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The correction to the velocity of a plane front (phase boundary, domain wall, or soliton wall) due 
to inhomogeneity of the medium is calculated. It is shown that at low velocities, the dynamics of 
the motion of the front are significantly nonlinear at all temperatures (in contrast to the motion of 
a periodic structure). 

PACS numbers: 03.40.Kf, 75.60.Ch 

We consider the motion of a plane d-dimensional sur- 
face in a (d + 1)-dimensional medium (d = 1,2) with inho- 
mogeneities. The different physical situations that lead to 
such a problem can be divided into two groups. To the first 
belong weakly inhomogeneous processes associated with the 
motion of various planar (linear) boundaries that arise in 
equilibrium thermodynamic systems (this can be a domain 
wall in uniaxial ferro- and antiferromagnets (FM, AFM), the 
interface of two phases that are close to equilibrium, a soli- 
ton wall in an almost commensurate system,' such as a 
charge density wave (CDW) or adsorbed film). The second 
group consists of those processes of excitation progagation 
in active chemical and biological systems,2 for which the 
plane front of the excitation is (in a uniform medium) a stable 
and a well-defined object (this applies, in particular, to the 
process of excitation momentum transfer in heart tissue in 
the case of sufficiently high speed of propagation3). It is very 
important that the processes of the second group can fre- 
quently be described in complete analogy with those of the 
first in spite of the essential nonequilibrium nature of the 
active medium. 

Let the surface be given by the equation z = ( (x, t ) 
where (z,x) = R is a vector in (d + 1)-dimensional space, 
while, in the absence of motion and defects, ( (x, t ) = const. 
Then the equation of motion (the medium is assumed to be 
strongly dissipative) has the form 

namic potentials of two phases for the problem of the motion 
of a phase interface, or of the external electric field for the 
almost commensurate CDW. The third term in (1) arises in 
the presence of defects in the medium, distinguishing its 
states on the opposite sides of the front (magnetic impurities 
in an FM, any frozen-in impurities in two-phase systems, 
inhomogeneities in the refractory period in a biological me- 
dium). These defects, which sense only the presence of the 
wall itself (non-magnetic impurities in the FM, various de- 
fects in the CDW, inhomogeneities of the diffusion coeffi- 
cient in the active medium) make a contribution only to the 
fourth term [U ((,x) is the change in the generalized free ener- 
gy of the wall, brought about by the defects]. Finally, the last 
term in Eq. (1) describes thermodynamic random forces de- 
fined by the correlator. 

( f  (x, t) f (x', t') )=2T15 (x-x') 6 (t-t') 

(such forces are also present in active media, but the param- 
eter T is not identical with the temperature). 

Our problem will consist in the calculation of the front- 
velocity correction necessitated by the defects. We shall use 
the method developed by Larkin and Ovchinnikov for the 
description of the motion of a vortex lattice in superconduc- 
tors4 (a similar calculation for strongly incommensurate 
CDW can be found in Ref. 5). The difference of our problem 
from those mentioned above is that the random fields h (c,x) 
and U ((,x) contain the entire spectrum of harmonics in the 
variable (: 

(we assume hereafter that the kinetic coefficient r,, = 1). The d9 dq u(c, =J uq(x) eiqc.-, (2) h (g, x) = J hq (x) eiqc - 
random functions h (R) and U (R) are characterized by the 2n' 2n 
mean values 

This leads to interesting temperature effects. - - 
h (R) = U (R) -0, h (R) h (R') =yhKh (R-R') , We begin with the case T = 0. Substituting 

U(R) U(R') =yuKu (R-R') 
%(x? t, =v~+%I(x, t)l ( ~ I ( x ,  t, =O) 

(the bar signifies averaging over the inhomogeneities of the in and (2) we Refs. and 5, the first 
medium), where the constants y,, , y, are so defined that in correction to the in the form 

the momentum p representation, K,, (p) and Ku(p)-tl as V-E 
p+O. The first term on the right side of (1) describes the d% dq 
resistance of the surface to bending (it is assumed that the = Jdt J rn2;, [7h~h(q, k)+q2'fu~u(q9 k, ]eiq"iqG~(kt) 9 

stability of the surface is not destroyed during the motion). (3)  
The second term, which corresponds to a "force" that sets where the response function is 
the surface in motion, has the meaning of an external mag- 
netic field for FM, ofthe difference between the thermodi- Go (k, t) =€I (t)  exp (-Dk2t). 
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FIG. 1 .  

Let the correlators Kh (p) and Ku(p) [p = (q,k)] differ signifi- 
cantly from 1 asp-R ; I ,  R ; I, respectively (in the case of 
defects that are small in scale in comparison with the front 
thickness, g, we have Rh,Ru -8; in the opposite case, R,, 
and R, are determined by the scale of the corresponding 
defects). Then, under the condition v(DR ,$, which is non- 
restrictive for weak disorder, we can neglect the dependence 
ofKh,. on k, and the integrals over k and tin (3) can easily be 
calculated, while the principal contribution to the integral 
over q, is made by the region q - R , ',R ; ', since, by virtue 
of the analyticity of Kh,,(R) in R at R(R,,, we have 

K ~ ,  (p) -0 (exp (-pRh, u )  1, P R ~ .  ~ ~ 1 .  

As a result we obtain 

, , =E-D-d / zV(d -2 ) /2  [ahrh~h-(d+2' /2  + auyuRu -(d+s)/l 1; ah.~"1.  
(4) 

As is seen from (4), the contributions of the defects of the h- 
and U-type have essentially different dependences on their 
scales. It appears that the U defects can be significant only 
when the existenceofh defects is forbidden by the symmetry. 
Equation (4) is valid at (E - v)/v(l, i.e., at E>E, where the 
critical field is 

~ ~ , ~ - d / ( c - d )  (mRh-(d+2)/2+ U R-(~+') /  U j ¶ / ( & - d )  

At E < Eo, motion become impossible, and a pinning of the 
front on the defects takes place (similar to the cases in Refs. 4 
and 5). 

We now consider the temperature effects and limit our- 
selves to the case of a linear front in a plane medium (d = I), 
when these effects are most important. The expression for 
the correction to the velocity at T # O  differs from (3) only 
(under the condition u(DR h,$) by the appearance in the in- 
tegrand of the factor 

Substituting Sq (t ) under the integral (3) and integrating over 
t and k (d = I), we obtain 

where 

F ( 2 )  =cos ze+sin 2-2 (cos zaC ( 2 )  +sin z2S (z) ) , 

while C (2) and S (2) are the Fresnel integrals. At T2R 2 
(~ITUD the difference of F (2) from 1 is significant and we 
return to Eq. (4). In the opposite limiting case 
T2R $>2mD we can replace Kh,, (q) by 1; as a result, we 
obtain 

Thus, the impurity correction to the velocity decreases sig- 
nificantly at high temperature; however, it falls off as v 4 ,  
more slowly than v, as before. This means that at E 5 E i,, 
where 

a transition takes place to another, significantly nonlinear 
dynamical regime. Thus, the result (6) is applicable at E i,, 
(v(T 2R h, ,/2rD, i.e., the region of its applicability exists 
at *Ti,,, where T i  = y h ' 1 3 ~ 1 1 Z ~ h ,  TU* = yU1l30 'I2 

xR, 'I3. The dependence of E - v on v in this range of tem- 
peratures for the cases of h and U defects are shown respec- 
tively in Figs. 1 and 2 (Av, = ( E , * ) ' / ~ ( T ~ / ~ . ~ ~ R , ~ D  1 'I3 1. 

We emphasize that the region of nonlinear dynamics in 
weak fields (the shaded regions on the diagrams) exists at any 
T; this is connected with the presence of such arbitrarily 
small vectors q in the spectrum of random forces h ( 5 , ~ )  and 
U(5,x). For comparison, we show that in the case of a strong- 
ly incomensurate CDW (K (q,k ) = 1/2S(q + q,) + 1/ 
2S(q - go)) at T)D '13y'13q0-' the region of significantly 
nonlinear behavior disappears and the impurity corrections 
at E-0 remain small. In conclusion, we note [see (6), (7)] 

& ( t )  =<exp iq(Ca(t)-bn ( 0 )  ), that the h defects affect the dynamics of the front at the high 
temperatures much more strongly than the U defects. 

where S2(x, t ) are the thermal fluctuations of the front. Cal- 
culation of Sq (t ) is carried out in trivial fashion and gives 

sq ( t )  = erp [-T~' (2) nD 'tab]. 
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FIG. 2. Translated by R. T. Beyer 
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