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We obtain for the density matrix a kinetic equation that takes into account simultaneously both 
the coherent diffraction by the regular potential in the two-wave approximation and the incoher- 
ent scattering by thermal fluctuations. For an arbitrary thermal-displacement amplitude we ob- 
tain the scattered-particle distribution in the longitudinal coordinate and in the transverse mo- 
mentum. This distribution accounts for a number of effects, such as the increase of the 
pendellosung length with rising temperature, the transition from the pendellosung to aperiodic 
damping, as well as the anomalous passage. 

PACS numbers: 61.80.Mk 

I. INTRODUCTION 

It is known that thermal vibrations prevent the instan- 
taneous positions of the atoms of a single crystal from form- 
ing an ordered lattice. The periodicity of the crystal-atom 
positions stems only from averaging over the thermal vibra- 
tions. 

Consider the scattering of a fast charged particle in a 
crystal. When the particle collides with an atom it is de- 
flected by an angle of the order of the ratio of the reciprocal 
screening radius x -me2Z ' I 3  to the particle momentum p. 
(Here and below ti = 1 .) The atom acquires a recoil momen- 
tum of the order of x and a recoil energy of the order of x2/  
2M, where M is the atom mass, m the electron mass, and Z 
the charge of the atomic nucleus. Under ordinary conditions 
the atom-recoil energy is smaller by an order of magnitude 
than the energy kT- 0.025 eV of the thermal vibrations, and 
the latter is many times smaller than the kinetic energy of the 
moving particle. Therefore the changes of the particle ener- 
gy due to atom recoil and phonon excitation can be neglect- 
ed. The cross section for scattering with excitation of atomic 
electrons is Z times smaller than the cross section for elastic 
scattering, and the excitation of the atomic electrons can also 
be neglected. 

Under these assumptions the scattering can thus be re- 
garded as elastic. The action of the crystal on the particle in 
elastic scattering is described by the summary potential of 
the atoms 

U ( r )  = C U. (r-R-u.) 
a 

dSq (1.1) 
= J Uo ( q )  [ iq (r-Ra-ua) 1, 

(2n) 

The random potential SU (r) leads to a scattering that is inco- 
herent with respect to the atoms, similar to multiple scatter- 
ing in amorphous matter. For light particles, such as elec- 
trons with energy of several dozen keV, the periodic 
potential (U(r))  leads to coherent scattering, frequently 
called diffraction. This type of scattering was considered by 
many workers (a bibliography can be found in Ref. 1). The 
influence of small thermal displacements on the diffraction 
was also investigated in In this case, however, it is 
customary to use an expansion in terms of the thermal dis- 
placements, something that cannot be done for displace- 
ments comparable with the screening radius. Estimates 
show, however, that for many crystals the thermal displace- 
ments are comparable with the screening radius even under 
normal conditions. 

In addition, it was customary to neglect the possibility 
of multiple incoherent particle scattering in a single crystal 
with vibrating atoms. Yet incoherent scattering takes the 
particle out of the coherent scattering. This effect accumu- 
lates with depth and can therefore suppress completely the 
coherent scattering at large depths. It is therefore of interest 
to estimate the mutual influence of diffractive coherent and 
incoherent types of scattering of fast charged particles in 
single crystals. To solve this problem we derive below for the 
density matrix a nonstationary kinetic equation capable of 
describing simultaneously both coherent diffraction in the 
dynamic theory and incoherent scattering. It can be as- 
sumed here5 that the relation between the time t and the 
depth of penetration into the crystal z is z = vt, where u is the 
particle velocity. It can consequently be assumed that the 
interaction between the crystal and the particle is turned on 
at the instant t = 0. 

2. EQUATION FOR THE FAST-PARTICLE DENSITY MATRICES 
where Ra is the radius-vector of the equilibrium position of 
the atom; is its thermal displacement; Uo(r - R, - ,,, ) is The equation for the complete density matrix of the particle 
the potential of the a-th atom and U,(q) is its Fourier trans- and the crystal, neglecting the energy of the thermal motion 

form. It is convenient to represent U(r) in the form of a sum the can be written in the form 
of a periodic potential (U/(r)) averaged over the thermal B 

i ,,P ( P ,  P', t )  = (sP-sPr) p (p ,  P', t )  
vibrations and a random potential SU(r): (2.1) 

U ( r ) = ( U ( r ) > + t i U ( r ) .  u ( k )  [P (P-k,  P', t )  -P ( P ,  ~ ' + k ,  t )  I ,  
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where p is the particle momentum, E, = p2/2m, and m is the 
particle mass. Both the density matrix e, and the interaction 
potential U (k) depend on the thermal displacements ofall the 
atoms of the single crystal. Of physical interest is the parti- 
cle-density matrix 

the calculation of which reduces to integration over all the 
thermal displacements of the crystal atoms. In particular, 
the probability of the distributions of the different values of 
the momentum is determined by the diagonal elements of the 
density matrix 

where 

G(P, t) =(p (p+q/2, p-q/2, t) ). (2.4) 

Integrating (2.1) with respect to the thermal displacements 
and recognizing that U (k) = ( U (k)) + S U (k), we obtain 

The quantities < SUp > in the right-hand side of (2.5) can be 
obtained by multiplying (2.1) by SU and integrating with 
respect to the thermal displacements. Recognizing that scat- 
tering by the fluctuations of the potential of a single atom is 
described by the Born perturbation-theory approximation 
we can, following Ref. 6, put 

(6U6Up>-(6U6U>(p>, 

with the aid of which we obtain from (2.5) a closed equation 
for the fast-particle density matrix: 

-(P (p-k, p'+q, t )  )) +n6 (&p-&pr+k) ((P (P-QI pf+k, t) ) 
-(P (P, p'+q+k, t) )I 

The mean value of the product of the fluctuations of the 
potentials in (2.6) can be represented in the form 

The mean values in (2.7) are equal to 

( 
z(q) (exp (iqa+ikub) )=exp -< (qu,) (kub) )- - - 

2 7). 
Z(k) =( (ku)'). (2.8) 

For a monatomic crystal, in the Einstein model of ther- 
mal motion, we can obtain (2.7) in explicit form 

where n is the number of crystal atoms per unit volume, and 
the summation with respect to K is over all the reciprocal- 
lattice vectors. 

For the regular part of the potential in (2.6) we can ob- 
tain 

3. THE TWO-WAVE APPROXIMATION 

We consider the case when the incoherent scattering 
can be neglected. If the particle moved at the initial instant at 
the Bragg angle to the system of atomic planes, then the 
reflected particle also moves at the Bragg angle and the mo- 
tion is a sequence of such reflections. In this case the condi- 
tion IE, + - E, I < JE, + - E, I is satisfied for a certain re- 
ciprocal-lattice vector G perpendicular to the considered 
system of planes and for momenta close to the initial value, 
at all K# G. We need then retain in the sum over K in (2.10) 
only the terms with K = + G. In this case the only large 
probabilities areaO(II,t ) and a,(II + G, t ) where II is the par- 
ticle momentum at t = 0: 

[a0 (n, 2) - a0 P i G, dzl 

(3.2) 
where 

A2=n2 I U (G) 1 ' exp (-Z(G) ) . 
The initial condition at t = 0 is 

It is convenient to change over to the sum and difference of 
these quantities: 

W (t) =a, (11, t) +ao (II+G, t) , 
(3.3) 

(D (t) =ao (II, t) -ao (II+G, t )  . 
The equation for the probability W (t ) of being located in 
either of the two incoherent scattering channels is obtained 
by summing (3.1) and (3.2), takes the form 

and means that in the two-wave approximation the particle 
can have only a momentum IT or II + G, and does not go 
over into states with other momenta. The difference between 
(3.1) and (3.2) yields 
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Taking the initial condition @(O) = 1 into account, we can 
find the solution of this equation by a Laplace transforma- 
tion 

yZ 1 @ (t) = - + - cos (2At (1+y2) '") , 
l+y2 l+y2 (3.6) 

where y = ( E ~  - E*, )2A is the relative energy deviation. 
Using (3.3) we can write down the probability of finding the 
particle in the transmitted or in the reflected wave: 

in agreement with the usual equations of the dynamic theory 
of Laue diffraction for an infinite transparent crystal.' 

Thus, coherent diffractive scattering of a particle in a 
single crystal changes the particle momentum by a discrete 
amount, viz., by one of the reciprocal-lattice vectors. At a 
definite orientation of the initial particle momentum, Bragg 
scattering in an ideal lattice can be described in a two-wave 
approximation in which the intensities (3.7) and (3.8) of the 
two waves oscillate periodically while the total probability 
remains constant. Such a solution is known as pendellosung. 

4. MUTUAL INFLUENCE OF DIFFRACTION AND INCOHERENT 
SCATTERING 

In the problem of the mutual influence of coherent and 
incoherent scattering, greatest interest attaches to the high- 
temperature region, where the incoherent scattering is large. 
To consider large amplitudes of the thermal displacements 
we can use the Einstein model, i.e., average in (2.6) with the 
aid of (2.9). Owing to the presence of incoherent scattering it 
is necessary to take into account in the kinetic equation, in 
contrast to the two-wave approximation considered above, 
not only the diagonal elements of the density matrix but also 
its off-diagonal elements a , , (p + G / 2 ,  t ). 

Since the angle 8 - x / p  of single incoherent scattering is 
ofthe order of the diffraction angle aB - G / p ,  the incoherent 
scattering will cause the particles to leave both coherent- 
scattering channels. Taking this circumstance into account, 
the equations for the probabilities a,(II + G, t ) and ao(II, t ) 
for centrosymmetric interaction Uo(r) of a particle with an 
individual atom can be obtained from (2.6) and (2.8). They 
take the simplest form in the so-called symmetric diffraction 
case, when the parameter y in (3.6) is zero, ie., E, = E, + : 

d3x r =. S - U2 (x) [I - exp (- (x))] 8 (en+% - en), (4.5) 
(2n)* 

d3x 
y = n S w ~ ( x ) ~ ( ~ - * ) 8 ( c n + . - e n )  

x (exp [- v] - exp [- z(x) + Z ( G  2 -x) 

where 

cp (t) =a, (IT; t) ; x (t) =ao (IT+ G, t) , a (t) =UG (II+G/2, t) , 
p (t) = a - ~  (II+G/2, t) . 

The initial condition for the system (4.1)-(4.4) is 

Cp (0) =1, x (0) =a (0) =I (0) =O. 

A solution of (4.1)-(4.4) can be obtained by using a Laplace 
transformation 

9 (t) ='/2e-rt (ch (yt) +cos (2At) ) , (4.7) 
~ ( t )  ='/ze-rt (ch ( yt) -cos (2At) ) , (4.8) 

a ( t )  =p*(t) =-ilze-rt (sh (yt) +i sin (2At)). (4.9) 

It can be seen from (4.7)-(4.9) that all the vibrational pro- 
cesses of the pendellosung type attenuate over a length 
I, ,  - v / r ,  where v  is the particle velocity. It follows from 
(4.6) that when the amplitude of the thermal displacements 
of the atom is of the order of the screening radius of the 
atomic potential, the length 1 ,, coincides with the mean free 
path in an amorphous substance having the same composi- 
tion. The characteristic parameter of the vibrational solu- 
tion, the pendellosung length I, = v /A ,  increases with in- 
creasing thermal displacements, since r in (3.2) decreases in 
proportion to the Debye-Waller factor, while r, on the con- 
trary, increases and approaches its value for amorphous 
matter. That characteristic crystal temperature at which the 
periodic pendellosung solution is suppressed is determined 
by the relation T - A .  The periodic pendellosung vanishes at 
high temperatures. 

It follows from (4.5) and (4.6) that the inequality 
r - y<T is satisfied at thermal displacements larger than 
the screening radius but smaller than the latice constant. As 
a result, the probability of finding the particle in a coherent 
channel contains a weakly damped component that exists up 
to a depth I ,  - v / r  - y, while all the remaining terms at- 
tenuate at depths on the order of I,,. This constitutes anoma- 
lous passage of one of two Bloch waves that has density mini- 
ma near the atomic planes and is therefore weakly scattered 
by the thermal fluctuations of the p~tential."~ It should be 
noted than in an amorphous medium the second Bloch wave 
is already scattered at depths on the order of the mean free 
path. 

Using the solutions (4.7)-(4.9) we can obtain from (2.6) 
an equation for the angular distribution of the particles that 
leave the diffraction channels, with allowance for multiple 
incoherent scattering: 
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where 

and the initial condition for (4.10) is C(p, 0 )  = 0.  The total 
momentum distribution of the probabilities can be obtained 
with the aid of C (p, t) as 

a, (p, t) =C(p, t )  +6 (p-II)q(t)+G (p--II--G)x(t). (4.1 1 )  

It can be seen from (4.10) that for the solution it suffices to 
consider only momenta located on the equal-energy surface 
ep = en = const. At small scattering angles, we replace the 
spherical segment of this surface by a plane and introduce on 
it the momentum coordinate Q = (Qx; a). Assuming that 
the origin on the Q plane corresponds to the momentum II, 
we can rewrite (4.10) in the form 

-1-w(-Q, Q)q(t) +w(Q-G, G-Q)x(~) 

+w(G-Q, Q) [a ( t )  +B (t) 1. (4.12) 
L 

Equations of this type are well known,9 they correspond to 
small-angle transformation in the theory of elastic scattering 
in an amorphous medium. The solution of (4.12) can be ob- 
tained directly: 

1 

+v(G/2, pjel-p(iGd2) J erp[p(p) (t-r) I [a ( r ) - ip( r )  ]dr, 
0 

where 

tallographic-plane system leave the coherent diffraction-re- 
flection channels and in their subsequent motion undergo 
mainly incoherent scattering. The other half of the particles 
leave the coherent channels via anomalous passage at a 
depth I, - v / T  - y. 

Using (4.13) and (4.11) we can obtain the total distribu- 
tion of the particles in momentum at the instant of time t. 
Since the angle of deviation from the initial direction of mo- 
tion is uniquely related to the momentum change 6 = Q /R; 
one can calculate from (4.11) all the angle moments, particu- 
larly the average deflection angle and the mean squared de- 
flection angle: 

Substituting (4.13) in (4.11) we can obtain for (4.15) 

+- 2Ar sin (2At) ) ) , 
rZ+4RZ 

where 6, = 6/17. 
It follows from (4.17) that the angular distribution 

aO(6,t ) at large depths I > If, is asymmetric relative to the 
reflecting system of crystallographic planes. Substituting 
(4.11) in (4.16) we can obtain 

where 

According to the foregoing analysis of the anomalous pas- 
sage, we can separate in (4.18) three characteristic time inter- 
vals (or corresponding sample thicknesses). At t ( r  -' we 
have 

<e2> =D2t+A2eB2tZ. 

This case corresponds to a kinematic theory in which the 
diffraction and incoherent scattering proceed independent- 
ly." At r - ' ( t ( ( r  - y)-' we obtain 

which corres~onds to the time when half the particles due to 

Integrating (4.13) with respect to Q we can obtain the total anomalous passage is in coherent channels and makes no 

probability of location outside the coherent-scattering chan- contribution to theincrease of (8 2).  Finally, at t )  (r - y)-' 
we have nels: 

(6') =D2t, 
Jc(Q, t )d2~=l-e-rf  ~ h ( y t ) ,  (4.14) 

i.e., at depths larger than the anomalous-passage length I, 
from which it follows that already at a depth If, - v / r  half all the leave the coherent scattering channels and 
the particles of a flux incident at the Bragg angle in the crys- the scattering is fully incoherent thereafter. 
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5. DISCUSSION OF RESULTS 

It follows from the foregoing that in the absence of inco- 
herent scattering the coherent diffraction in transmission 
can be described by a collision integral that is not local in 
time, of the form (3.1)-(3.2). The change of the wave intensity 
at a given instant of time during coherent scattering is deter- 
mined by the values of the intensity at all the preceding in- 
stants. With account taken of the incoherent scattering that 
takes the particles out of the coherent channels, we obtained 
the particle distributions in the longitudinal coordinate 
z = vt and in the transverse momentum; each is a sum of two 
distributions for the coherently and incoherently scattered 
particles. The distribution of the coherently scattered parti- 
cles is the sum of the distributions for the transmitted and 
reflected beams: 

where q,, (z) are defined in (4.7) and (4.8): 

(P* (z) exp (-I'zlu] [ch (yz/u) *cos (2Azlv)l.  

We emphasize that at large z the intensity of the Bragg scat- 
tering attenuates with depth in accord with the law 

The distribution of the incoherently scattered particles is a 
background to the transmitted and reflected waves: 

! inCoh(pl9 ') =I d 2 ~  ~ X P  ( - i ~ l ~ )  [ V(P) 

x j'expf p (p) (z/u-r) 1 [q  ( r )  +eiGP% (7) 1 dr  
0 (5.2) 

I!" 

+ V (G/2 .  p) eiGP1' 5 exp [ p (p) ( d o - r )  I [a ( r )  + p (T) 1 dr ] , 
0 

where v( p) and v(G/2,p) are defined in accord with (4.13a), 
and the functions p, X ,  a, and B are defined according to 
(4.7)-(4.9). The mean squared angle of deviation from the 
initial direction of motion, calculated with the aid of the 
total distribution 

f (PL, 2) =fCOd~It 2) +finCOh(pl, z),  (5.3) 
is given by (4.18). 

Equation (5.3) enables us to find the crystal-particle an- 

gle distribution that results from the competition between 
the coherent and incoherent scattering. In Refs. 2-4 this dis- 
tribution was found for the limiting case of low tempera- 
tures, when only one coherent scattering act takes places in a 
crystal layer considered there. Equation (5.3) makes possible 
an analysis of the case of high temperatures and of thick 
crystals, where multiple incoherent scattering is substantial. 
In particular, (5.3) permits an analysis of the case of almost 
total suppression of the coherent scattering by the incoher- 
ent (this corresponds to the case when r a n d  y are compara- 
ble with A ). We note here that when the Einstein models are 
used to describe the thermal motion of the atoms (5.3) cannot 
be used below the Debye temperature. 

Equation (5.3) describes the spreading of the diffraction 
peaks with rising temperature in all cases of two-wave dif- 
fractive scattering of an electron in a single crystal. The most 
suitable for the observation of these effects are crystals with 
low Debye temperature (Ag, AU)" and electrons with energy 
lower than 100 keV, when the diffraction has a two-wave 
character. ' 
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