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A theory is derived for the nonlinear high-frequency hopping conductivity of a semiconductor far 
from the percolation threshold, i.e., from the Anderson transition. As was shown by Pollak and 
Geballe, the conductivity is determined by the transitions of an electron between a pair of centers 
separated by less than the average distance. The real part of the conductivity is studied as a 
function of the temperature and of the frequency and amplitude of the high-frequency field. The 
nonlinear behavior ofboth the resonant (phononless) and nonresonant (relaxation) components of 
the conductivity is analyzed. The role played by spectral diffusion is discussed in a description of 
the nonlinear behavior of the resonant component. The nonlinear decay of the resonant conduc- 
tivity is shown to begin in comparatively weak high-frequency fields, so that special measures 
would have to be taken to observe the linear region. The nonlinear behavior of the relaxation 
component of the conductivity becomes substantial in far stronger fields, and this is a typical low- 
temperature effect that becomes easier to observe as the temperature is lowered. An expression is 
derived for the nonresonant linear conductivity in the quantum frequency range. It is found that 
in this frequency range the conductivity depends only slightly on the temperature. Its frequency 
dependence can take different forms, depending on the nature of the interaction with the phonons 
responsible for the transitions between donors. The close analogy between electromagnetic ab- 
sorption in semiconductors and glasses is discussed. In glasses, the absorption results from an 
interaction of the high-frequency field with two-level tunnel systems. 

PACS numbers: 72.20.Ht, 72.30. + q 

I. INTRODUCTION 

After two-level tunnel systems were found responsible 
for the low-temperature properties of glasses, in research 
influenced by the insight of Anderson et al.' and Phi l l ip~ ,~  
attention was attracted to the analogy between the proper- 
ties of glasses and the properties of systems in another field 
of study: semiconductors in the region of the hopping con- 
ductivity. This analogy concerns primarily such phenomena 
as the absorption of electromagnetic radiation." As was first 
shown by Pollak and Geballe,3 above certain frequencies w 
the high-frequency conductivity of doped semiconductors 
(and thus their absorption) is determined by hops of elec- 
trons between pairs of adjacent donors separated by less than 
the average distance (the two-site model). The analogy 
between these pairs and the two-level systems in glasses has 
proved quite close. The two-site model has since been used to 
describe the high-frequency hopping conductivity of amor- 
phous semiconductors (amorphous germanium and silicon, 
for e ~ a m p l e ) . ~ - ~  

Comparison of the situations in glasses and semicon- 
ductors has stimulated a transfer of several ideas from the 
physics of glasses to the physics of semiconductors. On the 
other hand, several ideas which are only hypothetical for 
glasses (dealing with, for example, the details of the interac- 
tion of phonons with the two-level systems) can be formulat- 

sorption. By taking this approach we can go beyond the com- 
parison to derive several new results for semiconductors, 
concerning both the nonlinear absorption and the linear ab- 
sorption in the quantum region. 

For definiteness we will discuss a model of disordered 
system similar to that used by Shklovskii and Efros.' This 
model is closest in meaning to the case of an amorphous 
semiconductor. Nevertheless, since the results found for the 
two cases do not differ greatly (see the Conclusion), we will 
briefly discuss in appropriate places the situation with re- 
gard to doped semiconductors. We assume thus that there 
are Nsites per unit volume, distributed at random. The state 
at each site may be either occupied by an electron (in which 
case the site is negatively charged) or vacant (and the site 
neutral). Overall electrical neutrality results from positively 
charged centers which are distributed randomly over space. 
The one-electron energy levels pi at each site are also distrib- 
uted randomly, and they have a continuous energy distribu- 
tion over a broad energy range. The characteristic widthA of 
the energy distribution is assumed to be not only far higher 
than the average energy of the Coulomb interaction between 
adjacent sites but also higher than the energy of the interac- 
tion between the centers forming the pairs responsible for 
the absorption. This scatter of energies may result from ran- 
dom disruptions of the short-range order. 

ed quite clearly and studied in the theory of semiconductors. 
We see thus that a systematic comparison can enrich the II. RESONANT (PHONONLESS) ABSORPTION 

physics of both fields. 1. General relations 

Our purpose in the present paper is to make this com- The high-frequency conductivity is the sum of two com- 
parison for the particular example of electromagnetic ab- ponents: a phononless (or resonant) component and a relaxa- 
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tion (or nonresonant) component. The physics underlying 
the first component can be outlined as follows: The alternat- 
ing field "selects" pairs which have an energy (a level separa- 
tion) E = h ,  and these are the pairs which are responsible 
for the a b ~ o r ~ t i o n . ~  Only those pairs which contain one 
electron can o< course contribute to the absorption. As 
Shklovskii and Efros ~ h o w e d , ~  a computation of the number 
of such pairs must incorporate the Coulomb repulsion of 
electrons: It must be kept in mind that when there are two 
electrons in a pair there is an additional energy e2/&r, where r 
is the "arm" of the pair, and E is the dielectric constant. We 
are interested in the case in which the characteristic Cou- 
lomb energy is far higher than both h and T: 

where w is the frequency of the alternating field, and Tis the 
temperature in energy units. For the real part of the high- 
frequency conductivity, a(@), the linear approximation 
yields the following expression, which is similar to that de- 
rived by Shklovskii and Efros7: 

Here g is the density of one-electron states, a is the localiza- 
tion radius of the state, and r, is the smallest pair arm for 
which the distance between levels is h. 

Since r, is a weak (logarithmic) function of w,  expres- 
sion (2) has essentially the same frequency and temperature 
dependence as that of the coefficient of the resonant electro- 
magnetic absorption (or sound absorption) in glasses. On the 
other hand, the resonant absorption in glasses characteristi- 
cally reaches saturation very rapidly as the intensity is 
r a i ~ e d . ~  To determine the nature of this nonlinearity we con- 
sider expression (2). The factor tanh(h /2T)  in this expres- 
sion is none other than the difference between the equilibri- 
um populations of the lower and upper levels of the resonant 
pair. A strong alternating field equalizes the populations, 
i.e., causes a nonlinear effect: a decrease in a with increasing 
field amplitude." For the nonlinear resonant absorption we 
find by a method similar to that used in Ref. 8 the following 
expression: 

Here a z l [a  = 3 ~ / 8  when the interaction with phonons is 
responsible for the relaxation; see Eq. (25) and the text which 
follows itI3); 8, is the electric field amplitude; and 8,, is its 
critical value, given by 

where r, is the relaxation time of the populations of pairs 
with an arm r, and a level separation h ,  and T2 is the phase 
relaxation time of the wave function of an electron in the 
upper level. This time and also r, may be determined by the 
interaction of the resonant pair with thermal phonons. In 
this case, we would have r, = 2r,. 

2. Role of spectral diffusion. Estimate of the critical field g,, 

It may turn out, however, that the time 1, is much less 
than r, and is determined by the interaction of the resonant 

pair with the thermally excited pairs around it. This interac- 
tion causes the pair of interest to depart from the resonance; 
specifically, the departure is caused by the time-varying ran- 
dom fields which are produced in transitions in adjacent 
pairs with an energy-level separation on the order of T. This 
effect is called "spectral diffu~ion."~ The random fields may 
be of either electrical or elastic origin; we will discuss the 
first case first. 

Let us examine the change AE which is caused in the 
energy of a resonant pair by transitions in the nearest ther- 
mal pair. The characteristic distance between the compo- 
nents of such a pair is r,; this is the minimum arm4' of a pair 
with a level separation T. 

The energy change AE is the energy of the interaction of 
two dipoles, with moments er, and er,, separated by a dis- 
tance R: e2r,rT/&R 3. The total energy of the interaction 
with all significant pairs is determined in order of magnitude 
by the nearest thermal pair. The characteristic distance to 
this pair, R, is on the order of the average distance between 
thermal pairs. The concentration of such pairs is7 

We thus find 

AE=yT, 

where 

For a weakly doped semiconductor of an intermediate de- 
gree of compensation, expression (7) would be replaced by 
(see the Conclusion) 

where N is the impurity concentration. 
The energy AE is a measure of the rate at which the pair 

is driven from resonance by the fluctuational transitions in 
the thermal pairs. At present there is no quantitative theory 
which relates AE and 7,. The assumption" r2 =:WA E is used 
(in reasonable agreement with several experiments). 

We turn now to the strain contribution to spectral diffu- 
sion. We assume that the random energy of an electron at a 
site is shifted by strain by an amount proportional to the 
strain. The corresponding proportionality factor, A (the 
strain potential), is usually on the order of a few electron 
volts. We should apparently discuss two physically distinct 
cases. 

A) The strain potentials of the components of the pair 
are so different that the difference is on the order of the strain 
potentials themselves, a few electron volts. This situation 
should arise in semiconductor glasses, although there may 
be cases in which it occurs in crystalline semiconductors. An 
order-of-magnitude estimate of the interaction is reminis- 
cent of that of the Coulomb case8: 

where p is the mass density of the semiconductor, s is the 
sound velocity, and the distance R should be determined 
from (5): R -3 zn,. Estimates show that the strain contribu- 
tion to AE can be comparable to the Coulomb contribution. 
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To estimate T2 we use (8). Adopting N =  1016 ~ m - ~ ,  
a=10- '  cm, and T = l  K, we find r 2 ~ f i /  
AEz lo-' - lo-* s. We must emphasize that this is a crude 
estimate. It can be refined by resorting to experimental data 
on the frequency and temperature dependences of the non- 
linear high-frequency conductivity or by pursuing the the- 
ory of spectral diffusion. 

B) The strain potentials of the two components of the 
pair differ only slightly; correspondingly, the strain interac- 
tion is weaker than the Coulomb interaction. This situation 
can occur in doped crystalline semiconductors. 

3. Population relaxation mechanisms; the time T, 

It remains to derive an expression for r1 and to estimate 
this time. It  depends on the energy separation E of the levels 
of the resonant pair: 

E= [ (cp,-cpz) '+4Z2 (r)] 'h, 

where pi are the one-site energies, which are determined by 
the neighboring centers (not in the pair under consideration), 
and I (r) is the energy overlap integral of the wave functions of 
the components of the pair. This integral is conveniently 
written 

I (r) =Ioe-r'a, (1 1) 

where a is the localization radius of the state, and the quanti- 
ty I, has the dimension of energy. Its order of magnitude 
depends on the nature of the medium. Furthermore, I (r) may 
fall off over r in a manner different from that described by 
(1 1). In this case the frequency and temperature dependences 
remain basically the same as before, as does the intensity 
dependence, but the power of the logarithm changes [we are 
assuming that the basic I ( r )  dependence nevertheless re- 
mains exponential at large distances]. For an exp( - $/a2) 
decay law, for example, the powers of the logarithms turn 
out to be half as large. The logarithmic behavior which fol- 
lows from both the nonlinear and linear theories thus de- 
pends strongly on the particular model used for the disor- 
dered system. 

The time T, is determined by transitions between the 
levels of the pair, accompanied by the absorption or emission 
of a phonon with an energy E. The corresponding expression 
can be written easily for case A (cf. Ref. 9): 

1 1Z2(r)E E 
-=-- cth - , 
zs TO TS 2T 

(12) 

where T, has the physical meaning of a relaxation time for a 
pair with I (r) = E = T. This time is inversely proportional to 
T3, and it can be approximated by 

fi/.r0=T3/E,2, (13) 

where Ec is the characteristic energy at which the uncertain- 
ty fi/r, in the energy of the upper level of the pair [at T = 0 
and I (r) = E ] reaches a value on the order of the level separa- 
tion E. This energy is given in order of magnitude by12 

AssumingA z 1-2 eV, we find Ec to be 10-20 K. The energy 
E, is thus that characteristic value of the energy E above 

which the relaxation of the level pair under consideration 
can no longer be described by the one-phonon approxima- 
tion, and the coupling with phonons becomes strong. In our 
opinion, this situation is one of the most interesting prob- 
lems awaiting solution in the theory of disordered semicon- 
ductors. 

Expression (12) was derived under the assumption that 
the wave vector q, = E /% of the phonon which is emitted 
or absorbed is far smaller than a -  '. With increasing E, this 
assumption breaks down, and (12) must be replaced by an 
expression containing the additional factor [I + (E /To )2] -4: 

where To = 2fis/a. The condition written above for the ap- 
plicability of the one-phonon approximation is valid for 
Ec < To. In the opposite case, this approximation can be 
used over the entire energy interval. The value of To depends 
on the particular semiconductor and can vary over a broad 
range, 10-100 K. 

To reach an understanding of case B we consider transi- 
tions caused between levels by a phonon with an energy E 
and thus with a wave vector q,. If the parameter q,r is 
small, the displacements of the levels q, and q2 occur essen- 
tially in phase, and the distance between these levels remains 
constant. Transitions become possible only to the extent that 
the corresponding phase difference becomes different from 
zero. Calculations show that this circumstance is taken into 
account (in the isotropic case) by the additional factor 

I -  ( E )  ; T,=Taa/2r=frs/r, (16) 

where J,(x) is a Bessel function of order 0. The final result is 
(cf. Refs. 6 and 13) 

We recall that expression (4) contains the times r1 and 7, at 
the argument values E = #ia and r = r, (in the absence of 
spectral diffusion). 

There is yet another important case in which the piezoe- 
lectric interaction is predominant in the energy range of jn- 
terest. This case can arise in essentially all crystalline semi- 
conductors which lack a center of inversion. The 
piezoelectric interaction leads to the following expression 
for the time rl: 

HereF(x) = 1 atx) 1, andF (x) ax2atx(  1;  isare are lax at ion 
time determined by the piezoelectric interaction. In order of 
magnitude, this time is given by 

j/.t:p'=X4ne~/eii2s, (19) 

wherex is the square of the electromechanical coupling con- 
stant averaged over the directions. 

We now estimate the critical amplitude 8,' . To the best 
of our knowledge, no experimental results are available for a 
direct determination of this amplitude. For an estimate we 
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will thus work from the data of Ref. 14, where acoustic ef- 
fects in dopedp-type germanium were s t~d ied .~ '  This experi- 
ment yielded the value r, = 5 - lo-' s, while r, varied in 
inverse proportion to T, having the value 4 . s at T = 2 
K and w = 277- - 1.022 GHz [the order of magnitude of r, and 
its temperature dependence agree with the predictions of 
expression (12) for case A, if the difference between strain 
potentials is assumed to be 1-2 eV].6' We then find 

8,,-lU-2-10-3 V/cm; 

i.e., the nonlinearity of the resonant absorption sets in at a 
vanishingly low intensity (on the order of W/cm2). It 
would therefore be difficult to observe the linear, phononless 
conductivity. 

The situation which we have found here is thus the op- 
posite of that to which we are accustomed in dielectric 
glasses.15 In the latter the critical electromagnetic intensity 
for resonant absorption is far higher than the critical acous- 
tic intensity (by four or five orders of magnitude). The oppo- 
site situation prevails in semiconductors, where the corre- 
sponding acoustic intensity is about loW4 W/cm2 (Ref. 16). 
The physical reason for this marked difference in critical 
electromagnetic absorption intensities in glasses and semi- 
conductors is the large arm of the resonant pair in a semicon- 
ductor. 

4. Nonlinear high-frequency conductivity when the time 7, is 
determined by an interaction with phonons 

For a quantitative calculation of the nonlinear resonant 
absorption we consider the case r2 = 27,. We must take into 
account the circumstance that the absorption is due to pairs 
whose average energies (p, + p2)/2 fall in a band of width 
e2/&r below the Fermi level.' Under conditions (I), the con- 
tributions of most such pairs are identical, equal to 

where 

This expression is derived by analogy with Ref. 8; the follow- 
ing condition is assumed in its derivation: 

0 t ~ ~ l + f i - ~ ( e 8 ~ r , ~ , ) ~ ,  (22) 

where rm is the minimum value of 7, at E = h. By virtue of 
this condition, the function D (h - E)  can be replaced by 
G S ( h  - E ), where the coefficient G is determined from the 
normalization condition. Taking this circumstance into ac- 
count, and summing over all the pairs contributing to the 
absorption, we find 

x j d 0  sin 0 j  dr rs cos2 0  exp 
0 

+ 
where 0 is the angle between 8, and r, A = p2 - p,, and 
Z?, , is given by (4). Integrating over r, 0, and A ,  we find 

where a,(w) is given by (2), and 

In the limit x-1 we have F (x)-1, and in the limit x-+ co we 
have F (x) = 3n-/8x. 

Ill. RELAXATION (NONRESONANT) ABSORPTION (fiw<T) 

1. The qualitative picture and the initial equations 

The relaxation absorption results from a modulation 
caused by the alternating electric field in the separation E 
between the kvels of the pair. In the external alternating 
electric field 8 the difference be5een the one-site energies, 
p, - p2, acquires an increment e8 r ,  where r = r, - r,. This 
energy modulation changes the population ( f )  of the upper 
level from its equilibrium value; this population change lags 
in phase behind the change in the energy. As a result, energy 
of the alternating field is dissipated. The power P absorbed 
by one pair of levels is 

This expression can be derived, for example, by noting that 
all the energy from the electric field is ultimately transferred 
to the phonon system of the semiconductor. The separation 
E (t ) is given by 

E ( t )  = [ (rp,-rp2+ e g  ( t )  r )  '+412 ( r )  ] Ih. (27) 

Expression (26) was derived in the adiabatic approximation. 
In general, the conditions for its applicability are 

A 1 dE/d t  1 <E2, (28) 
f io<E. (29) 

These conditions mean that the changes in the perturbation 
must be slow enough not to cause quantum transitions. 

The occupation numbers f are determined from the 
equation 

af - = - .  f - f O  , to= ( i + e E I T )  -l. 

d t  ~i 
(30) 

The linear approximation is valid for 

Here r, is the characteristic arm of the pairs dominating the 
absorption (the values of this arm are different in the differ- 
ent limiting cases, and we will determine them below). In this 
approximation, the power P absorbed by one pair is given by 
an expression of the Debye type, according to (26) and (30) 
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(cf. Ref. 8, where an analogous quantity was calculated for 
glasses): 

where r,(r,E) is determined by one of the expressions (12), 
(151, (171, (18). 

Expression (32) should be summed over all pairs. It is 
clear that the predominant pairs are those with E=: T and 
that rc , the characteristic value of r, depends on the ratio of 
the field period 2 h  and the time 

which has the physical meaning of being the minimum relax- 
ation time of the occupation numbers of pairs with a level 
separation T. Ifor,,,, ( T  )) 1, the predominant pairs are those 
with r1 on the order of rmin, and rc is correspondingly on the 
order of r,. Since the only pairs which absorb are those 
which have a single electron, we find the known result7 

A study of the temperature dependence a(w) under these 
conditions would reveal which case (A or B) holds in the 
given material. This is also an important consideration for 
interpreting  experiment^'^.'^ on the acoustic properties of 
semiconductors. 

Under the condition wrmin(T)<l,  the predominant 
pairs are those with r = rc,  where 

for which wr,(r, ,T )  = 1 (i.e, rc > r,). As a result we find7 

uo ( o )  x ( e 4 / & )  ag2ar,3. (35) 

This expression is completely analogous to the Jackle 
expression1' for the coefficient of the absorption of sound 
and electromagnetic radiation caused by two-level systems 
in glasses. 

In the nonlinear region, to which we now turn, a quali- 
tative analysis reveals the dependence of the absorption on 
the amplitude, frequency, and temperature in limiting cases. 
The quantitative theory is required only for determining the 
numerical coefficients in the corresponding expressions and 
for analyzing intermediate cases. 

2. Nonlinear relaxation absorption; analysis for case A 
[expression (l2)] 

If the electric field amplitude 8, is so high that it causes 
the energy levels in the pair to separate by an amount exceed- 
ing T, i.e., if 

then the relaxation absorption depends on the amplitude 8,; 
specifically, it decreases as this amplitude increases. In the 
nonlinear regime the quantity rc in this inequality can, in 
general, depend on the wave amplitude; we will derive this 
quantity below. 

To describe the qualitative picture we begin with case 
A. We will discuss the general situation below. Further- 

FIG. 1. 

more, in analyzing the nonlinear relaxation absorption we 
will restrict the discussion to the case d<T, (the opposite 
case would seem to be extremely difficult to realize in experi- 
ment). 

Figure 1 helps explain the physics involved. This is a 
schematic diagram of the time (t ) dependence of the level 
separation E. We see that, under condition (36), the level 
separation E is of the order of T only during the short time 
intervals 

It is during these time intervals that thermal phonons can 
excite the pair (if it is initially in the lower energy state). The 
characteristic relaxation time with respect to these processes 
is rmin (T).  At other times, the pairs can only relax by emit- 
ting phonons with energies E (t ). The characteristic relaxa- 
tion time of the pairs with respect to such processes is 
rmin (d )(rmin (T). We can thus distinguish three characteris- 
tic limiting cases: a) At)rmin (T); b ) At<rmin (T )  but 
0Tmin (d )< 1; C) WTmin (d )> 1. 
a)  Low frequencies: wrmin <T/d. If 

[or, equivalently, iformi,, (T)(T/d< 11, then there exist pairs 
with r l (r ,T)  5 At which manage to relax after crossing the T 
layer. The energy of the emitted (and absorbed) phonons, 
averaged over the period, is on the order of T. The conduc- 
tivity is dominated by pairs with arm rc determined from the 
condition rl(rc ,T)=:At: 

The functional dependence of the density of such pairs on 
the distance A = Ipl - p21 5 d between levels is 

[we are assuming e2/&rc )d; pairs with a large initial splitting 
A have at all times an energy gap exceeding T and do not 
contribute to u(w)]. 

On the average over a period, such a pair transfers an 
energy on the order of T to the phonon subsystem. Calculat- 
ing the energy absorbed by such pairs per unit time per unit 
volume of the semiconductor, and dividing it by 8;, we find 
the conductivity to be 
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If rmin >At, the picture is considerably more complicat- 
ed. In this case an unexcited pair which has traversed the T 
layer has a small probability [At /rmin (T)] to be excited after 
capturing a thermal phonon. It emits a phonon whose energy 
is, in contrast, much higher than the thermal level. Just how 
large this energy is depends on how rapidly the relaxation 
time T,(E ) falls off with increasing E. In the case at hand, i.e., 
case A with T(E(To, we have from (12) 

.ti ( E )  = ~ m i n  ( T )  ( T I E ) .  (42) 

The characteristic time in which the pair emits a 
phonon is given by 

t * = t l  [ E ( t * )  1 .  (43) 

As an estimate we may assume that the difference between 
the level energies is proportional tot, E (t ) = dwt, in the relax- 
ation region. We then find 

t*= (F) At] I i 2 =  [ ~ , , , i , ,  ( d )  a-'1 'I2. (44) 

Limiting cases b) and c) correspond to different relations 
between t * and a-I .  
b ) High frequencies, wrmin >d /T. If t *>w-' or 

o.t,i, ( d )  >> 1 (45) 

(case b), the excited pair does not manage to emit a phonon in 
one period and instead emits it after several periods, on the 
average after a time interval rmin (d )> l/w. The average ener- 
gy of the emitted phonon is on the order of d, and the power 
absorbed by one pair is 

P-adAt/.t l  ( r ,  T )  . (46) 

The absorption is dominated by pairs with 
r l (r ,T)zrmin,  i.e., with r = r,. As a result, after summing 
over all pairs, we find 

where a,,(w) is given by (33). The numerical factor in (47) can 
be evaluated by working from the exact equation (53) below. 
c) Intermediate frequencies, T/d<wrmin (d /T. In this case, 
which corresponds to thecondition t *@-I, a pair excited in 
the T layer manages to emit a phonon in a time t * far shorter 
than the period. The characteristic energy of the emitted 
phonons is on the order of dwt *, and the power absorbed by 
one pair is 

The absorption is dominated by pairs with r = r, [i.e., with 
r1 = rmin (T)]. As a result we find 

eJ/a 

a ( a )  = 1,99g2 - ar,"o"T" 
1 

E P;OK~'i'mi, ( T )  ' 

where the numerical coefficient is found from (53). 
Let us estimate the characteristic values %,, = T/er, 

of the field amplitude 8, which are required for observing 
the nonlinearity of the relaxation absorption. With T = 0.3 
K and r, = 2-lop6 cm we have 8,, = 10 V/cm. There is 
the hope that this value will be below the critical field for 

impurity breakdown, but in general 8, , falls off in propor- 
tion to T as the temperature is lowered. 

' 

3. Nonlinear relaxation absorption; the general case 

In general, the nonlinear behavior of the conductivity is 
determined by the particular dependence of the time T, on 
the energy E. In several important limiting cases this func- 
tional dependence can be described by 

zl ( E )  =T ( T )  ( T / E )  " th ( E / 2 T ) .  (50) 

We have v = 1 in case A at E(To, in case B at T, NEXT,, 
and also in the case in which the piezoelectric interaction is 
predominant, at E< T, . In addition, we have v = 3 in case B 
at E(T, and v = - 1 in the case of the piezoelectric interac- 
tion at T, <E(To. The case v = 1 is analogous to that of 
dielectric glasses; the case v = - 1 is analogous to that of 
metallic glasses; and the case v = 3 so far has no analog in 
the physics of glasses. 

In the case v > 0 we can replace (44) by 
t*= (T) (At) ' ]  '/('+'). 

Correspondingly, we can replace (49) by 

With v = 3 we have 

The numerical coefficients in the corresponding expressions 
can be determined from the following exact expression for 
the power absorbed by one pair7': 

zn/u zn/w B ( t )  B ( t - t ' )  
P= W J J dl atr  

anT a " c h 2 [ ~  ( t - t ' )  / 2 ~ ]  

This expression follows from (26) and (30); T, depends on the 
time t through the functional dependence E (t ). The integrals 
in (53) can be simplified in various limiting cases, making it 
possible to evaluate the coefficients in the expressions for 
a@). This was the procedure which we used to determine the 
coefficients in expressions (41), (47), and (49). 

We are left with the case of the piezoelectric interaction, 
v = - 1. This case is more complicated than the preceding 
cases, since low energies, E<T, are important under the con- 
dition curmin <T/d. We will not go through a detailed analy- 
sis for this case, since the functional dependences are similar 
to those in the case of metallic glasses. We proceed immedi- 
ately to the results. 

In the region wrmin > T/d, the result differs from (47) by 
a numerical factor. At armin (T/d the conductivity is on the 
order of, but lower than, the conductivity in the linear re- 
gime, given by (35). The dependence ~(8,) can be deter- 
mined only through numerical calculations from Eq. (53). 
The physical reason for the important difference between the 
results in this case and those in the case of the deformation 
interaction is the prolongation of the relaxation of the pair 
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populations into the region with E )  Tbecause of the increase 
in the relaxation time with increasing E. 

In summary, from the standpoint of the nonlinear ef- 
fects the presence of two stages in the intensity dependence 
of the absorption is a distinguishing feature of semiconduc- 
tors and in general of entities which contain two-level sys- 
tems with a broad distribution of relaxation times. We have 
in mind the decay of the resonant absorption and, at high 
intensities, the decay of the relaxation absorption. These 
stages have been observed experimentally in metallic 
glasses,1s and we have explained them elsewhere19 by similar 
arguments. Semiconductors do have the distinguishing fea- 
ture that the critical amplitudes %',, and 8,, are sharply 
different (they differ by a factor of only a few units in metallic 
glasses). 

IV. NONRESONANT ABSORPTION IN THE QUANTUM 
REGION (hs T )  

We have been discussing the relaxation absorption in 
the classical frequency range, h ( T .  Because of the ex- 
tremely small critical fields required for saturation of the 
resonant absorption, on the other hand, we should also exa- 
mine the conductivity in the quantum frequency range, 
h ) T ,  at amplitudes 69) g,, given by (4). In this case, we 
cannot use expression (33) for the nonresonant absorption; 
instead we must resort to quantum- mechanical theory to 
calculate a(w). The absorption (and the conductivity) is 
dominated by the pairs with E 5 h and r z r ,  . For such 
pairs we have wrl(r, ,h))l ,  and the conductivity can be 
calculated by perturbation theory, by a method analogous to 
that used in calculating the acoustic and electromagnetic 
absorption of dielectric g l a s s e ~ . ' ~ . ~ ~  The results for the case 
h =: Tare not easily interpreted, but at h) T the results can 
be described in order of magnitude by the simple general 
expression 

-1 
oo ( a )  = (e4/e) ~ g ~ r . ~ ~ ~ ~ , ,  (ha).  (54) 

This expression differs from (33) in the replacement T + h .  
A special stipulation is required in the case 

(corresponding to piezoelectric semiconductors, with 
h )T , ) .  In this case, expression (54) describes a linear fre- 
quency dependence, as in relaxation expression (35) with 
armin 4 1. In the quantum case, however, oo(o) differs from 
(35) by a factor l/wrmin ( h ) ,  which does not depend on w. 
This factor is small if perturbation theory can be used to 
describe the electron-phonon interaction. 

V. CONCLUSION 

In deriving the basic results we have been working pri- 
marily from the same model as in Ref. 7. It was assumed 
there that the energy spread of the levels is of non-Coulomb 
origin and is much greater than the Coulomb interaction of 
the carriers over distances on the order of 7, the average 
distance between centers. A model of this type can correctly 
describe the situation in amorphous semiconductors, but it is 
generally unjustified for describing the hopping conductiv- 

ity in doped semiconductors, where the level spread results 
from the interaction of electrons with charged centers. 

However it turns out that, although the detailed picture 
of the high-frequency conductivity is different in doped se- 
miconductors, in many cases the frequency, temperature, 
and amplitude dependences in which we are interested are 
the same as predicted by the model used above. 

In the case of a weakly doped, weakly compensated se- 
miconductor, with NA (No (NA and ND are the concentra- 
tions of acceptors and donors, respectively), there is a 
charged donor near essentially every negatively charged ac- 
ceptor, at an average distance on the order of N, 'I3 (a SO- 

called 1-complex13). Pairs consisting of a charged donor and 
a neutral donor separated by a distance less than the average 
contribute to the high-frequency conductivity. The concen- 
tration of such pairs, with arms between rand r + dr, is giv- 
en in order of magnitude by 

4nNAND1Zdr. (55) 

The spread of the levels q1 and q2 in such a pair is deter- 
mined by the Coulomb interaction of the dipole of the pair 
with the charged acceptor. In order of magnitude, the differ- 
ence is 

I c p , - q ~ ~ l -  (e2/e) N 2 r ;  (56) 

this difference is determined by the orientation of the dipole 
with respect to the acceptor. The distribution function of the 
concentration of such pairs, with a spread Jpl - p2 1 between 
A andA +dA, is 

g (A, r) = (e/ez) NAN;%. (57) 

Working from this distribution function we can easily 
show that all the results derived above remain valid wheng is 
taken to be 

g= (e/e2) ~ 2 ~ ~ 3  (58) 

within a factor on the order of unity. 
The case of an intermediate compensation, with 

NA 5 ND , is treated in the same way. In this case, g must be 
understood as being a quantity on the order of (e/e2)NY in 
all the equations. This quantity is equal to the state density in 
the impurity band. 

The case of strong compensation, with 
n=ND - N, (ND, is more complicated. Here the concen- 
tration of neutral donors, n, is low, so that it is preferable 
from the energy standpoint for a neutral donor to lie within a 
distance less than the average distance from a charged do- 
nor. The concentration of pairs of donors whose components 
are separated by a distance r less than the average distance is 

N D ( N D ) * ~ ) .  (59) 

The electrons preferentially occupy pairs with r < rm , where 
the characteristic arm rm is determined from the equality of 
the density of electrons and the density of such pairs: 

The distribution function of the density of pairs consisting of 
a neutral donor and a charged donor with r < rm isz1 

n (r2/rm3)  =ND2r2. (61) 
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For the level spread Iq, - q21 in such pairs we again 
have (56). Comparing (61) with (55), we conclude that again 
in this case we should use the state density given by (58) 
instead of g in all the equations. In other words, we should 
use the same state density as in the case of an intermediate 
compensation. This assertion is correct as long as the charac- 
teristic values of the arm of the pair, rc (r, , r,, etc.), are less 
than or of the order of r, . The result in this case does not 
depend on the degree of compensation. 

If, on the other hand, the characteristic values of the 
arm exceed r,, the probability to find such a pair falls off 
rapidly with increasing r in accordance with21 (r, /rc )', 
where 1 > 6. The result thus differs from that in the case 
rc (r, by a factor on the order of (r ,  /r, )' ( 1, i.e., by the 
power of the logarithm of the frequency w or the tempera- 
ture T. 

In conclusion we wish to repeat that many of the results 
and conclusions of this paper also apply to the absorption of 
sound in semiconductors in the hopping-conduction regime. 
In particular, the thermal conductivity of such semiconduc- 
tors can be proportional to T2, as in glasses, at sufficiently 
low temperatures. 

We sincerely thank V. V. Bryskin, E. L. Ivchenko, G. E. 
Pikus, B. I. Shklovskii, and A. L. ~ f r o s  for interesting dis- 
cussions. 

"And also the absorption of sound. 
2'Bottger and Bryksin9 were the first to point out this possible mechanism 
for the nonlinearity of the hopping conductivity in semiconductors. The 
primary reason for the difference between the results of Ref. 9 and those 
of the present paper is that we are incorporating the Coulomb correla- 
tion, as in Ref. 7. Zvyaginlo has also studied nonlinear high-frequency 
effects in semiconductors in the hopping-conductivity region. 

"In our opinion, it is of limited value to determine the numerical factors in 
this expression and in the corresponding expressions of the nonlinear 
theory (discussed below). The results usually contain a comparatively 
high power of a logarithm, whose argument contains functions of o, T, 
and, in the nonlinear case, 8,. The numerical coefficient in the argument 
of the logarithm remains unknown. 

4'In the range of applicability of the two-site model, we have r,N '13<1. 
5'We wish to point out that the physical picture of electromagnetic absorp- 
tion which we have analyzed here applies in many regards to acoustic 

absorption also, at least under the conditiongr, < 1 (where q is the wave 
vector of the sound), i.e., when the field of the acoustic wave varies only 
slightly over the dimensions of the pair. 

evaluation of T, from (17) for case B would lead to a result two orders 
of magnitude larger. 

7)This expression was derived by one of the present authors (Yu. G.) and 
also by B. D. Laikhtman. 

'P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 
(1972). 

'W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972). 
3M. Pollak and T. H. Geballe, Phys. Rev. 122, 1742 (1961). 
4S. Tanaka and N. Y. Fan, Phys. Rev. 132, 1516 (1963). 
'N. F. Mott, Philos. Mag. 22, 7 (1970). 
6H. Bottger and V. V. Bryksin, Fiz. Tverd. Tela (Leningrad) 18, 88, 1888 
(1976) [Sov. Phys. Solid State 18,49 (1976)l. 

7B. I. Shklovskii and A. L. Efros, Zh. Eksp. Teor. Fiz. 81,406 (1981) [Sov. 
Phys. JETP 54,218 (1981)l. 

'W. A. Phillips (editor), Amorphous Solids. Low Temperature Proper- 
ties, Springer-Verlag, New York, 1981; S. Hunklinger and W. Arnold, 
in: Physical Acoustics (ed. W. P. Mason and R. N. Thurston), Vol. 12, 
Academic, New York, 1976, p. 155. 

9H. Bottger and V. V. Bryksin, Fiz. Tverd. Tela (Leningrad) 17, 3208 
(1975) [Sov. Phys. Solid State 17, 21 14 (1975)l. 

''1. P. zvyagin, Phys. Status Solidi B 88, 149 (i978); Vestn. Mosk. Univ. 
Fiz. 20, 75 (1979). 

"J. L.   lack ind  B. I. Halperin, Phys. Rev. B 16, 2879 (1977). 
''V. L. Gurevich and D. A. Parshin, Solid State Commun. 43,271 (1982). 
13B. I. Shklovskii and A. L. Efros, Elektronnye svoistva legirovannykh 

poluprovodnikov (Electronic Properties of Doped Semiconductors), 
Nauka, Moscow, 1979. 

14H. Tokumoto, T. Ishiguro, and K. Kajimura, in: Phonon Scattering in 
Condensed Matter (ed. H. J. Maris), Plenum Press, New York, 1980, p. 
413. 

I5M. Von Schickfus and S. Hunklinger, Phys. Lett. 64 A, 144 (1977). 
16K. Lassmann and H. Zeile, in: Phonon Scattering in Condensed Matter 

(ed. H. J. Maris), Plenum Press, New York, 1980, p. 369. 
17J. Jackle, Z. Phys. 257,212 (1972). 
18A. Hikata, G. Cibuzar, and C. Elbaum, J. Low Temp. Phys. 49, 339 

(1982). 
I9Yu. M. Gal'perin, V. L. Gurevich, and D. A. Parshin, Pis'ma Zh. Eksp. 

Teor. Fiz. 36, 386 (1982) [JETP Lett. 36, 466 (1982)l. 
'OV. L. Gurevich and D. A. Parshin, Zh. Eksp. Teor. Fiz. 83,2301 (1982) 

[Sov. Phys. JETP 56, 1334 (1982)l. 
21A. A. Kal'fa and Sh. M. Kogan, Fiz. Tekh. Poluprovodn. 6,2175 (1972) 

[Sov. Phys. Semicond. 6, 1839 (1973)l. 

Translated by Dave Parsons 

1030 Sov. Phys. JETP 58 (5), November 1983 Gal'perin et a/. 1030 


