 (6') 
2 

I = l  

Let us substitute (17) and (21) into (19) and introduce into the 
sum over I the cutoff parameter e - " I ,  E > 0. Then 

1 n 
=- lim lim - Pik-ti, (-cos 6 )  - 2Qo ( 2  - cos 6 )  

(*nu)' .+, co { oh nfh 

For E # 0 each term in the sum can be uniformly expanded in 
powers of S about the point S = 0. In particular, for S + 0 

where $(z) is the logarithmic derivative of the gamma func- 
tion and F is the hypergeometric function. Then let us go 
over in (22) to the limit S + 0 and, lastly, to the limit E -+ 0. 
Finally, we obtain 

where the b1 are defined in (16). For I ) 1 the terms of the 
series in I in (24) behave like 

therefore, the series converges, and the quantity (@ '),,, is 
finite. 

Since the passage to the 6 + 0 limit (the shifting of the 
points) preceded the passage to the E -+ 0 limit (the lifting of 
the momentum cutof), the regularization procedure used by 
us is closer in spirit to the adiabatic method or the Pauli- 
Villars method than to the point splitting method proper. 
The equivalence of the method employed to the Pauli-Villars 
method or the method of adiabatic regularization follows 
from the fact that, first, as can be seen from (19), we subtract- 
ed from (@') only those terms that we have the right to 
subtract (i.e., those terms which either do not depend on the 
space-time curvature, or are proportional to R ), and, second, 
the expression (24) obtained above for the quantity (@ '),, 
has the correct asymptotic form (20) as m2 -+ a. The latter 
assertion is proved in the Appendix 11. 

For m = p = 0 a numerical calculation with the use of 
the formula (20) yields 
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Let us note that the result (@ ' ) , ,  = 0 for m = 0 was ob- 
tained for the space-time under consideration by Page1' in 
the Gaussian approximation. For p = ma -4 1 

where Y ( z )  = d$(z)/dz. Figure 2 shows the plot, obtained in 
a numerical calculation with the use of (24), of the quantity 
(477a)'(@ The quantity (@ ' ) , , ,  vanishes at p ~ 0 . 0 9 4 ,  
and attains its maximum value ~ 0 . 0 7 0 ( 4 ? r a ) - ~  at p ~ 0 . 4 3 .  

The computation of ( T ; )  requires three subtractions, 
the last of which leads to the appearance of a conformal 
anomaly in the trace. Since for a classical massive quasicon- 
formal scalar field, T = m2@ ' ,  for a quantized field in the 
metric (2),  (3)  

where (@ 2),eg is given by the formula (24). For p = 0 we 
come back to the formula (9)  with k ,  = k ,  = 1 ;  forp > 1 we 
have ( T )  cc m-2a-6.  Figure 2 shows a plot of the quantity 
(4n-a2)'(T). The quantity ( T )  changes sign at p ~ 0 . 6 0 .  
Therefore, massive scalar fields with ma > 0.6 help sustain 
the metric (2),  although the contribution from them is nu- 
merically small. For p = 1 the quantity 
( 4 7 7 ~ ~ ) ~ ( T )  ~ 6 . 9  x 

5 .  Thus, we have shown that the polarization of the 
vacuum of the quantized fields of matter can create and sus- 
tain the metric (2)  with the splicing (3).  Particle production 
does not occur in the single-loop approximation. It is to be 
expected, however, that the solution (2),  (3)  will be unstable 
when the higher-order loops are taken into consideration, 
just as de Sitter's quantum-mechanical solution is unstable 
against the creation of the scalar mode.5 In our case, besides 

FIG. 2. Plots of  the quantities (47ra)2(@2), (curve 1 )  and (47ra2)*(T) 
(curve 2 )  as functions o f p  = ma for a massive scalar field. 

the scalaron instability, there can also occur the usual gravi- 
tational instability whose principal mode is a homogeneous 
anisotropic perturbation that transfers (2) into the general 
class of T metrics: 

dsZ=dt2-a2 (t) dxZ- b2 (t) (d02+~inZ 0dq2). (29) 
Let us note that the class of metrics (29) contains as a 

particular case a metric that covers part of the de Sitter 
space-time: 

a(t) =a, sh Ht, b (t) =H-' ch Ht, a,=const. 

We can, by analogy with the isotropic case,' surmise that the 
Eqs. ( 1 )  with Tto, = 0 possess solutions that describe the 
process of decay and transition of the cases when this transi- 
tion occurs via the intermediate de Sitter phase and when it 
does not. Thus, the metric (2)  may turn out to be important in 
the investigation of the question how the quantum de Sitter 
state arose in the early universe and for the construction of 
alternative models of a universe without the de Sitter phase. 
There is also no doubt that the Eqs. ( 1 )  possess more compli- 
cated anisotropic solutions with R ;#O produced through 
the quantum polarization of vacuum (the structure of the 
solutions with R : = 0 is furnished by the general Belinskii- 
Lifshitz-Khalatnikov oscillation regime18). 

APPENDIX I 

It is also convenient to use for the description of the 
two-sphere space-time continuum the metric 

ds2=az ( d ~ ~ - e ~ ~ d y ~ - d 0 ~ - s i n ~  6drpZ), ( 1 . 1 )  

( - co < T, y < co ), which covers one half of the manifold un- 
der consideration (see Fig. 1). The formulas for the transfor- 
mation from (2)  to ( I .  1 )  have the form 

~ = l n  (ch t cos x+sh t),  ch t cos x+sh t>O, 

ch t s ins  
Y =  

(1.2) 
chtcosx-ksht ' 

Let us compute the quantum two-point function 

G (xii, x,i) = < @ (xii) @ (xZi) ) 

for the massive scalar field (1 1). The normalized positive- 
frequency basis for the solutions to ( 1  1 )  in the metric (I .  1 )  is 

q=e-'. 

Then 
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where cos a is defined in (15), and we have used the formula Finally, from (1.2) it follows that 

Hip,  ( lp lq )=  -(2i/n)exp[np1/21Kip, ( - i l p lq ) .  1-o=ch t l  ch t2 cos (x,-x,)  -sh t ,  sh tZ=cos 6 

Thep integral in (1.4) is computed in Ref. 19; it is equal to and (1.6) reduces to (17). We should, in analytically continu- 

'12n I r ('12+ipl) I ' F  ('12+ipl, 'I2- ip , ,  1; 1-012) ; ing G into the light cone, make the shift a -+ a + i ~ ,  E > 0. 

o= [ ( ~ t - ~ 2 ) ~ - ( q 1 - q 2 ) ~ 1 1 2 ~ t ~ 2  
(1.5) 

APPENDIX II 
for u >  0. Taking into account the fact that outside the light Let us show that the quantity S = (4rra)'(@ 2),,, , where 
cone (i.e., for u> 0) the function 8 coincides with the causal (@ 2 ) _  is determined from (241, has the following asympto- 
Green function G (since they differ by the advanced Green tic form: 
function), we obtain 

(1.6) From (24) it follows that 

where y is the Euler constant. For p , 1, let us expand in 
asymptotic series those $ functions whose argument con- 
tains p; then we obtain 

I 
LC=- - 2 ~ ' ( I n  l;+7-1) - 27-2 In p - 2 

3p7 

Let us consider the auxiliary sums: 

Let us use the following formula, which can be derived from 
Binet's  formula^'^: 

Then 

Substituting this into (II.5), we find that for p % 1 

For t -P 0 we have 

1 I l t  t3 ------- =-- + o ( t 5 ) ;  
1 t 2 12 720 

lim dt tze-"' sin t=-2, lim 
s-o J e-0 

Therefore, finally 
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where the integral forp ) 1. 

cannot be expressed in terms of elementary functions. - = p-Z+O (p-4)  (11.1 1) 

2 )  S2 = (21+1) [219 (1+1) - 2 l n ( l + l / z )  - ' / * I  ( l + ' / ~ ) - ~ l .  
L=O (11.8) f o r p > l .  

Collecting the formulas (II.4), (6), and (8)-(1 l), we ob- 
Using the formula15 tain 

- 

l n  n = (e-' - e-"') t - I  dt, J S = - 2 p Z ( l n  p+y - I )  -21n p-2 In 2+'/ ,  

-1/3pz+S,+S2+1/12S,+7/,soS, 
the Binet formula for $(z) - In z, and the expression (II.7), = 1 / 4 5 p 2 + 0  (p- ' )  . 
we have 

which was to be proved. 

m 1 - e - t / 2  

+ e-t'l+'"' dt  
=-4z(i+y)J(mt 24 

''Here and below we set c = f i  = 1. 
"The authors are grateful to Ya. B. Zel'dovich for drawing their attention 

to the necessity of such a splicing. 
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