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It is shown that the phonon-drag thermopower is determined by a certain average of the electro- 
acoustic coefficient over the directions and polarizations of the sound. 

PACS numbers: 72.50. + b, 72.15.Jf, 72.20.Pa 

The thermopower Q is a kinetic coefficient that deter- 
mines the electric field E appearing in a sample in the pres- 
ence in it of a temperature gradient V Tand in the absence of 
an electric current j: 

E=QVT, j=O 

(for a crystal with cubic symmetry). In a metal at low tem- 
peratures, the thermopower Q is represented in the form of a 
sum1 

where the first term is related to the direct action of the 
temperature gradient on the electron system, and the second 
to the dragging of the electrons by the phonon flux created 
by the temperature gradient. 

The drag thermopower Qph is physically related to the 
acoustoelectric effect, which consists in the action of an elec- 
tric field (or emf) on the propagation of a sound wave along a 
metal. An order-of-magnitude relation between the thermo- 
power Q,, and the acoustoelectric coefficient was estab- 
lished by Zavaritski?: 

We write down the set of kinetic equations for the elec- 
tron and phonon distribution functions in the presence of a 
temperature gradient. Neglecting the phonon scattering due 
to all but the electronic mechanism (this is justified for met- 
als at low temperatures)," we eliminate the nonequilibrium 
phonon distribution function from the first equation (Ref. 3, 
Sec. 82) and reduce it to the form 

where E,  and vk are the energy and the group velocity of 
electrons with quasimomentum k; w, A and v, A are the fre- 
quency and group velocity of phonons with quasimomentum 
q and polarization A; f: and n L  are the Fermi and Bose 
distribution functions,pk is introduced by the relation 

Qph-Cph~b, (2) ( f, is the nonequilibrium electron distribution function); i 
where cPh is the heat capacity ofthe lattice ands is the sound is the integral collision operator (which takes into account all 

velocity. The acoustoe~ectric coefficient entering in (2) corre- possible electron collisions, and also the drag of the electrons 
sponds to the most natural setup of the experiment2 and is by the phonons); pFd and pFd are the  roba abilities of elec- 

defined as the coefficient of proportionality between the dif- tron-~honon transitions: 
ference in potentials A Vat the ends of a long sample, in- 
duced a sound wave propagating the (and pti= ; , g~,kl'fk'J(i-fk,') (ek,-ck-fioqh) 8k,-k-q,G, 
completely damped in it), and its initial energy flux density G 

For a metal with isotropic characteristics, the relation (2) is 
exact with a coefficient 1/3 on the right-hand side. 

It turns out that an analog of the relation (2) can be 
obtained also for a real anisotropic metal. Here Qp, is deter- 
mined by a certain weighted average of < (n) (n is the direction 
relative to the crystallographic axes) over the directions n. 
This is easily understood if we imagine that initially the tem- 
perature gradient takes the phonons out of equilibrium, and 
then they create the thermopower via the acoustoelectric 
effect. The weight with which the averaging of (n) takes 
place is generally nontrivial since it depends on the character 
of the disequilibrium of the phonons. However, in the low- 
temperature limit, it can be found accurately 

where &., is the matrix element of the electron-phonon In- 
teraction, and is connected with the corresponding compo- 
nent of the deformation potential A , by the relation 

We should find p, from Eq. (4) and calculate the ther- 
moelectric current. However, it is more convenient to use 
the method of Ref. 4 to express the thermoelectric current jT 
in terms of another function IC,k, which is the solution of the 
kinetic equation 
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- vk=&$k* 
der 

used in the theory of electric conduction. The possibility for 
this follows from the formal chain of equations: 

(use is made of the Hermitian character of the operator ). 
Consequently, we get for the thermopower 

anqrO Q,= -I_z R ~ . ,  -C (P&.-PIL")$~v.~/~P&~, 
3aT a (ttoq,) kk,  

kk' 

(6) 
where a is the conductivity (for simplicity, we have assumed 
cubic symmetry of the crystal). The expression for Q, in the 
case of a slow energy dependence of tCI, reduces to the well- 
known Mott formula.' The expression for Q,, is simplified 
in the low-temperature limit, when the momentum of the 
thermal phonon is less than all the characteristic dimensions 
of the Fermi surface: 

3% x- 6 (cos 0) d S t  / 5 b!?- 6 (cos 0) d S k ,  
3% vka 

(7) 

where 0 is the angle between q and v, ; s 6 ~  is the phase veloc- 
ity of the phonon; integration is carried out over the direc- 
tions 4 = q/q. The integrals over Sk in (7) turn out to be the 
same as in the expressions for the acoustoelectric current jA 
(Ref. 4) and the sound absorption coefficient r (Ref. 5): 

Using these expressions, we write out (7) in the form 

where j r )  is the value of j$ at W =  1. Noting that the 
acoustoelectric coefficient (, measured in the vw direction, 
is connected with j$ in the following way: 

we obtain the desired relation between Q,, and ( (n): 

Thus, although an explicit separate calculation of each of the 
quantities Q,, and ( (n) is not possible in the general case, we 
have succeeded in establishing quantitative relation between 
them. 

The author thanks A. F. Andreev, N. V. Zavaritskii and 
M. I. Kaganov for discussion of the results of the work. 

 he final formulas (8) and (9) are preserved even in the presence of other 
mechanisms of phonon scattering if we can write them in the rapproxi- 
mation; in this case r a n d  < in (8) and (9) must be determined with ac- 
count taken of these additional scattering mechanisms. 
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