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The Keller-Rubinow method is used to examine the form of wave functions. Equations for the g- 
factor are found in the quasiclassical approximation. An expression is obtained for the electron 
magnetic moment operator. Quantization in a complex valence band of cubic semiconductors is 
discussed as an example. 
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1. There are many problems in quantum mechanics that 
involve a matrix Hamiltonian. In particular, this includes 
problems on the behavior of charge carriers in semiconduc- 
tors and metals in complex bands or in those cases where the 
coupling between a number of bands must be taken into ac- 
count. In this paper, we examine quasiclassical quantization 
in magnetic fields in such cases. A similar problem was pre- 
viously solved by Falkovskii,' who calculated the effective g- 
factor for bismuth. However, in this particular case, the set 
of equations that is satisfied by the wave functions for the 
Kramers-degenerate (without the magnetic field) states is 
separable, which does not occur in other cases. To some ex- 
tent, the present work is a generalization of work reported in 
Ref. 1. 

The form of the eigenfunctions turns out to be a nontri- 
vial question, especially when the particle orbit has concave 
segments. We shall use the Keller-Rubinow m e t h ~ d , ~ - ~  
which will enable us to solve this problem in a simple form 
that is easy to interpret. 

Quantization in a complex valence band of a cubic semi- 
conductor described by the Luttinger Hamiltonian is dis- 
cussed as an example. 

2. Let the Schrodinger equation be 

where &? is a matrix that depends on the operators 
P, = - ifiV, - (e/c)A; P, is the two-dimensional vector 
(P, , P, ), 1C, is the wave column function describing the m2- 
tion of the particle across the magnetic field H, H llz, and M, 
is the matrix describing the direct coupling between the in- 
trinsic magnetic moment of the electron and the magnetic 
field. If we substitute 

$=e's/fiX, (2) 
where x is a new column function, we obtain the following 
set of algebraic equations in the zeroth approximation in fi: 

&p)x=~x .  (3) 

(We are assuming that &is of first order in fi.) In these ex- 
pressions, the kinematic momentum is given by 

p= VS- (e lc )  A. (4) 

The set of equations given by (3) determines the energy spec- 
trum and the wave functions in the absence of the magnetic 
field, namely, E = E(@ and x (p), respectively. We shall sup- 
pose that the matrix R ( p )  is invariant under time reversal, so 
that each branch of the spectrum ~ ( p )  is doubly degenerate 
and the corresponding two wave functions X ,  and X ,  can be 

obtained from one another by the time reversal transforma- 
tion: 

Consider one branch of the spectrum 

Substituting the kinematic momenta (4) in (6), we obtain the 
Hamilton-Jacobi equation, and the corresponding Hamilton 
equations yield 

dp - e dx, - de  dS e [vXH], v,=--- 
d t  c d t  dp,' - = ( P + ~ A L V ,  d t  

where H = curl A is the magnetic field. The shape of the 
trajectory in momentum space is given by (6) forp, = const. 

The discussion given so far is well known, and the equa- 
tions given by (7) determine the dynamics in the magnetic 
field of a classical electron with a complicated dispersion 
law? The solution of (7) enables us to determine the magni- 
tude ofp at any point on the trajectory from initial values 
and, hence, the gradient of the action at all points on the 
trajectory. Integration along the trajectory then enables us 
to find the actionsitself. However, if we are to determine the 
wave function, we must find the action as a function of the 
coordinates x and y. To ensure that the action is a single- 
valued function of x and y, we must construct a family of 
trajectories for which there is only one definite trajectory for 
each point (x, y). It is readily seen that this type of family 
cannot be constructed from closed trajectories. For each 
point (x,  y) there are therefore several (at least) trajectories, 
i.e., several values of the action. The true eigenfunction must 
therefore consist of several (at least two) terms of the form 
given by (2). 

3. The Keller-Rubinow r n e t h ~ d ~ . ~  enables us to exa- 
mine this situation. In this method, the (x, y) plane is repre- 
sented by a superposition of sheets, attached to one another 
along the caustics of a certain family of trajectories. On each 
sheet, each coordinate pair (x, y) has a uniquely correspond- 
ing trajectory. The wave function in a classically accessible 
region contains several terms whose number is equal to the 
number of sheets containing the point (x, y). It relation to our 
case, this can be done as follows. Figure la  shows a simple 
convex trajectory and a family of trajectories obtained from 
it by translation along the axis. 

The two straight lines y = a and y = b parallel to the x 
axis are the caustics. Two trajectories correspond to each 
point in the band. Figure lb  shows two sheets attached to 
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FIG. 1 .  (a) Family obtained by translation of convex trajectories along the 
x axis (horizontally); (b) splitting of the band ab into two sheets joined 
along caustic curves. 

one another along the caustic. Left-hand portions of the tra- 
jectories lie on the upper sheet and right-hand portions on 
the lower sheet. The wave function consists of two terms at 
each point on the band. A somewhat more complicated situ- 
ation is illustrated in Fig. 2. The trajectory has a concave 
segment, and the family is constructed by translation along 
the axis. There are four sheets lying one above the other in 
the sequence I, 11,111, and IV, and the lines of attachment 
are shown by the same numbers on the four sheets. In the 
band ac, the wave function consists of four terms, and in the 
band bc it consists of two. 

From these trajectories we can also construct a family 
of translations along the y axis. In the entire classically 
accessible band, there will then be two sheets, and the wave 
function will consist of two terms. It is also possible to 
choose the family of trajectories in a different way (see Fig. 
3). All that is important is to ensure that the classically acces- 
sible region can be split into two sheets that are attached to 
one another along caustics in such a way that, on each sheet, 
segments of the trajectories will occupy the entire sheet with- 
out crossing. 

FIG. 2. Splitting of bands ab into sheets when the trajectory has a concave 
segment. 

FIG. 3. Family of trajectories obtained by rotating the centers on a circle. 

It is not surprising that, for given E and p,, one can 
obtain wave functions of different form, depending on the 
method used to construct the family of trajectories. The lev- 
els are infinitely degenerate for fixed E and p, and, under 
these conditions, the eigenfunctions can be chosen in differ- 
ent ways. 

In general, the family of trajectories can be constructed 
as follows. Integrating (7), we obtain 

The vector r, defines a trajectory. A one-parameter family of 
trajectories is obtained by assuming that r, is a function of 
some continuous parameter a. For example, for the family 
shown in Fig. 2, we have yo = const, x, = a .  

The essential point is that, on each sheet, p (and hence 
the gradient of action) are single-valued functions of posi- 
tion. In fact, if we specify r and the family, i.e., r,(a), Eqs. (6)  
and (8) yield a set of three equations for a ,  p, , p, . The subdi- 
vision into sheets is constructed precisely in a manner that 
ensures that this set has a unique solution on each sheet. 

4. Let us now write x as an expansion in powers of fi: 
x = x (,, - ifixI,, + ... . In the first approximation in fi, we 
then have from ( 1 ) 

Here and henceforth, 9 is a matrix that depends on the 
components of the kinematic momentum given by (4). 

The condition for the consistency of (9) demands that its 
left-hand side must be orthogonal to the column functionsx, 
and xz,  which are two linearly independent solutions of (3). 
This condition leads to the following transfer equation: 

where the subscript (0) of x is omitted and we have intro- 
duced the two-dimensional velocity vector-matrix 

Sincex satisfies (3), let us write it as a linear combination of 
x1 and x2: x = c z l  + c a 2 .  The coefficients can then be 
shown to be given by 
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and there are analogous equations obtained by interchang- 
ing the subscripts 1 and 2. In deriving the equation, we use 
the relations 

(x i ,  %xi)  = (xz ,  Vx2)  = v = v , e ,  ( x i ,  V x z )  =o. 

Next, it is readily shown by analogy with what was done 
in Ref. 3 that div v = a-'du/dt, where udadt is an infinitesi- 
mal area bounded by the trajectories and the t = const sur- 
faces. When the parameter a defining the trajectory and the 
time t are taken as ray coordinates, the quantity cr can be 
expressed as the Jacobian for the transformation from Carte- 
sian to ray coordinates: 

Since vV = d /dt, and replacing c,, c, by new coefficients 
b,, b,, in accordance with the formulas bi = U ' / ~ C ~ ,  we can 
reduce (1 1) to the form (see Appendix) 

d b  d b  
i f i - -! -=-H[M,,b ,+M,,b ,I ,  ifi'=- 

d t  d t  H[Mz,bi+Mzzbzl ,  

h h 

(13) 

where Mik = k i ,  Mxk ) and the operator M is given by 

and has the properties MI, = - M,,, MI, = M :,. We then 
have on each sheet 

g,eis~*o-% [ b  i x t + b z ~ z l .  (15) 
The operator k may be looked upon as the z-component of 
the intrinsic magnetic moment operator for the particle. 

The coefficients Mik in (1 3) depend only on p, and py , 
i.e., they are periodic functions of time. Consequently, the 
solution can be written in the form 

b*=eWft/fi * u ( t ) ,  (16) 

where u*  ( t )  is a periodic function of time, and 
p+ = - p -  = p. The quantities b * and u * in (16) are 
two-component columns. Two "correct" functions $ corre- 
sponding to states in which the magnetic moment is, respec- 
tively, parallel and antiparallel to the field can therefore be 
written in the form 

g ,=exp[ i  ( S f  pHt )  lf i] cr-"rp,, cp,=uif x ~ + u ~ * x ~ ,  

where the spin column functions q, * satisfy the equation 

q*=*pcp*, (17) 
projected onto the space of the functions X ,  and x,. 

5. Since VSis single-valued on each sheet, the action Sis 
also single-valued. We can therefore specify the action at any 
given point on the sheet, and this will ensure that, at any 
other point, it will be given by an integral of VS over a con- 
tour passing through these points. The integral will, of 
course, be independent of the shape of the contour. " 

The caustic curve must be crossed as we pass from one 
sheet to another. It is well known that each such crossing 

results in the multiplication of the wave function by 
exp( - ir/2), i.e., there is a loss of phase of However, 
this occurs only in the usual case, when dvy /dpy = dZ~/p: is 
positive at the crossing point (they axis is perpendicular to 
the caustic curve). When, on the other hand, this quantity is 
negative, the crossing of the caustic curve produces a phase 
gain of r/2. The derivation of the change in phase across the 
caustic curve can be performed by displacement into the 
complex plane ofy, in which case the important point is that 
c ~ - y ' / ~  near the caustic curve.' The usual phase-change rule 
is obtained from the condition that the wave incident on the 
caustic curve is the wave obtained from the damped solution 
(appearing in the classically forbidden region) when the cir- 
cuit is completed in the lower half-plane. When dn, /dpY < 0, 
the completion of this circuit results in a wave that departs 
from the caustic curve rather than being incident upon it. 
The change in the sign of the phase change depends on this 
fact. It is readily shown that, in Fig. 2, there is a phase loss on 
the caustic curves y = a, y = b, but a phase gain on y = c. We 
note that there is always a phase loss of r when a circuit is 
completed along a trajectory (independently of the choice of 
the family and, hence, of the caustic curves). 

The quantization conditions are obtained from the re- 
quirement that the phase of the wave function changes by 
2n17, where n is an integer, over any closed contour on a 
surface formed by the sheets. However, the phase change is 
the same for all equivalent contours, i.e., contours that can 
be superimposed on one another by continuous deformation. 
It is therefore sufficient to consider only one contour in each 
set of equivalent c o n t o ~ r s . ' ~  In Figs. 1 and 2, the surface 
formed by the sheet is topologically equivalent to a cylinder, 
whereas, in Fig. 3, to a torus. Energy quantization is ob- 
tained by circuiting along a contour drawn around a cylinder 
or torus, and the contour can simply be a trajectory (since, in 
our case, this will be closed). In Fig. 3, there is a second 
independent contour abca, the circuiting along which gives 
quantization of angular momentum. 

According to (15) and (16), energy quantization can be 
written in the form 

c 2 n p H  
- S ( E , p , ) * - - 2 n  

eHA fio 

where S (E, p, ) is the area encompassed by the trajectory in 
momentum space, and o, is the cyclotron frequency. Here, 
we have taken into account the fact that there is a loss of 
phase of r when the circuit is completed along a closed tra- 
jectory. It is clear from (18) that1" the quantity 

g (E ,  p , )  =4pHlf ioc ,  (19) 

plays the role of theg-factor that governs the "spin" splitting 
of the levels. 

The spin splitting itself is then AE = g W  /2m, c, where 
m, is the cyclotron mass.2' 

The determination of theg-factor is thus reduced to the 
solution of (13), in which the right-hand sides depend onp, 
and py . The time dependence of p, and py must be deter- 
mined from the equations of motion, given by (7). 

However, it is possible to avoid the solution of (7) in an 
explicit form by transforming in (13) from the variable t to 
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the variable p, where q is the polar angle of the vector p, . 
Since, in momentum space, we then have p, =p, cos p, 
py = p, sin p ,  Eq. (7) yields 

e H de dq=---- dt , 
c P, dp, 

so that (1 3) can be rewritten in the form 

dbk c de 
M k ,  k=1,2. (20) 

e ~ P L  1=1,2 

The momentump, can be expressed in terms of q by using 
the dispersion relation (6) in such a way that all the coeffi- 
cients on the right-hand side of (19) are expressed in terms of 
q. If we write the solution of (19) in the form 
bIk) = eUNulk) (q ) (b (k) and nIk) are two-component columns 
and vIk) is a function that is periodic in p with period 27~, 
A , =  - 2  ,=i l) ,wefindthatg= - -4il. 

6. Let us now apply these results to magnetic quantiza- 
tion in the valence band of cubic semiconductors described 
by the Ha~niltonian''~ 

wherep, is the Bohr magneton, A is the spin-orbit coupling 
constant, y,, y, k are the Luttinger consta;ts (we are using 
the spherical model in which y2 = y3 = y), I are the angular 
momentum matrices, and 6 are the Pauli matrices. 

The energy is measured from the top of the valence 
band in the downward direction. The Hamiltonian is a 6 X 6 
matrix and the wave function a six-component column. 

We shall us? the-representation in which the total angu- 
lar momentum J = I + b/2 and its z component are diag- 
onal. The components of the column functionx in this repre- 
sentation will be denoted by xi, The six components 
correspond to j = 3/2, ph= + 3/2, + 1/2 and j = 1/2, 
E= f 1/2. The operatorR(p) commutes with the operator 
(Jp), so that the component of the total angular momentum 
along the linear momentum is a quantum number. Let us 
denote it by M. The values M = f 3/2 correspond to the 
heavy-hole band, and to each of the two values M = f 1/2 
there correspond two states, one in the light-hole band and 
one in the split band. We now equip the componentsXjg with 
superscripts nM (n is the band number), so thst, in view of 
the spherical symmetry of the Hamiltonian R(p ) ,  we can 
write these components 

(x"") ILI'~TIM~D;,M (% 919) 1 

where 8,q are the polar angles of the momentum p. The an- 
gle $, which defines the phase of the wave function, can be 
chosen arbitrarily (in particular, we can set $ = 0). For the 
heavy-hole band, (n = 1, M = f 3/2) a:23,2 = 1, 
a:(:, = 0. For the light-hole band (n = 2) and the split 
band (n = 3), we have9 

We now consider the extremal sectionp, = 0 (B = 7r/2). It is 
convenient to take the functionsx, andx, in the form 

for the heavy-hole band and 
x1=2-'" (~"3 "+xn' - I h )  exp (icp/2), 

X2=2-'" (xn* "-xn' -") exp (-icp/2), 

for the light-hole and split bands. Using (1) and (14), we find 
for the heavy-hole band 

and, for the light-hole and split bands, 

h 

Since, in this case, the matrix M is diagonal and time-inde- 
pendent, we find from (17) thatp = MI, and, using (19), we 
have g = 4M,,H /&I,, w, = (eH /cp)(d&/dp). For heavy 
holesg = 6, i.e., there is no spin splitting forp, = 0. Figure 4 
shows the g-factors in the light-hole band and in the split 
band for germanium as functions of y2 p2/mJ. It  is clear 
that the g-factor for light holes has a maximum when this 
parameter is equal to 0.3. Asp -+ UJ, we haveg -+ 2, for the 
light-hole band andg + 4 + 2/(y, + 4y2) for the split band. 

The expression for theg-factor whenp, # 0 can also be 
readily obtained. In particular, for heavy holes, 

This result is identical with that reported by Bir et al.," who 
obtained it from the exact Luttinger solution for the Landau 
levels with n > 1. 

It is interesting to consider the extent to which these 
results are affected by the corrugation of the equal-energy 

9- factor 

FIG. 4. Quasiclassical g-factors of germanium for p, = 0 as functions of 
momentum for light-hole bands (solid Curve) and the split band (dashed 
curve). 
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surfaces. When corrugation is taken into account, the set of 
equations given by (1 3) cannot, in general, be solved. How- 
ever, the solution can be found for certain special cases. Con- 
sider the situation where the, magnetic field lies along the 
[001] axis of a crystal. When p, = 0, and the energies are 
much greater than A ,  the set of equations given by (13) can be 
solved exactly because M,, = M,, = 0. The g-factors for 
heavy and light holes are given by 

where the upper signs refer to heavy holes and the lower to 
light holes: 7 = (1 + a sin2 $)'lZ; a = 3 ( d  - d ) / 4 d .  The 
integral in (21) can be expressed in terms of tabulated elliptic 
integrals. 

Thus, spin splitting of the levels occurs in the heavy- 
hole band even for p, = 0. As p, increases, the g-factor ac- 
quires an increment that is quadratic inp, (rather than linear 
as in the spherical approximation). However, the evaluation 
of g, for germanium (for p, = 0) on the basis of (21), using 
known values of y,, y,, y,, kin the Luttinger Hamiltonian,12 
shows that the precision of these values is insufficient to de- 
termine the departure of g, from (6). 

7. The equations given by (7) and (13) are readily gener- 
alized to the case where, in addition to the magnetic field, 
there is also an electric field E, and the fields are time-inde- 
pendent. Here are the results: 

h h 

where the operators M and D are given by 

When the vector product is evaluated, it must be remem- 
bered that the opzrator d /dp, is always on the right side and 
does not act on V + v. 

APPENDIX 

After transformation to the ray coordinates, it is con- 
venient to transform (1 1) so that the partial derivatives with 
respect to the coordinates in the last two terms are replaced 
with partial derivatives with respect to mo%enta. 

Let us first consider the last term CI(l,VV~,). The col- 
umn function X, satisfies (3). Differentiating this first with 
respect top, and then with respect to x, we obtain 

8  a E  d E  a x z + + E -  a E  8x2 d2xz 
x z + - -  

= (zap,) a p ,  a x  d x  d p ,  d x a p ,  

The last terms on the two side~cancel out, and the first term 
on the left side is zero because R ( p )  commutes with the time- 

reversal operator, and the first term on the right-hand side is 
zero becausex, andx, are orthogonal. Since 

we have the identity 

A similar identity is obtained by replacing x with y and p, 
withp,, . Adding the two identities and recognizing that 

and dp, /dy - ap, /dx = He/c, since H ((2, we find that 

The penultimate term in (1 1) can be transformed in an analo- 
gous fashion. 

Replacing ci with b, ,  as indicated in the text [see (1 1) 
and the discussion following it], we obtain (13) and (14). 

"However, it is frequently convenient to specify S a t  a particular point on 
the caustic curve, and take the contour at first along the caustic curve 
and then along the trajectory. 

"This definition of the g-factor is identical with that given in Refs. 1-5. 
However, it differs from the usual definition ofg in which A E  = gp0 H,, 
wherep, is the Bohr magneton. Obviously, = gmdm, , where m, is the 
mass of the free electron. 

3'We are using the notation introduced in Ref. 10. 
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