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A three-dimensional model of an Ising spin glass with an oscillatory long-range interaction is 
analyzed. There is a marginally stable low-temperature phase, which has nothing in common with 
the Edwards-Anderson phase. In particular, the magnetic susceptibility corresponding to com- 
plete equilibrium is x = c/T at all T. 
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1. One of the basic questions in the theory of spin glasses 
is whether there exists a thermodynamically equilibrium 
state different from a paramagnetic state. The Sherrington- 
Kirkpatrick model,' which has recently been studied quite 
th~roughly ,~-~  cannot answer this question since several of 
its properties differ from those of the real system; specifical- 
ly, its behavior is n ~ n e r ~ o d i c , ~ , ~  which means that as the size 
of the system becomes infinite the phase space of the system 
breaks up into regions separated by infinitely high energy 
barriers. A thermodynamic average in this model is equiva- 
lent to an average over a small part of the phase space. In a 
real system with a finite interaction range all the energy bar- 
riers are of finite height, so that a thermodynamic average 
calculated in the Sherrington-Kirkpatrick model has abso- 
lutely nothing in common with the equilibrium properties of 
the real physical system. In the present paper we suggest an 
alternative three-dimensional model for a spin glass with a 
large but finite interaction range. A corresponding one-di- 
mensional model was analyzed in Ref. 6. 

In classical spin glasses (dilute solutions such as 
Cu, -, Mn, and Au, - , Fe, ) the atoms of magnetic impuri- 
ties interact with each other by the RKKY law: 

1 H=-C s i s j v  (ri-rj) , 
2 

i , j  

V  ( r )  =Vor-3e-'/' cos 2p0r; 

where r is the distance between magnetic impurities,~, is the 
Fermi momentum of the electrons in the metal matrix, and I 
is the electron mean free path. 

We seek the average field exerted on a spin by its neigh- 
bors: 

For interaction (I), this sum is dominated by the nearest 
neighbors, of which there are N- 10 in a real three-dimen- 
sional system. We alter the form of the interaction in such a 
way that ( h Z )  is determined primarily by the region 
r - % - ' ~ c - l ' ~  (c is the spin density): 

V=Vo (xpo/2xr)  e-"' sin por. (2) 

It can be hoped that this interaction will be a valid approxi- 
mation of (1) of order 1/N. 

Furthermore, there are real substances in which mag- 
netic impurities do interact in accordance with (2). These are 

primarily rare earth elements in which a helicoidal magnetic 
structure7 can form with a direction which is not fixed with 
respect to the lattice axes.' Above the point of the helicoidal 
magnetic transition, T, , impurity atoms having a localized 
magnetic moment (for example, the atoms of a transition 
metal or of another rare earth metal) interact with each other 
through the exchange of virtual magnetic excitations. In the 
range of applicability of the Landau theory the field of the 
virtual excitations has the free energy7 

In the presence of impurities, the phase transition occurs at a 
temperature above T,: .r, -ca3 (c is the impurity density, 
and a is the lattice constant). At 7, >lp0a)2(0 /&=)' I6,  the fluc- 
tuational renormalization of the spectrum of the field @ can 
be ignored, so that the interaction between impurity atoms 
takes the form in (2). 

The physical situation is slightly different in substances 
such as Y and Sc (Refs. 9-12). In their pure state these sub- 
stances do not form a helicoidal structure, but at low tem- 
peratures the spectrum of their magnetic excitations has a 
significant gap at a finite momentum. It has been asserted1' 
that this gap is nearly symmetric with respect to momentum 
direction. At low densities of magnetic impurities, helicoidal 
structures can form in these  substance^.^ It has been shown 
e ~ ~ e r i r n e n t a l l ~ ' ~ ~ ' ~  that at low densities of Er, Gd, and Tb a 
phase with properties reminiscent of those of a classical spin 
glass can form; in the Er case, the spin glass is an Ising spin 
glass. l2  

In this paper we examine the low-temperature phase of 
a system of Ising spins which interact with each other in 
accordance with (2). The basic idea of our approach is to 
single out the slow dynamic variables of the amplitude and 
phase type which describe the spin configuration. We wish 
to emphasize that we are singling out these variables at the 
level of the spinss, , not at the level of their averages (Si)2, as 
in the Edwards-Anderson approach. 13,1-5 

2. To calculate the partition function over the configu- 
rations of the Ising spins it is convenient to introduce an 
auxiliary field variable: the complex field P (x) ,  whose real 
part is the molecular field acting on the spin at the point x ,  
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where 2? is the external magnetic field. Summing overs, we 
find 

The summation in (5) is over the random positions (xi ) of the 
spins. In the average-field approximation the state (Y ) = 0 
becomes unstable at T, = cV,. We restrict the discussion 
below to temperatures T- T,; in this temperature range the 
logarithm of the hyperbolic cosine in (5) can be replaced by 
the first two terms of its expansion: 

where T = T/T, - 1 satisfies T 5 1. Two distinct low-tem- 
perature phases can form in this system: a Q phase (an Ed- 
wards-Anderson phase) and a Y phase. This question has 
been studied in detail elsewhere.14 Let us determine the 
structure of each of these phases. The Y phase corresponds 
to the formation of a condensate in the form of a wave 
Yo = p exp(ip,r + ip), where e, is a slow variable. The mean- 
field theory gives us p = const. To determine the structure 
of the Q phase we take an average of the free energy over the 
positions of the impurities by the replica method. We find 
the effective Hamiltonian 

To continue we need to assume that y = p i  % / k c  is 
small, in the approach of Ref. 14. Under this condition we 
can discard all types of perturbation-theory diagrams at 
7)yJ3, while at r 5 ?I3 we need retain only the ladder dia- 
grams. The latter lead to an instability of the paramagnetic 
phase at T = ?I3. As in the theory of superconductivity, this 
instability gives rise to an order parameter Q,, , which is the 
adjoint of Rep, Rep,, and u,, which is the adjoint of 
(Rep, j2. 

The Q phase which arises here is analogous14 to the Ed- 
wards-Anderson spin glass. As the temperature s lowered 
into the region r <0, however, the Y phase be- 
comes preferred from the energy standpoint (in the approxi- 
mation of an average field we would have F,  = - c22/ 
2 < FQ = - c2?/4); at - 7- ?I3< 1, there is accordingly a 
first-order transition from the Q phase to the Y phase. The 

condition y< 1 is very important for the occurrence of this 
first-order transition; this condition is apparently never sat- 
isfied in a real spin glass. Furthermore, as the high-tempera- 
ture series show,'5 a theory with an order parameter Q,, has 
a lower critical dimensionality greater than three, so that the 
Q phase is not an actual thermodynamic phase in a three- 
dimensional system. On the other hand, the only condition 
required for the existence of the low-temperature Y phase (as 
shown below) is the far weaker condition Tp, x2/c< 1. 

At y 2 1 the mean-field theory, which leads to the con- 
clusion that there is a Q phase, has absolutely no range of 
applicability. It can thus be assumed that the transition from 
the paramagnetic phase to the Y phase occurs in two steps, 
as does the analogous transition16 from an isotropic liquid to 
a nematic liquid crystal to a smecticA liquid crystal, which is 
described by Hamiltonian (7) without the average fields. In 
terms of Y, the smectic A state means that we have Y = p  
exp(ip,x + p ), where p is a slowly changing variable. At 
high temperatures, dislocations of the field p arise. (The field 
p is defined accurate to 277.) In this state (the nematic state) 
we have (cos(p(x) - ~ ( 0 ) ) )  -exp( - x), but the quantity 
Y + VY is still a good order parameter. At even higher tem- 
peratures there is a transition to an isotropic liquid, and all 
the Y correlation functions begin to fall off exponentially 
with distance. The smectic A state corresponds to the Y state 
in the system under consideration in the present paper. 

At low temperatures the system contains only closed 
dislocation loops of finite length I. At distances greater than I 
the system can be described in terms of the phase p:  
Y = p  exp ip. It is natural to suggest that the same qualita- 
tive picture is correct when the random term (that which is 
not diagonal in the replica indices) is retained in Hamilton- 
ian (7). The following phase Hamiltonian is defined over dis- 
tances greater than the dimension of the dislocation loops, I: 

(Here we have changed variables: x+x/2po, p-wp /2.) Under 
the conditions y<l, .r)?I3 the fluctuations of the modulus 
of Y can be ignored, and Hamiltonian (8) follows from Ha- 
miltonian (7), with 

The minimum characteristic dimension I over which (8) 
holds is the dimension over which we may ignore the fluctu- 
ations ofp. The Green's function of these fluctuations is 

G p l  = (p2  -po2)2/4p,2~2 + r ,  

so that I = p ~ z ~ l / ~ .  For y 2 1 the quantities t, v, and Ican be 
expressed in terms of the unrenormalized parameters by 
means of scaling indices: 

Unfortunately, the scaling indices (9) differ from those 
for the transition described by the part (H,) of Hamiltonian 
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(7) which is diagonal in the replica indices. To show this, we 
assume the opposite, i.e., that the random part of Hamilton- 
ian (7) does not influence the indices. We use Toner's asser- 
tionI6 that Ho belongs to the same universality class as the 
XYmodel. In this case we havep = v = 2/3 and a = 0.8 (the 
index a can be expressed1' in terms of the scaling dimension- 
ality of the irreducible tensor Su SB - SUBS2, whereS, is the 
order parameter of the XY model; see Ref. 18). The dimen- 
sionless quantity which characterizes the random potential 
is v14-T-1.'-1 ls5. We see that the random potential in- 
creases with increasing characteristic dimension and is 
therefore an important variable, whose incorporation alters 
the transition indices. The behavior of the system at large 
distances is determined in one way or another by Hamilton- 
ian (8). Let us examine this behavior for u14(1. Although the 
condition v14- 1 apparently always holds in a real Ising 
glass, we may hope that a universal behavior established for 
v l  4( 1 will also hold at v l  - 1. Furthermore, Hamiltonian (8) 
with v as an adjustable parameter arises in several other 
problems, in particular, in a description of a Heisenberg spin 
glass with spin-orbit interactions. The approach of the pres- 
ent paper can also be used for a Heisenberg spin glass (and 
also a planar spin glass), but the results turn out to be very 
different for all three types of spins. 

3. The part of Hamiltonian (8) which is diagonal in the 
replica indices has been studied by Grinstein and Pelco- 
vits.I9 It is the same as the Hamiltonian which describes a 
smectic A liquid crystal. Although the coefficients A and B 
have the dimensionality of length, it can be shown that the 
parameters of the perturbation theory are the dimensionless 
quantities and ~ r ' / ~ .  Grinstein and Pelco~its '~ showed 
that after a renormalization and a switch to large character- 
istic dimensions the Hamiltonian (8) remains the same in 
form, while the coefficients A and B are logarithmically re- 
normalized: 

Let us examine the behavior of the random v term in the 
course of the renormalization as it was carried out in Ref. 20, 
where a study was made of a two-dimensional sine-Gordon 
model. We break q7 up into two parts: q7 = p0 + +, where po 
is the "slow" field, i.e., that which has only momenta smaller 
than 1 - '< - I  in the momentum representation, and + is the 
"fast" field. We integrate the partition function over 4 ,  using 
as the zeroth approximation the Hamiltonian H@: 

In first order in v we find, after taking an average over 4, 
(exp [v cos cp. cos cpb 1 ), 

=exp [v cos cp,O cos cp(pbO (1-<(p02>/2-<(pb2>/2) ] 

=exp {v [I-Et/4n (AB) '"1 cos cp.O cos qbO). 
(13) 

As we will see below, the parameter of the perturbation 
theory is not v but fi = v ( A ~ ) ' / ~ B  -3/4. . a quantity with a nor- 
mal dimensionality of four. We thus find a renormalization- 
group equation for 6: 

The last term in square brackets falls off a 6 - ', so that 
it is unimportant to the discussion below. The expression 
Z ( A B ~ ) " ~  increases a 6  so that v falls off at sufficiently 
large characteristic dimensions; a random potential of this 
type therefore decays. 

We will now calculate the renormalization of the effec- 
tive Hamiltonian in second order in v,  and we will see that 
this renormalization generates some new and "dangerous" 
random terms. Expanding the partition function we find 
that we must take an average of the following expression 
over 4: 
V I  $ [(COS w (x) COS (Pb (x) COB (P. (XI) COS I d  ( x ' ) ) ~  2 

a,,b, e d 

- (COS 0, (x) COS Cpb (x)), (COS (PC (x') COS q d  (x ' ) )~]  dX dx'. (15) 

After the average is taken over +, the expression 
summed in (1 5) must be of the form (S,, Sbd + Sad 6, )I- 
+ (Sac + Sad + S, + Sbd )I2 + 13, where the I1,2,3 do not 

contain replica indices. The summation leaves us with only 
the term I,. We evaluate the integral in (15) for various rela- 
tions among a, b, c, andd, and we write it in the form of a sum 
of this type. The averaging over + must be carried out with 
Hamiltonian (12). The Green's function of the field 4, is 

Here k and q are the components of the momentum p which 
are respectively longitudinal and transverse with respect to 
the vector Q, . We can now carry out the averaging in (15). 
We add to the effective Hamiltonian an increment HI,  given 
by 

~ { e x p  [G, (x-x') 1-1)' exp [ -G,(O) -Gbb (0) I .  (17) 

A contribution of this type to the Hamiltonian substan- 
tially changes the Green's functions. To determine the new 
Green's functions, we vary H1 twice with respect to Qa and 
Q, . Retaining only those terms which are not diagonal in the 
replica indices, we find 

62Hi 
-= 
SQaiSQ$ 

Si (Q) 6ijfSZ (Q) Q.'Qb'+ss (Q) Qa'Qbi. 

Below we will need the value of S2H /SQa SQ, only at 
Qa = Q, . In this case we have 

v? 
~ 2 ~ ~ 3  = - 4 1 (xQ) '{exp [ G (x) 1-1)' exp [-2G (0) Id'x. 

The integral determining S2 + S3 diverges logarithmi- 
cally at ? = 1 (i.e., at the point with dv/d{ = 0) and is 
u21 '(Ar/B )3/26. Terms of the type S2(or S3) lead to a correc- 
tion 
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to the Green's function. This correction has in the limit 
k cc q 2 4  a singularity of the same type as that in G, so that 
we can determine the relative magnitude of the correction 
H,. Comparing G, and G, we find that the effective charge is 
6 = vl  4(Ar)114B -314, as was assumed in the derivation of Eq. 
( 14). 

For i=: 1, the integral in the expression for h is deter- 
mined by short distances; it yields 

h ,=: v21 '(A~/B ) ' I2.  

The expressions giving Si in terms of v are valid only for 
i=: 1, v-'dv/dl(l, but their qualitative consequences 
should hold over the entire region i 5 1. 

The terms of the type S, make a contribution to the 
Green's function which is considerably more singular than 
that from S,,, : 

Gi = t [rk + q4]-2q2h ,r. 

This singular increment leads to highly divergent dia- 
grams, i.e., to a significant change in the properties of the 
system at long range, while terms of the types, and S3 do not 
alter the logarithmic nature of the theory. In general, H, 
consists of the sum of Legendre polynomials of index 2n of 
QaQb; each polynomial corresponds separately to a ran- 
dom-anisotropy field of order 2n. The detailed structure of 
this series is unimportant for our purposes, since the Green's 
function is determined exclusively by 
(S 'H,/SQ, SQb = It is the dependence of H, on the 
angle between Q, and Qb which gives rise to the diagrams 
which are highly divergent at small momenta. We can thus 
set Q: = Qg = 1 in H,; furthermore, as we will see below, it 
is sufficient to retain only the first term in the expansion of 
H, in (Q, - Q,),, so we will examine the Hamiltonian 

ab 

where h * = v21 6(Ar/B ) ' I2.  

4. The theory described by Hamiltonian (18) is logarith- 
mic in five-dimensional space and exhibits a zero-charge be- 
havior in it. We are thus forced to resort to the &-decomposi- 
tion method. We carry out a renormalization in the 
five-dimensional space. We break up the field into a fast 
component I$ and a slow component p,: p = p, + @, 
Vp, = Q. The terms linear in @ can be discarded since p 
carries a large momentum, and these terms contribute noth- 
ing to the integration over @. In the single-loop approxima- 
tion it is sufficient to retain terms quadratic in @. (The higher 
orders in I$ necessarily lead to more loops.) 

Collecting the necessary terms, we have 

To check the renormalization procedure we must 
evaluate 

H2(Q) = ln D@ exp( - H?) J 
in second order in @. For the vectors Q, which remain con- 
stant over space the functional integral over @ can be evalu- 
ated immediately; it makes the following contribution to H,: 

w=t2h2 (Ar) '"B-"/1128nZ. 

To determine the correction to the B (V2q ), term, we must 
allow slow variations of Q. We therefore evaluate S2H2/ 
SQ, (x)6Qb (x'). This expression is given by a diagram (see 
Fig. 2 below) which diverges quadratically at large mo- 
menta. For our purposes, however, we are interested in its 
second derivation with respect to the momentum (q) which 
passes through it, so that the increment in H, is of the form 
(VQ, ),. This quantity diverges logarithmically. Evaluating 
it, we find the final expression for H,: 

In the single-loop approximation, we might point out, 
there are no diagrams which renormalize S,. Furthermore, 
no such diagrams at all are seen in the lower orders of pertur- 
bation theory, so we will assume dh ,/dl =O. In a space of 
dimensionality d < 5 this result means that h does not have 
an anomalous dimensionality. The equations of the renor- 
malization group for A and B follow from a comparison of 
H, in (21) and H in (18). We write them immediately in a 
space of dimensionality 5 - E:  

In the derivation of the latter equation we made use of 
the circumstance that the normal dimensionality of w is E, as 
follows from the scale transformation 

(A,B)-+(A,B)A4-d, r-+rAP'. 

Equations (22) have a fixed point at w = 2/11. At this fixed 
point we have A -x - 12"'11, B - x ~ " ' ~ ~  , so that the renormal- 
ized Green's function is 

Gn-'=Aka+BqB, (23) 

wherea = 2  + 6 ~ / 1 1 , ~ = 4 -  2~/11. weestimate] andB 
for d = 3. The strongly divergent diagrams in Figs. 1 and 2 
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FIG. 2. 

introduce in G ; ' = Ak + Bq4 a correction that becomes 
of the order of G; ' at 

~ k  I -qZ-q12 = 3/64~-1t  '. 
At smaller values of I k  I and q2, expression (23) becomes val- 
id. Joining these two expressions, we find 

A" q:-2a,  EN q:-B . (24) 

At E = e* = 11/4 fluctuation spectrum becomes iso- 
tropic. The fact that a spectrum becomes isotropic in the 
sense a = p does not imply a complete isotropy, s i n c e l ~ B ,  
but this "numerical anisotropy" is unimportant for the scal- 
ing relations below. The value of e* is calculated in first or- 
der of the e decomposition, so we do not have to take it 
seriously. On the other hand, there can be no doubt that 
there does in fact exist a point E at which the spectrum be- 
comes isotropic. We now present some arguments which im- 
ply e*<2, i.e., that the spectrum is isotropic in three-dimen- 
sional space. 

We first derive some exact scaling relations, without 
using the e-decomposition method. For this purpose we as- 
sume that the vertices A  and B are power functions of the 
momentum: A  - k  " - 2, B-@- 4. The Green's function is 
then 

G - I  = l k a  +BqT 

As before, the diagrams in Figs. 1 and 2 are the most singular 
contributions to A  and B. Evaluating their divergence order 
and equating it to the order of the singularity in the quantity 
(A or B ) to which they contribute, we find two scaling rela- 
tions. These relations are dependent and equivalent to 

5+d=2a+Bla. (25) 

We were able to derive this relation because the nonlin- 
ear vertex and one of the coefficients in the Green's function 
are determined by the same quantity, A d k a  -', by virtue 
of the symmetry of the problem. We are thus left with only 
two independent indices: a and 8. 

To now calculate the renormalization of the wave vec- 
tor of the structure (the quantity r), we use the renormalized 
spectrum. This renormalization is ((V@)2), SO it is finite at 
d > d *, where d * is determined by 

3+d'=2P-B/a. (26) 

In a space of dimensionality d * the integral over the momen- 
tum which determines ((Vp, )') diverges logarithmically at 
small momenta. Substituting (25) into (26), we find 
a = 8 = 2 + d */2 at the point d *; i.e., the spectrum be- 
comes isotropic at the same dimensionality at which the re- 
normalization of the period of the structure diverges. 

We note now that the quantity ((V@)'), evaluated with 
the unrenormalized Green's function, diverges logarithmi- 
cally in three-dimensional space. We would not expect this 
divergence to be removed by a renormalization of the spec- 
trum which renders the fluctuation spectrum softer. We 
checked this assumption in first-order perturbation theory 
in h ' directly in the three-dimensional space and found that 
the correction is of the same sign as the main term. This 
means that we have e*<2 and that the spectrum is isotropic 
in three-dimensional space. To derive scaling relations in a 
space of dimensionality below the critical dimensionality, 
we assume that the Green's function is of the form 
G, apP8, while the wave vector of the structure is r a p Y .  
Evaluating the divergence of the diagrams which renormal- 
ize the vertex (Fig. 1) and the Green's function (Fig. 2), we 
find the two scaling relations 

from which we in turn find B = a + y = 2 + d /2, i.e., in 
three-dimensional space, 

We can write equations of the renormalization group 
for r, assuming that its change is slow and making use of the 
isotropic Green's function in (28): 

It follows that r and, equivalently, the correlation function 
(Vp(x)Vp(O)) = C(x) have a power-law dependence on the 

distance: 

These expressions are valid only for d = d * and q: (1, 
for which the x dependence of C is weak. At d < d *, another 
solution of the equations of the renormalization group can 
arise with an index y which depends on only the dimensiona- 
lity of the space-not on h '. At the very largest distances, 
where C ( x ) 4 ,  Green's function (28) should become com- 
pletely isotropic. 

It follows from the power-law behavior of r that the 
low-temperature phase is a genuine thermodynamic phase 
which is different from the paramagnetic phase, since in this 
phase we have the correlation function (Q(O)Q(x)), which 
falls off slowly with distance, in a power-law manner, while 
in the paramagnetic phase all the correlation functions fall 
off exponentially rapidly. We might also note that the inte- 
gral determining ((Vp)) is itself determined primarily by 
the region of large momenta and is finite, so that thermal 
fluctuations do not annihilate (Q),, in contrast with the 
situation in the paramagnetic phase, where we of course 
have (Q), = 0. The Qi phase is furthermore not similar to 
the Edwards-Anderson phase; in it, for example, the Ed- 
wards-Anderson order parameter is (s),l= (@ ) ,' = 0, 
but, in contrast with the paramagnetic phase, we have 
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This result means, in particular, that the average molecular 
field acting on a spin vanishes, so that the complete-equilib- 
rium susceptibility obeys the Curie  law,^,, = c/T. The non- 
linear susceptibility ieq = - d 2 x e q / d P ,  another impor- 
tant characteristic of a spin glass, is proportional to the 
integral ,. 

and is finite at all T, as follows from (3  1). 
5. We have shown that Hamiltonian (8) with vl 4( 1 does 

in fact describe a genuine thermodynamic phase of a spin 
glass which is different from the paramagnetic phase. The 
phase transition between these two phases apparently stems 
from the nucleation of infinitely long dislocations of the field 
q,. Both the energy and the anisotropy of a linear dislocation 
are proportional to its length L in a one-dimensionally peri- 
od i~sys t em~ ' -~~ :  F (L  ) = (a - Tb )L, wherea and bare deter- 
mined by the short-range order. Consequently, the renorma- 
lizations of the spectra at small momenta caused by the last 
term in (8) should not result in the nucleation of dislocations 
at T <  a/b. 

There is the possibility that there is some combination 
of the parameters x, p,, ~ , ( x ~ c - ~ ,  for which we would have 
vl 4( 1 and y( 1. In this case the fluctuations of the modulus 
ofp are always small, and we can determine v from Eq. (9). 
To describe the long-range behavior of the system we do not 
have to make any further assumptions. This relation 
between x and po corresponds to a nearly ferromagnetic 
long-range interaction between the impurity atoms, which 
leads to the formation of a helicoidal structure of very large 
period. The transition to a state of this sort must be of first 
order (unfortunately, we cannot cite any corresponding 
physical systems as examples). 

In a real Ising spin glass the case vl - 1 apparently 
holds at all times, so that the existence of a low-temperature 
phase cannot be regarded as rigorously proved. If, however, 
there exists a temperature region in which dislocations of 
infinite length are not created then the large-scale behavior is 
still described by Hamiltonian (18), so that we have 

At temperatures above the point of the dislocation tran- 
sition, the phase variable q, is not determined. Near the tran- 
sition, the long-range behavior of the system can be de- 
scribed by Hamiltonian (18) with Vq,+Q, where Q in this 
case is an arbitrary three-dimensional vector. As for the Hei- 
senberg model with disorder, analysis by the renormaliza- 
tion-group method shows that in a four-dimensional space 
the spin rigidity p, = B falls off with increasing characteris- 
tic dimension in accordance with 

while the effective charge increases in proportion to p; ' 
("asymptotic freedom"). This result appears to mean that in 
four-dimensional space and, especially, in three-dimension- 
al space this phase is actually not different from the para- 
magnetic phase. 

Let us examine the applicability of this model, with in- 
teraction (2), to real sustances. The most important point for 
our purposes was the formation of a one-dimensionally peri- 
odic structure with an arbitrarily directed wave vector Q. 
For this purpose the interaction apparently does not have to 
be exactly spherically isotropic, as in (2); it is instead suffi- 
cient that the anisotropy be small in comparison with the 
ratio x/po. In the case of highly anisotropic interactions such 
as indirect exchange in indirect-gap semiconductors,24 

the wave vector Q is tied to the crystallographic axes, and 
the thermodynamic fluctuations of the phase q, have the cus- 
tomary quadratic spectrum. Consequently, (p2) is finite, 
and the average spins are not zero, (si ) # 0; the equilibrium 
magnetic susceptibility changes slope at T = T, . According- 
ly, the similarity which interactions (2) and (32) seem to have 
at first glance leads to spin glasses which behave very differ- 
ently. We might also note here that the description of a spin 
glass offered by Edwards and Anderson,13 in terms of quan- 

- 
tities which are bilinear in the spins, ( S  )$, is overly crude 
in our opinion, since it completely ignores the internal struc- 
ture of this state [in particular, interactions (2) and (32) are 
indistinguishable in this approach]. We know that a success- 
ful description of a highly fluctuating system requires find- 
ing slow dynamic variables which describe the deviation of 
the state of the system from equilibrium. In the case of spin 
glasses we usually do not know the structure of this state, but 
this ignorance by no means implies that the structure is un- 
important for the system itself. The approach outlined in this 
paper constitutes an attempt to identify this internal struc- 
ture for spin glasses of one type (a recent experimentz5 indi- 
cates the existence of a helical magnetic structure in the spin 
glass Cu, -, Mn, ). 

The state which we have studied does not have an order 
parameter in the Edwards-Anderson sense, (si = 0, but it 
is a genuine low-temperature thermodynamic phase. Unfor- 
tunately, the equilibrium correlation functions which distin- 
guish this phase are related to measurable quantities in an 
extremely complicated way. At the same time it is clear that 
the spin dynamics in this phase is qualitatively different from 
a paramagnetic dynamics. When we thus bring up the old 
question of whether a spin glass exists as a thermodynamic 
phase or is simply a dynamic phenomenon we come up with 
a paradoxical answer (for our case of Ising spins): This phase 
exists, but it is manifested only in the dynamic quantities. 

We wish to thank S. A. Brazovskii, I. E. Dzyaloshinskii, 
and A. I. Larkin for useful discussions of this study. 
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