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The problem of the stability of a steadily moving plane isothermal crystallization front in a dilute 
solution is considered with allowance for inclusion of solute molecules in the solid phase. The 
local rate of motion of the phase boundary is determined by a kinetic equation of the Onsager type 
with allowance for surface tension. It is shown that if the coefficient for inclusion of the solute in 
the solid phase is smaller than a certain critical value that decreases with increasing value of the 
surface tension coefficient, the plane front will be aperiodically unstable against two-dimensional 
long-wavelength perturbations. 

PACS numbers: 82.60.Nh. 82.60.Lf 

The instabilities of nonequilibrium phase-transition 
fronts are now being extensively studied, both experimental- 
ly and theoretically.' One of the most important examples is 
the crystallization of a supercooled melt.2.3 A widely used 
approach to the theoretical description of this process is 
based on a treatment of the Stefanov problem,4 in which it is 
assumed that the temperature To at the crystallization front 
remains constant during the crystallization of a one-compo- 
nent melt, and that the concentration co at the front remains 
constant in the isothermal crystallization of a binary melt. A 
more realistic assumption concerning the kinetics of the 
phase transition was used in Ref. 5 (also see Ref. 6) ,  where it 
was assumed that the crystallization rate is proportional to 
the difference between the chemical potentials of the sub- 
stance in the liquid and solid phases in the case of the crystal- 
lization of a slightly supercooled melt. Our approach, how- 
ever, differs from that of Ref. 5 in that we assume the 
solution to be dilute (and not close to the eutectic point) and 
consider not only one-dimensional perturbations, but also 
multidimensional perturbations (which lead to a curved 
front). 

Let us write the diffusion equation for the solute in the 
comoving coordinate system in which the crystallization 
front, which moves in the laboratory system with velocity V, 
is at rest: 

where D is the diffusion constant, c is the solute concentra- 
tion (c ( I), the coordinate z is directed into the melt (the 
plane front lies at the pointz = O), and the coordinatey lies in 
the front. We neglect the diffusion of the solute in the solid 
phase. We shall assume that at the phase boundary the con- 
centration c, in the solid phase is proportional to the concen- 
tration c ,  in the liquid phase: 

c,=ac1, (2) 

where a is the distribution coefficient2 (a< 1). 
To obtain an equation for the crystallization rate we 

write down the values of the chemical potentialsp, andp, of 
the solvent and p; and pclj of the solute, where the indices 1 
and s refer to the liquid and solid phases, respectively7: 

(0) (0) 
pl=pl  -TcI, p.=p, -Tc., (3) 

c1 C. p,'=T ln- + $,, p.'=T ln- +$,. 
e e (4) 

Herep\') andpr)  are the chemical potentials of the pure sol- 
vent in the liquid and solid phases, $, and $s are the concen- 
tration-independent terms in the chemical potentials of the 
solute, T is the temperature (Boltzmann's constant is taken 
equal to unity), and e is the base of the natural logarithms. 
We shall take account of the fact that, in accordance with 
Eq. (2), each solvent molecule passing from the liquid to the 
solid phase brings with it ac, solute molecules. Then from 
Eqs. (3) and (4) we obtain the effective energy E released 
when a single solvent molecule passes from the liquid to the 
solid phase: 

E=Ap(')-Tcl (I-a-a In a-') , (5) 
where Ap'O) = pf" - pr) .  In what follows we shall write 
0 = 1 - a - a In a-' (it is easy to see thatp>O when a< 1). 
In the weakly nonequilibrium situation we are considering E 
plays the part of a thermodynamic force, while the flux asso- 
ciated with it is the flux of solvent passing from the liquid to 
the solid phase. If the density of the solvent is taken as unity 
and the difference between the densities of the two phases is 
neglected, this flux will be equal to V. In the linear approxi- 
mation, the flux and force are connected by the Onsager 
relation7 

where y is the phenomenological kinetic coefficient. Equa- 
tions (5) and (6) hold for the case of a plane phase boundary. 
In considering the evolution of a multidimensional perturba- 
tion we shall have to deal with a curved phase boundary 
whose position (t, y) is given by the equation 

% ( t ,  y) =ziert sin ky, (7) 

in which r is the logarithmic growth rate of the instability, 
while k and z, are the wave number and amplitude of the 
perturbation. In this case the contribution of the surface ten- 
sion to the chemical potential must be taken into account in 
Eq. (5), while the flux in Eq. (6) must be taken as the compo- 
nent V, normal to the boundary. The surface-energy density 
is proportional to the curvature of the surface, which, in the 
approximation linear in the perturbation (7), is given approx- 
imately by 
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3 =-z,kze" sin ky. 
aua 

When this is taken into account, Eq. (6) assumes the 
form 

Vn=yAp(0)-ypTc,-&zlerr sin ky, (8) 

in which a is proportional to the product of y by the surface 
tension coefficient. 

Equations (1) and (6) must be supplemented by the con- 
dition 

which results from the conservation of matter; here &/an is 
the normal component of the concentration gradient at 
points of the phase boundary [Eq. (9) means that at the 
boundary the solute diffusion flux is equal to the drift flux]. 

Equation (1) with the boundary conditions (6) and (9) 
has an obvious stationary solution that describes the motion 
of the plane front with the constant velocity V,: 

cfO) (z) =cO+col exp - - r 3. 
where c, is the concentration at infinity, 

l-a 
Cola - co; 

a 
V,=y (A ~(~)-pT'a-'c,). (12) 

We note that this solution is meaningful only when V, > 0 
[otherwise the concentration, according to (lo), would in- 
crease exponentially with increasing distance from the front 
in the liquid phase]; that is, as is evident from (12), the solu- 
tion is meaningful only when a >a,, where a, is defined by 
the transcendental equation 

On considering the stability of the solution (10)-(12), we 
must note at once that multidimensional perturbations, 
which are associated with curvature of the front, must lead 
to aperiodic instability. Indeed, as is evident from ( lo)-( 12), a 
stationary solution is characterized by a concentration that 
decreases monotonically with increasing distance from the 
front in the liquid phase. Hence, if a convex region arises on 
the front as a result of the perturbation it will penetrate into a 
region of lower concentration where, according to (6), its 
velocity will increase and it will become even more convex. 
Similarly, a concave region that lags behind the front will lag 
even further. We note that a similar mechanism for the 
aperiodic instability of a plane front is well known in the 
theory of gas  flame^,^ in the theory of laser ~ a ~ o r i z a t i o n , ~  
and in other problems. Such instability may be called kinetic 
instability. In the Stefanov problem as treated with 
allowance for surface t e n ~ i o n , ~ ' ~  another instability, which 
may be called diffusion instability, was discovered. This in- 
stability is related to the fact that in the Stefanov formulation 
the propagation velocity of the transformation front is deter- 
mined solely by the solute outward diffusion rate; then the 
concentration gradient ahead of a convex region of the front 
increases, so that the solute leakage rate increases and the 

convex region moves faster and becomes more convex. In 
our case both the kinetic and diffusion mechanisms contri- 
bute to the instability. To obtain a quantitative description of 
these mechanisms we introduce a perturbed boundary of the 
form (7), and to determine the perturbation of the concentra- 
tion field we substitute the perturbed concentration of the 
form 

c(t, y, z) =&" (z) +eRc"(z) sin ky, (14) 
[here Z.(z)sin ky is the eigenmode of the perturbation corre- 
sponding to the wave number k ] into Eq. (1) with V = V,. A 
simple calculation yields 

C(z) =cl exp [-x (k) z] , (15) 
where Z., is the amplitude of the perturbation and 

I 
x (k) = -{Vo+[V,"+4D (Dk2+r) I"). 

20  (16) 

After linearizing the boundary conditions (8) and (9) with 
respect to the boundary perturbation (7) and the concentra- 
tion perturbation (14)-(16), we obtain from the condition 
that the two homogeneous linear equations for the ampli- 
tudes z, and c, be compatible the following dispersion equa- 
tion that determines the logarithmic increment r (k ) of the 
instability: 

where 

To determine whether Eq. (17) has roots that satisfy the 
instability condition E > 0, we note, first, that all the roots of 
this equation are negative in the limit k ' + m : 

As is evident from the definitions (18) of T and 8, this is 
associated with the obvious fact that the surface tension and 
diffusion must necessarily suppress the high-frequency per- 
turbations in the limit as k -+ m. AS is easily seen, the 
branch E ,  corresponds to the natural perturbation which, in 
the limit as k ' - m, is expressed through curvature of the 
boundary against the background of the unperturbed con- 
centration field, while the branch &, corresponds to pertur- 
bation of the concentration at a plane boundary. 

Equation (17) simplifies when k ' = 0, becoming1' 

This equation has the obvious root E = 0. When E > 0, how- 
ever, (1 + 4&)'12 - l <&, while (1 + 4~)"'  - l + 2a>0; 
hence Eq. (20) has no positive roots. It is also easy to see that 
Eq. (20) has no complex roots with positive real parts, which 
means that the stationary solution is stable against one-di- 
mensional perturbations. 

Thus, if the logarithmic increment is positive in some 
wave-number region there should be a value k $ of k at 
which the logarithmic increment changes sign, i.e., for 
which ~ ( k  $)  = 0. On substituting k ' = k: and E = 0 in (17) 
we find, after simple calculations, that when 
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FIG. 1. The logarithmic increment c of the instability vs the wave number 
k of the perturbation as calculated with Eq. (17) using typical values of the 
parameters. 

the equation obtained for kg has no positive real roots, and 
when 

it has one positive root: 

In particular, it is easy to write down an approximate expres- 
sion for the root of Eq. (17) that is valid in the region of small 
k values: 

If Eq. (22) is satisfied, a typical dependence of& on k has the 
form shown in Fig. 1 [the figure is based on the results of a 
numerical solution of Eq. (17) for the parameter values 
a = 0.5, 6 = lo3, 0 = 1, and r = 1; the parabolic depen- 
dence (24) holds only for small k values and is not shown on 
the figure since it is valid only in the region k 5 10V3 for the 
parameter values chosen for the calculations]. 

If we use Eqs. (18) to rewrite the instability condition 
(22) in terms of the initial parameters, it takes the form 

Since a occurs in (25) and D does not, it is clear that the 
branch of the ~ ( k  ) function depicted in Fig. 1 [which exists 
when condition (25) holds] passes over into the branch &,(k ) 
defined in (19) in the limit as k -+ oo . 

IfEq. (17) had complex roots with positive real parts the 
plane front would become unstable. Numerical calculations 

show, however, that there are no such roots.*' Thus, a stead- 
ily moving plane crystallization front in a dilute supercooled 
solution is stable, according to Eq. (21), provided the distri- 
bution coefficient is not too small, i.e., provided the solid and 
liquid phases do not differ too much in composition. The 
critical value a, of the distribution coefficient is determined 
by the transcendental equation obtained by substituting ex- 
pressions (1 1) and (12) for c,, and V into (25) and changing 
the inequality sign to an equal sign; it has the form 

where 8, = 1 - a, - a, lna; '. It is easy to see that Eq. 
(26) has precisely one positive root and that that root lies in 
the interval a, < a, < 1 [a, is defined by Eq. (1 3)]. Thus, if a 
lie in the range 

the plane front will be aperiodically unstable against pertur- 
bations with wave numbers k < k g .  
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"In treating one-dimensional perturbations (i.e., perturbations with 
k ' = 0) one may introduce the perturbation of the position of the phase 
boundary, as was doneabove, or one may regard the boundary as lying in 
the plane z = 0, as before, and introduce the perturbation of the velocity: 
V(t  ) = V, + V,en. The second approach also leads to Eq. (20). 

''As was noted above, this assertion can be rigorously proved for the case 
k = 0, when Eq. (17) reduces to Eq. (20). 
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