
Sound and charge-density wave in the discrete Peierls model 
I. E. Dzyaloshinskii and I. M. Krichever 

L. D. Landau Institute of Theoretical Physics 
(Submitted 30 April 1983) 
Zh. Eksp. Teor. Fiz. 85, 1771-1789 (November 1983) 

Small oscillations are considered in the exactly integrable [Sov. Phys. JETP 56, 212 (1982)l 
discrete Peierls model. In the exactly integrable model, where there is no pinning, the spectrum 
has two zero-gap Goldstone modes-sound and a charge-density wave. The stability of multi- 
band stationary states is studied. 

PACS numbers: 7 1.70 Ej 
1. INTRODUCTION 

We have recently constucted and solved an exactly inte- 
grable one-dimensional Peierls-transition model. ' It com- 
prises a special generalization of the known discrete model of 
Su, Schrieffer, and Heeger.2 The system energy consists of 
the energy 2 E  of the electrons in the self-consistent field of 
the ions and of the potential energy W(x ,  ) of the atoms 

The kinetic energy of atoms was omitted (mass M-+w ). In 
our model the electron spectrum is defined by the equation 

~n$n+i+~n-t$n-i=E$n, (1.2) 

cn=exp ( X , - - X , + ~ ) ,  

and the potential energy is chosen in the form of a finite or 
infinite number of so-called integrals of the Langmuir chain 

the problem (1.4) is included in the potential energy (1.3), all 
the CDW lose their freedom to move (pinning sets in)3 and 
only one of the Goldstone bosons remains-ordinary sound. 

In this paper we take account of the fact that the mass M 
of the atoms is finite, and add to 2? their kinetic energy: 

Within the framework of the adiabatic approximation m/ 
M( 1 (m is the electron mass) we confine ourselves to small 
oscillations about the equilibrium position (1.4) and obtain 
the spectrum ~ ( k  ) of the linear problem 

n 

We note the characteristic phenomenon of dynamic 
pinning, which is due to the fact that the time-dependent 
problem (15) is no longer exactly integrable even if 2? is 
exactly integrable in the static sense. Therefore allowance 
for the energy of the zero-point oscillations 

where P is the pressure. We found in Ref. 1 all the extremals 
of (1.1): 

and showed that they are the so-called finite-band potentials 
of Eq. (1.2), where the number q of the forbidden bands does 
not exceed 41 - 2, where I is the number of integrals in (1.3). 
In particular, for I = 1 and for an arbitrary number p (other 
than 1 or 2) of electrons per atom (0 <p < 2)  there is only one 
two-band extremal (Fig. 1). The structure is always (i.e., at 
all 1 ) symmetric about E = 0 (see Ref. 1). The total number of 
states in all the bands is equal to 2; the number of states in the 
central band of Fig. 1 is equal to I p - 1 I. The chemical po- 
tential lies in the lower forbidden band at p < l and in the 
upper at p > 1 (Ref. 1, see also Sec. 3). 

In view of the exact integrability of (1.4), a number 
[J(q + I)] (see Sec. 2 below) of charge-density waves (CDW) 
can move in the system relative to the atomic lattice and 
relative to one another without changing the e ergy of the 
system. We must add ordinary sound to th ai? Goldstone 
bosons (CDW). If a term that upsets the exact integrability of 

leads to pinning and, in particular, to a dependence of the 
"devel's staircase" type on the number of electrons (cf. Ref. 
3). 

The plan of the paper is the following. In Sec. 3 we 
calculate the second (i.e., quadratic in Sx, ) variation S 'X, 
and in Sec. 4 we obtain the oscillation spectrum for the inte- 
grable case (1.1)-(1.3). In Sec. 5, on the basis of the formula 
obtained in Sec. 3 for6 2&4 we investigate the stability of the 
multiband extremals. 

FIG. 1. 

1031 Sov. Phys. JETP 58 (5), November 1983 0038-5646/83/111031-10$04.00 @ 1984 American Institute of Physics 1031 



FIG. 2. 

We shall need in our calculations some additional 
mathematical data that could be dispensed with in Refs. 1 
and 3. These are briefly expounded in Sec. 2. 

2. MULTIDIMENSIONAL RIEMANN THETA FUNCTIONS AND 
FINITE-BAND POTENTIALS OF EQ. (1.2) 

An extensive mathematical literature is devoted to the 
determination of the finite-band potentials of a number of 
equations, e.g., the Schrodinger equation or its discrete ana- 
log (1.2). The necessary information can be found in the 
known Ref. 4. The wave functions and potentials of Eq. (1.2) 
for N particles on a ring are finite-band and are completely 
determined by specifying the beginnings E,,E,, ... E,, + , and 
the ends E,,..,E,, + , of the allowed bands, as well as by spe- 
cifying the points E2, g yi <EZi+ , of the spectrum of the op- 
erator (1.2) in the problem with zero boundary conditions 
$o = $N = 0. We note that the functional (1.1) itself depends 
only on Ei. The leeway in the choice of yi at fixed Ei is 
responsible for the already mentioned zero modes of 2. 
Such a spectrum, which has q forbidden bands, is customar- 
ily called q-band (see, in particular, $4 in Ref. 1). The band 
boundaries define a hyperelliptic Riemann surface 

The latter defines in turn a Riemann 6 function of q complex 
variables v,, ... ,v,. In terms of this function it is easy to ex- 
press the wave function $, and the potentials c,. 

The method of constructing 6 functions for the surface 
r (2.1) is described in detail in the already mentioned book,4 
or as applied to the discrete equation (1.2) on a paper by one 
of us5 Much information on 6 functions can be found in 
Dubrovin's re vie^.^ Here we only list the results, and refer 
the reader for proofs in, e.g., Refs. 4-6. 

The Riemann surface r of the function (2.1) is a surface 
of kind q in a two-dimensional complex space ( y,E ) (the sur- 
face r is equivalent to a sphere with q knobs). It obviously 
corresponds to the product of q -I- 1 cuts along the allowed 
bands (Fig. 2). A complex surface of kind q has (see, e.g., Ref. 
4) 29 independent cycles. The cycles a,, ..., a, go over the 

forbidden bands (Fig. 3), and the cycles b,, ..., b, are shown in 
Fig. 3. The projection of the cycles b, on the physical energy 
plane E is shown in Fig. 2; they encircle respectively 1,2, ...,q 
allowed bands. The function R "'(E ) becomes single-valued 
on the surface r. 

We define q holomorphic differentials w, on r. They 
are given by 

QA@) dE, a,,= - 
R" (E) 

where Qk(E) are polynomials of degree q - 1. Their coeffi- 
cients (qZ in number) are uniquely determined from the q2 
conditions 

$ UA=~A,.  (2.3) 
a, 

The integrals of w, over the cycles b, specify the matrix of 
the Riemann coefficients 

It  is symmetric and has a positive imaginary part. 
We introduce finally the quasimomentum p with the 

aid of the relation (cf. Ref. 1) 

The coefficients r,,. .., are determined from physically ob- 
vious conditions whose meaning is that the number of states 
in each forbidden band is zero: 

9 dp=O. (2.6) 
a@ 

The differential idp is not holomorphic. It has simple poles in 
the operands of infinite energy E m+ and E ; on the Riemann 
surface, with residues + 1 and - 1, respectively. 

The definition (2.5) of the quasimomentum differs 
somewhat from the customary one. The quasimomentum p 
of (2.5) is not referred to an actual Brillouin zone specified by 
a real lattice period, and is normalized by the condition that 
the number of states in all the allowed bands be equal to 
unity. In this case p > 0 and runs through values from zero 
to P. To verify this, we recall that states in allowed bands are 
doubly degenerate'v4 (the obvious p-+ - p  degeneracy). 
Therefore the total number of states is 

where b is a cycle that encloses all the allowed bands (see Fig. 
2). The integral with respect to b can be taken along a con- 
tour that encloses one infinity on r. It follows then directly 
from (2.5) that 

~ ~ j Y p = r e s + .  n ip=i .  
4 

The numberp of occupied states (the number of electrons per 
atom) is given, with allowance for the spin, by 

FIG. 3. 
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where the cycle b, encloses all the filled bands. 
We are now in a position to define the Bloch wave func- 

tion $, (E ) as a single-valued function of the energy E [or of 
y(E )] on the Riemann surfacer (cf. Refs. 1 and 4-6)). It is for 
this purpose that one uses the multidimensional 8 functions, 
which are naturally connected with the Riemann surface of q 
variables v ,,..., v,  . The function 8 is given by 

OD OD 

= x . . . e x p  { n i t  Bk,mkmi+2ni 2 u.rnk}. 

In the case q = 1 Eq. (2.7) reduces to the standard ellip- 
tic function O3(u,r) with r = BI1. When speaking of one-di- 
mensional elliptic functions we shall hereafter use, unless 
otherwise stipulated, the standard notation of the Erdelyli- 
Bateman  table^.^ 

The function (2.7) has periodicity properties that gener- 
alize in natural fashion the equations for 8,(v,r). Namely, 
when any of the v, is shifted by unity the function 8 is not 
changed, but following the shift 

Vk-+~k+Bk[ 
we have for any fixed I 

0 (vk+Bk,) =SO (uk) exp  (-niB,[-2nivl).  (2.8) 
We introduce finally three different q-dimensional vec- 

tors. One A = (A, ) depends on the energy E [of the point 
Y(E 11 

El 

and the other two are constant, i.e., independent of the ener- 
gy y(E), namely U: 

and V = ( V, ) . The Bloch function is then given by 
0 (A+nU+V) 

4, ( 1 )  =rn exp  in { E,  f d p  0 ( A + V )  ' 

As explained in Ref. 1, the products NU, (N is the number of 
atoms) are integers, so that the function 9, (y) has in accord 
with the properties of 8 the correct Bloch behavior: 

$~+N(Y)+$~(Y)~~P(~NP(T)). 
The function $, does not change when y encircles any of the 
cycles a or b. On circling along a, we have 

C + Qn e x p  { i n  f d p )  0 (A+v) 0 ( A ~ + ~ U ~ + V , +  f o,) 
01 .,I 

which coincides with $, by virtue of (2.3) and (2.6). On cir- 
cling along b,, 

=Qn exp  { i n  $ dp-2ninUi), 
bl 

which coincides with $, by virtue of (2.10). 
To find the hop-over integrals, meaning the potentials 

c, = exp(x, - x,  + ), and the displacements x, it suffices to 
consider the behavior of the wave functions +, at infinite 
energy. It is known (see, e.g., Refs. 1, 4, 5) that at a certain 
renormalization we have 

$,+exp (*x,)E*", 
when E tends to the upper ( + ) or lower ( - ) transform of 
infinity on the Riemann surface. Therefore 

e x p  (22,) =E-'"$, (E+ ) I$, ( E - )  , E-+ m 

with $, from (2.11). Recalling also the formula for the quasi- 
momentum (Refs. 1,4, 5) 

ip (E*) =* (ln E-1,-Z2EZ--. . .) , 
we obtain 

where f A,,  are the transforms of the functions A ,  at both 
infinities. Using Riemann's known bilinear relations (see, 
e.g., Ref. 6) 

Ako='Iz- Uh, (2.12) 

we obtain ultimately 

where @, = V, + 1 is the set of q constants that constitute 
the "coordinates" of q charge-density waves. 

For the Schrodinger equation (1.2), the spectrum is 
symmetric: 

E-t -E,  $,+ (-) "$n (2.14) 

(see Fig. 1). Therefore the matrix Bkl has an additional sym- 
metry, which enabled us earlier1 to solve the problem and 
express the quantities of physical interest, including the dis- 
placement x, and the charge density &, in terms of ordinary 
elliptic functions without resorting directly to the general- 
theory results presented here. The calculations that follow 
for the oscillation spectrum are essentially based on Eq. 
(2.11). 

3. SECOND VARIATION OF THE ENERGY 

We confine ourselves here to the physically most inter- 
esting three-band case of Fig. 1, and defer the discussion of 
the multiband situation to Sec. 5. 

At arbitrarily small variations Sx, of the ion positions 
(and Sc, of the potentials) the spectrum of Eq. (1.2) is no 
longer three-band. New gaps appear in the allowed bands, 
and their number can in principle be arbitrarily large (of the 
order of the number N of the atoms). From the spectrum- 
formation picture described earlier1 (see in particular Fig. 3 
of Ref. 1) it is clear that at infinitely small variations no new 
narrow allowed bands will appear in the initial forbidden 
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bands in Fig. 1. The displacements of the boundaries of the 
old bands El, E,, E, in the limit as N+w, which are possible 
in principle, are of course immaterial. 

It turns out that there is a simple formula that expresses 
the second variation in terms of the squares of the widths 
(Se,)' of the new gaps ( j  is the number of the new forbidden 
band). It was recently obtained by one of us5 for the previous- 
ly considered1 model 11. Here we describe its derivation for 
the problem (1.1)-(1.4) (model I of Ref. 1). 

We write the total energy in the form 

R (E) should be chosen to be 

For the quasimomentum we have the formula1 
idp= (EZ+C) R-'" ( E )  dE (3.3) 

and C from (4.23) of Ref. 1. We recall also that at the energy 
E that tends to the upper infinity we have' 

The E+ - E symmetry allows us to operate with the picture 
of the spectrum using the variables E (Fig. 1 b). The opening- 
up of new K < N gaps Se; at the points ej  (Fig. 4), where 
e;, = e; + 1 6ej, is described by the obvious formula for the 
quasimomentum: 

x - 'h 
idp=Q,.+, ( E )  P(E) (Ez-e,,') (Ez-ej-') ] dE, (3.5) 

I-( 

where Q,,, , is a polynomial of degree 2K + 2 with coeffi- 
cients determined by the conditions (2.6) for all cycles a, on 
Fig. 4. Variation of the ej, likewise does not alter the inte- 
grals along the cycles b,, since1 they are rational numbers. 
Therefore 

In addition, the polynomial Q,, +, should be such that when 
one of the gaps collapses, namely Sej = 0, any trace of its 
existence, i.e., the point ej, would vanish from Eq. (3.5): 

QzK+z+ (EZ-ej2) QZXt 6ej2-4. (3.7) 
Expanding (3.5) up to terms of second order in Se; we 

obtain 
I 

i6dp=Q,,+2R-' ( E )  (~'-ej2) -', 

FIG. 4. 

where the coefficients of the polynomial 04K + , are certain 
expressions that are quadratic in Sej. By virtue of the condi- 
tions (3.61, the residues Sdp at the points e j  are zero. More- 
over, since the integrals of Sdp over all the cycles aj and bj 
vanish, the integral of 6dp is uniquely defined: 

lE 

C= J 6dp. 
81 

It is a meromorphic function with simple poles at the point 
e,. Its behavior at large E is determined from (3.4): 

Hence 

B E V D E  E 
i6p= At +-z R" ( E )  E'-e: ' R'" ( E )  

(3.10) 
i 

The coefficients A,, B, and D are certain quadratic 
forms of Se;. The coefficients A, can be easily found by differ- 
entiating (3.10) with respect to the energy E and comparing 
the senior-order singularities with (3.8). This yields 

with C from (3.3). The coefficients B and D contain also 
mixed terms Sepe: and terms linear in Se;. The coefficients 
B and D, however, make no contribution whatever to the 
second variation of the energy for the extremals of the func- 
tional~ (3.1 ). 

The last circumstance follows from the fact that B and 
D can be expressed with the aid of (3.9) in terms of SIo and 
SI,. Comparison of the constant terms and of the terms of 
order E -2 yields 

The corresponding part of the momentum variation 

iSp= (BE3+DE) /R'" ( E )  

has the same structure as the first momentum variation giv- 
en by Eqs. (4.9) of Ref. 1. Therefore its contribution to the 
energy (3.1) is cancelled by - P61, + xSI, by virtue of the 
conditions for the consistency on the extremals (4.20) and 
(4.21) of Ref. 1. Only the terms of (3.10) contribute to the 
variation. Taking (3.11) into account, we can write the final 
formula 

The constant C of (3.3) was defined by Eqs. (5.20) in Ref. 1. 
Equation (3.12) and its generalization to the multiband 

case, considered in Sec. 5 below, are extremely convenient 
for the investigation of the stability of the extremal. How- 
ever, its diagonal form notwithstanding, its "eigenvalues" j 
do not yield directly the lattice vibration frequencies. The 
point is that in the space of the atom displacements ax,, 
where the kinetic energy (1.5) is specified, the "eigenvectors" 
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6ej are not orthogonal at all (besides the obvious double de- 
generacy). To find the frequencies it is necessary also to ex- 
press Se,2 in terms of ax,. 

4. FREQUENCIES OF LATTICE VIBRATIONS 

Let us calculate the displacements that correspond to 
opening-up of exactly one gap Sej against the unperturbed 
background in Fig. lb. We use here explicitly the symmetry 
of the spectrum (2.13), by virtue of which the squared wave 
function $2, depends only on E '. In terms ofE and qh2 we can 
literally repeat everything said in Sec. 2. We put E = A and 
furthermore 

6e:=6hj, Ei2=AI, Ez2=A2, E32=A3. 

For the holomorphic differentials and for quasimomentum 
on the surface A we use the capital letters L?, and P, respec- 
tively. The cuts and the cycles on the A plane are shown in 
Fig. 5, where2 , = A, f 56A. The quasimomentum P is giv- 
en (at 6A= 0) by the formula 

where Cis the same constant as in (3.3) and R (A ) is R (E ) from 
(3.2) but expressed in terms ofA and A. It is clear that P = 2p 
(but O<P<r ) .  

In accord with the exposition in Sec. 2 we have 

Wn2 (A) 
L 

= r n  elrp { in  j d p } ~ '  (A.  (h )  + ~ k n -  v k )  /02 (A.  ( A )  -v ,) .  
A1 

(4.2) 

Here 6 is the two-dimensional theta funtion (k = 1,2) corre- 
sponding to the Riemann surface of Fig. 5; A,, P, and the 
matrix B,, are determined by the equations of Sec. 2 with the 
substitution R (E )+A R (A ), and 

Repeating the arguments that have led to (2.13), we get 

exp (4xn) =exp (-4n1,) O2 (Uk+mk) 0' ( ( n - I )  Uk+clDk) 
x [ez(-Uk+@k) 0 7  ( n f  I )  Uh+@k) I-', (4.4) 

whence we get for small displacements Sx, (orthogonal to 
the constant displacement Sx, = const) 

b2 

FIG. 5.  

In particular, for an equilibrium phason with SA = 0 
the theta function is one-dimensional, U = p/2, and the vari- 
ation in (4.5) is the variation of the phase @. Therefore 
6xph - Un ph a@, 

un,=Osl ('lzp ( n - I )  +@) 10, ( ' I z p  ( n - l )  +@) 
-0, ' ( i /2p(n+l)  + @ ) / 0 , ( i / 2 p  ( n + l )  + @ ) .  

(4.6) 

We are interested in the terms -6A in the displacement 
(4.5) as the width 6A of the additional band tends to zero. 
These displacements are determined by the limiting behav- 
ior the matrix B,, defined in accord with the rules of Sec. 2 
and of the vector U, from (4.3), accurate to 6A. 

The unperturbed value of the differential L?, (see Fig. 5) 
is 

and the unperturbed 

We denote the latter r in accord with the remarks made in 
Sec. 2. The quantity r is, e.g., a standard parameter of the 
function 8, in (4.6). Its value was calculated in Ref. 1. 

With accuracy linear in SA, the differential f2, does not 
change: 

The same holds, of course, also for B, ,: 

and for B,, we have correspondingly 

A' 

We can also write 

whereA (A ), according to the definitions of Sec. 2, is the limit- 
ing value of the component A ?)(A ) of the vector A,: 

It is convenient to use for the subsequent calculations 
the elliptic parametrization used earlier in Ref. 1. In the first 
parametrization (Sec. 5 of Ref. 1) we introduce the variable 

and everything is expressed in terms of the Weierstrass ellip- 
tic functions p(z,), (z,), a(z,) with periods h, and hi, 
shown in Fig. 6a of Ref. 1. In the second parametrization we 
use Weierstrass functions of 

4 

with periods 2w, and h;, shown in Fig. 6b in Ref. 1. All the 
calculations are perfectly analogous to those of Sec. 5 in Ref. 
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1, therefore we shall as a rule write down the answers direct- 
ly. 

In the first parametrization 

In the formula foril the parameterz,, is the transform of the 
upper infinity on the Riemann surface: 

zio=201'AO 

with 2, from (2.12). The constant h is determined, as in Ref. 
1, from the condition il(w; ) = 0. 

It remains to calculate the limiting behavior of the holo- 
morphic differential 0,. Since its integral with respect to the 
contracting cycle a, is finite, the differential R, is trans- 
formed in the limit as S R - 4  into the so-called differential of 
the third kind (see, e.g., Refs. 4 and 6), with residues f 1 at 
the transforms of the point So: 

In the parametrization of z, we write directly 

with a from (4.9). 
The constant h,  is obtained from the normalization con- 

dition 

This yields 

hi=-4qlfu. 

Finally 

z+=20i1A (A+).  

We expand the result in terms of the small quantity 
y=z+-20,'~-6h. 

We have 

niB,,=ln a ( - y )  -In o(40, 'a)  +8q,'azo1'+ . . . . 
On the other hand, according to the definition (4.11) 

ilz6h=h (2,) -A(2aolf )  ='Iz{f (z++zlo) 
-5 (z+-z1o) -5 (2ao,'+z,o) + f  ( ~ o t f - z l o )  ) 

=L/zy[-p (2aoif+zlo)  +p (2aoif -z lo)  I +. . . . 
Finally 

niBzZ=ln &-In [p (2aol'+zl0) 
-p (2ao11-z lo)  ]-In o (4011u)  +8q1'azol'+O(6h). 

(4.14) 

FIG. 6. 

When the gap Sil collapses iB,,-t - co . Therefore in 
the first-order approximation it suffices to retain in Eq. (2.7) 
for the 8 function, which is two-dimensional in this case, 
only terms with m, = 0, + 1. Recalling that B,,  = 7, we 
have 

0 (v, ,  U Z )  (u , )  S exp (in&=) 

f exp [ni  ( ~ m ' - 2 B , ~ m )  +2ni (v,m-uz +0 ( 6 V ) ,  
m 1 1 1  

or 
0 (v, ,  v z )  =0, (u , )  +exp (niB,,) [03 ( v l  

+2a) exp (2niuz) +Os (ui-2a) exp (-2nivz) ] +. . . . (4.15) 

The increment linear in SR- to this formula is precisely the 
same88 that must be inserted in (4.5) to obtain the perturba- 
tion Sx, that opens up exactly the only gap of width 6R- at the 
point Ao(8 ). The lucid form of this increment allows us to 
determine the general character of the oscillations and cal- 
culate the speed of sound in CDW. 

In the beginning we did not write out the explicit forms 
of v, and v,. We have 

vl=nU+@, U='/zp, 

where @ is an arbitrary complex number. 
Next 

vz=nUZ+q, 

where p is again an arbitrary complex number, and (see (4.3)) 

wherep(R-,) [or P(a) ]  is the value of the quasimomentum at 
the point where the gap is opened. It is natural to express all 
the quantities in terms of P. This calls for calculation of the 
functions a(P ) and Ao(P ). 

According to the general properties of the momentum 
we have 

idP= [ f  (z l+zlo) -5 (2,-zio) +h,] dzl. 

The constant is obtained here from the vanishing of the inte- 
gral over the cycle a,: 

This yields 

hz=-2qif~lo/wi' 

and 

iP (a) = In 
(5 (zto+201'a) - -4aqi'zlo. 
o(zlo-2ol'a) 
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Owing to the presence of the complex "phase" q, in the 
equation for v,, the state 6xn corresponding to the given 
6R (P ) is doubly degenerate. The independent displacements 
can be chosen to be 

6xn*=exp (inBz, ( P )  ) un* ( P )  e*'="; 

u,' ( P )  

where a is connected with P by the relation (4.16). 
The functions (4.17) have, as expected, an explicit Bloch 

structure. The lattice period coincides with the period of 03, 
i.e., is equal to the denominator of the irreducible fraction r 
that specifies the rational number U = p/2. It is therefore 
clear beforehand that the spectrum of the vibrations will be 
determined by an r X r matrix that connects the vibrations 
with momenta P that coincide in modulo 27r/r. 

Of course, it is possible to transform to an irreducible 
Brillouin zone with dimension 2a/r and to an irreducible 
quasimomentum 0 < k < r/r .  

In our calculation method the matrix 6 ,&" is diagonal 
in the basis 6x: (P ) [or 6x: (a)], directly diagonal in the 
representation of the momentum P (or of a). Its elements are 

diag 6'%=p(a) 6LZlexp (2niBz2) ( I unf 1 '), 
where (...) is an average over the lattice: 

Substituting here B, from (4.14), we get 

diag 62%=p(u) o2 (4011a)  [p (2aoi'+zio) 
-p (2ao l1 - z lo ) ]  Z/exp(16qi'a201') ( 1 urn* I '), (4.18) 

wherep(a) =p(e;) from (3.12). On the other hand, a matrix 
of the form 26x: is not diagonal in the basis and breaks up 
precisely into r x r blocks. Equations (4.17) and (4.18) reduce 
in principle the problem of calculating the spectrum to a 
determination of the eigenvalues of r X r matrices. 

Equations (4.18) permit a rather simple determination 
of all the zero-gap modes. Clearly, they must be sought 
among the values of P or a at which 6 2X vanishes. It can be 
seen from (4.18) that there are only four suspicious values: 

accordingly 

P2=2nU=P,, P,=n. 

At these values of a the numerator of (4.18) has a zero of 
fourth order. On the other hand, according to (4.17) the 
functions u * themselves vanish at these points, and as a 
result 6 vanishes quadratically, as was to be expected. 

We note also that at the point a, the variation 6 2X 
remains finite. The point is that the value a = 4 corresponds 
to an energy R = 0. Then, according to Eq. (3.12) for p ,  this 
quantity itself becomes infinite like - A  -2 - (a - ?)-,, can- 
celing out the corresponding zero. The remaining three 
points correspond respectively to the values E f (A ,), E : (A,), 
E :  (A 3, on Figs. 4 and 5. This circumstance is in full agree- 

ment with our intuitive notion that a zero-gap mode should, 
in essence, only shift the spectrum boundaries and open up 
small gaps near A ,, A ,, and A ,. 

We note that the momenta P, = P3 are equal to 7rp at 
p < 1 and are equal to a(2 -p) at p > 1. 

It is not difficult to calculate 6 2X near the zeros. The 
corresponding standard calculations with elliptic functions, 
given in the Appendix, yield 

diag, 6 Z % = P Z F l / ( 1 + ~ i 2 ( ~ p h 2 ) ) ,  
diag, 6 2 Z =  (P-2nU) 'Fa/ (1+1622(~pd) ) ,  (4.19) 
diag, (P-2nU) 'F3/ ( 

In the state 2 the momentum P < 29U, while in the state 3 it 
is larger than 27rU. Here u,,, is the phason described by Eq. 
(4.6). Expressions for FB, xB ( /3 = 1,2,3) are given in the Ap- 
pendix [Eqs. (A. 1)-(A.3) and (A.7)]. 

If only the zero-gap-mode spectrum is of interest, it suf- 
fices to retain from the total r x r matrix only the 3 x 3 matrix 
that connects the three states (4.19). It is then possible to 
transform the quasi-momentum k and to the reduced Bril- 
louin zone; naturally, in this reduction Pand P - 27rUcoin- 
cide. 

According to (A. 1)-(A.3), the three-dimensional space 
of interest to us is drawn over the vectors (/3 = 1,2,3) 

~,,~=a"" ( I + x ~ u , ~ ) .  (4.20) 

Equations (4.20) are in full agreement with Goldstone's 
theorem. Only two of the three functions are independent 
and are generated respectively by the homogeneous dis- 
placement 1 and by the phason u,,,. There are therefore 
only two zero-gap modes, sound and CDW, meaning that 
our 3 X 3 matrix is degenerate. 

The velocity c = ~ ( k  )/k of the zero-gap mode is deter- 
mined, according to (1.5) by equating to zero the determi- 
nant of the matrix (w = 2Mc2) 

i l+ulz-F,w 1+uiu2 I+u,u, 
I+u1u2 l+u?-P,w I+u2u8 

\ l+ulus l+u2u8 I + U ~ ~ - F ~ W  

equation 
where u, = x, (uZ,,, ) ' I 2 .  We obtain for w, as expected, the 

which yields only two finite velocities. 
The equations obtained express in principle, with the 

aid of the results of Ref. 1, the velocities of the sound and of 
the CDW. The actual formulas, however, are in themselves 
not of interest, in view of the patently model-dependent 
character of the problem, and will not be cited here. Further- 
more, the speed of sound can be directly determined from 
the compressibility, an expression for which is also given in 
Ref. 1. 

5. STABILITY OF MULTIBAND SOLUTIONS 

Formulas such as (3.12) for the second variation permit 
in principle, since they are patently "diagonal," investiga- 
tions of the stability of multiband solutions of the variational 
problem (1.1)-(1.4). We verify first of all pj of (3.12) is posi- 
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tive, i.e., that the two-band (i.e., with two forbidden bands) 
solution investigated in Secs. 3 and 4 and in the preceeding 
paper1 is stable in the case when only the smaller integral I, 
is retained in the elastic energy. 

In the variables A = E the integral in (3.12) takes the 
form1' 

d h  
I= J 

A1 
RIh (h)  (h-ez) ' 

At e2 <A,, i.e., in the central allowed band, the integrand is 
clearly of definite sign. Moreover, from the definition of the 
quasimomentum (3.3) and from the fact that it is positive and 
monotonic it follows that 

-i(h+C) R-'" ( h )  >O, 

in particular (see also Ref. I), A + C reverses sign (has a root) 
in the interval A, <A <A,. Hence 

-i (e2+C) R-'" ( h )  <O 

at e2 <A,, A, <A <A,, and we obtain directly 

For e2 in the outer bands, the expression for J can be 
transformed into 

by simply representing J in (4.1) as a contour integral and 
drawing an additional cut from A, to - oc, (Fig. 6). The 
integrand is again of definite sign, and the previous argu- 
ments repeated verbating yield a positive p(e2). 

We proceed now to the multiband solutions. As shown 
in the preceeding paper,' such states exist only when the 
number I of the invariants I,, in (1.3) exceeds unity. The 
number q of the bands does not exceed in this case 41 - 2. It 
will be shown below that the extremals of X are unstable at 
9>21> 2. 

We derive now a formula that replaces (3.12) for the q- 
band state. The same arguments as in Sec. 3 yield in lieu of 
(3.10) and (3.11) 

i8p= (11E9+*+ . . . +la) R-" ( E )  - E c (ej) (6e:)' 
16R" ( E )  e,2 (E2-ef)  

j 

for even q. Here r = q/2 + 1 and M, (e) is a known polyno- 
mial, contained in the numerator of the formula (2.5) for the 
quasimomentum. For odd q we have 

i6p= (llEg+'+ . . . +Z,)R-% ( E )  - 
1 M,(ej) (6ej2)' 

16RBia(EI z r.lE2-r.1 ' 

where r = (q + 1)/2 + 1. We note that the polynomial M,(e) 
is even and does not reverse sign in the central forbidden 
band. 

From a comparison of (3.9) with (5.2) and (5.3) it can be 
seen that the variations of the first r invariants SI,, 
SI,, ..., SI,,-, are expressed in terms of the independent pa- 
rameters I ,,..., l,. The variations of the remaining S I  f ,... and 

accordingly of Sp break up into two parts: S"'I,, and S'l'p, 
which can result from the expansion of the first term of (5.2), 
(5.3) in powers of E -', and S'2'12k, and S'2'p, generated by 
expanding the second term. (Accordingly, the energy vari- 
ation of the energy takes the form 2.) 

A-r 

The terms containing 6"' are linear algebraic relations 
between the r quantities I,, ..., I,. They clearly coincide with 
the condition for the vanishing of the first variation of A?, 
considered in Ref. 1, and drop out of the second variation as 
in Sec. 3. Therefore 

- - 
h-r 

The appearance of the second term in (5.4) is a distinguishing 
feature of the multiband (q > 2) case. 

Before we proceed to investigate (5.4), we note that posi- 
tiveness of S certainly requires that the chemical poten- 
tial be in the forbidden band. Otherwise the gap Se,, which 
opens up at e = p, would make the typical Peierls singular 
negative contribution (Se,)' InSe,. We have previously ob- 
tained the same result from the condition that the energy be 
an extremum with respect to the number of electrons. 

Let now r >  I - 1. Without writing out explicitly the 
self-consistency equations, which are perfectly analogous to 
those in Ref. 1, we note that the vanishing of the coefficient 
of 612, + , in SA? yields 

for even q and 

for odd q. 
In analogy with the derivation of (3.12), we find that 

for even q and a similar equality for odd q. For S 2X we have 
again Eq. (3.12), where 

at even q. At odd q we have 

The cycle b, (the integral from A, up top2) encloses a certain 
number of allowed bands on theA plane. It is necessary here 
to include in the allowed bands cuts ((A, + , , - co ) for even q 
and (0, - CZJ ) for odd q (Figs. 7a,b), and take into account the 
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FIG. 7. 

possibility of transforming from an integral from A, up top2 
to an integral from p2 up to - co . It will become clear later, 
however, that for odd q the "band" (0, - co) must not be 
included among the allowed bands that remain outside the 
c~n tou r .~ )  The reason, in final analysis, is the already men- 
tioned fact that in this case the polynomial Mq/e = f (e2) has 
no roots in the interval (O,Aq + , ). 

Let the number of the forbidden bands that separate the 
allowed bands outside the contour be u, and let the number 
of the similar forbidden bands inside the contour be v. We do 
not include in v + y the forbidden band that contains p2. 

Without loss of generality it can be assumed that u>v, 
for in the opposite case the integral from A, up to p2 can be 
replaced in the succeeding equations, as already mentioned, 
by an integral from - 03 to p2. 

We assume that pj in (5.6) and (5.6') is of constant sign, 
and show that this leads to a contradiction at q>21. Since Mq 
(or Mq/e in the case of odd q) has simple zeros in the forbid- 
den bands, the integrals in (5.5) and (5.6) should have u + v 
simple zeros T, in the forbidden bands that are not crossed by 
b, : 

(The same equation holds for odd q if the substitution 
R (A )+AR (A ) is made; the reasoning remains the same). On 
the other hand, we can choose v points v,; t = 1, ..., v, in the 
forbidden bands inside the contour and verify that the inte- 
grand in 

is of constant sign. In fact, all the differences A - T, are neg- 
ative, and the product in the numerator reverses sign by as 
many times as R 'I2(A ). On the other hand at v<u the inte- 
grand can be expanded in partial fractions: 

thus obviously contradicting (5.7) and (5.5). 
Thus, states with the maximum possible number of 

bands, with exception of the two-band state at I = 1 (model I 
in Ref. 1) are certainly unstable. By the same token, the ear- 
lier assumptions3 that the maximum-band extremal is un- 

conditionally preferred energywise is not confirmed. 
States with a smaller number of forbidden bands must 

be individually studied, and this cannot be done analytically. 
We confine ourselves therefore to a cursory description of a 
case in which two Toda integrals, x,I, + %,I4, are preserved 
in the elastic energy (1.3). The maximum number of unstable 
forbidden bands is equal to six or five. 

The calculations necessary for the study of the stability 
of the two-band state (Fig. 1) are confined as before to the use 
of elliptic functions. We shall not investigate the extremum 
conditions,' but examine only the form of the second vari- 
ation of (5.4). We have 

62W=- - 6'2 'pdE+~z6 'z ' I~ .  J Tr 
(5.8) 

We obtain S'2)~4 by comparing the coefficients of E - 4  in (3.9) 
and in the second term of (5.2) [or of (3.10) and (3.1 I)]: 

- 1 c (e,l+C) (6%')' 
&- 3 e jz 

j 

Substituting this in (5.8) we arrive at an equation of the form 
(3.12) with 

Equation (5.9) does not make p, positive a priori, since 
this calls for a detailed investigation of the dependence of the 
solutions El,  E2, E3, C of self-consistency equations on x,. 
Nonetheless, it follows from the foregoing that X has no 
stable extremals with more than two bands. Therefore, if pj 
is no longer positive in (5.9), this can occur only if X is not 
bounded from below, as can occur in the case of negative x2 
with large absolute values. 

APPENDIX 

We begin the calculation with the aid of (4.18) with 
( I u: 1'). Near a = 0 and P = 0, expanding (4.17) in terms of 
a and P, we have 

u,* ( P )  - ~ 2 i P + 2 a u , ~  

with unPh from (4.6). 
We express now a in terms of P with the aid of (4.16): 

whence 
u,,* ( P )  = ~ 2 i P  ( l+xiuph) ,  P-0, 

xi=-1/4 [ol'L ( ~ $ 0 )  - ~ i f z ~ o l ,  
(A.1) 

( I u," ~2>=4P2(1+?Cle(~p;) ) .  

Near a = r / 2  with P(2U we have 

u,* ( P )  =exp [-in~F2ninU+2ni (2a-T) ] 
~ { e x p  [ r i (P-2nU) I  e3 (U(n -1 )  

k ( 2 a - T )  + cD)/O,(U(n-I) +@) 
-exp [*i(P-ZnU)] 03(U(n+ I )  
rt (2a-z)+@)/03(U(n+l)  4-0)) 
-exp ( -znzr2ninU)  [r2i (P-2nU) 
* (2a-T) up,] . 

We have used the condition 83(v + T) is periodic.' The con- 
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nection between 2a - rand P - 2 ~ U i s  again obtained from 
(4.16) (it must be taken into account that r = w ~ / w ; ) :  
i(P-ZnU) (2a-z) {at' [ S  ( z t o + ~ )  +E (210-01) I -2r~t'zio). 

We finally have 

u,* (P) = r 2 i  (P-2nU) exp (-inzF2ninU) (l+xzuph), 

P-r2nU-0, 

In perfect analogy, we obtain near the point a = 4 + 4 r 
u,*(P) =~2i(P-2nU) exp (-inzF2ninU) (l+xsuph), 
P+2nU+O, 

xs=-1/2{0i1 [f (z,o+ol+o~) +5 (z,,-0,-a,')] -2qirz,o). 

(A.3) 
Equations (A.2)-(A.3) with allowance for (4.17) prove (4.20). 

It remains now to expand the function a and p near the 
points a = 0, 4 7, 4 + 4 r. At a = 0 this yields 

diagi6'i% - (4ai'a)'p'2(z10) 
-. 

P (O) 4P2 ( 1 + ~ i ~ < ~ ~ h ~ ) )  
or, using the connection of a with P 

Near a = 7/2 we have 

diag, 6' 28 0' (20,f  20,' (2a-z) ) -__.= 
IL (2/2) exp (4qi'o,Z/oi'-20iin/oi') 

Using the relation between a and P and the known identity7 

-qioi'+ql'oi='l~i, 

we obtain 

Similarly, near a = 4 + 4 r we obtain 

diag, 4(201'xs)'p'~(zi0+oi+01') (4 
= (P-2nU) 

p (i/t+z/2) 

It remains for us to calculatep. In the factor preceeding 
the integral in (3.12) we can simply substitute respectively 
E:, E: , E : and C from the preceeding paper.' To calculate 
the integral in (3.12) it will become necessary to use the sec- 
ond parametrization of Ref. 1. The variable z, is introduced 
with the aid of the relation 

1 dl. 
2.--I-- 2 R"(h) ' 

-4, 

The inversion is given by the Weierstrass elliptic function 
p(z,) with periods 20, and 20;, shown in Fig. 6b of Ref. 1: 

The integral in (3.12) is written in the form 

At the point a = 0 we must calculate 

We note for this purpose that the integrand itself is a linear 
function of p(z2). The concrete form is determined by the 
position of the zero z, = w; and of the pole z, = 0: 

For the integral we have 

2 
gJ/'(02') 

(-f (202) -20283 (02') 

Similarly, at the point a = r/2 we get 

- 4 
p ' / (~2+02~)  

(q2+02p (02+0z1) 1, 

and at the point a = 4 + r/2 

Combining the results, we obtain the final formula for Fg of 
(4.19) 

where 

@ii=Ol ai2=0~, @13'01+01') 

a2,==~., U ~ . = W . + ~ ~ ~ ,  @ 2 3 = ~ ~ ' .  

"Owing to the evident symmetry of the problem we can assume that the 
chemical potentialp lies in the lower forbidden band, Et < p  < E,. 

"For uniformity we designated the variations of the first r invanants SI,, 
likewise by 6"'1,, . 

3'0n the contrary, the band (0, - 00) must be included among the bands 
enclosed by the contour (Fig. 7b). 
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