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A new mechanism is proposed for an instability of electromagnetic waves in multivalley conduc- 
tors. This instability consists of a spatial separation of the density fluctuations of carriers of 
different type by the Lorentz-force component longitudinal with respect to k. This force is caused 
by the alternating magnetic field of the wave. This instability mechanism operates when the 
transverse components of the drift velocities of the carriers of different types are unequal. The 
propagation of helicons and intervalley drift waves in a conductor with two types of carrier is 
analyzed for the case in which the conductor is in crossed electric and magnetic fields. The growth 
rates are derived. The nature of the instabilities and the conditions for their occurrence are 
studied. 

PACS numbers: 72.20.Jv, 72.20.M~ 

In multivalley semimetals and semiconductors at suffi- 
ciently low temperatures, the frequency v, of intragroup 
carrier scattering, may be much higher than the frequency 
vM of scattering with umklapp (v, )vM). The electrons of 
different groups, at thermodynamic equilibrium within their 
own valleys, may have densities that do not correspond to an 
equilibrium of the overall system, which remains electrically 
neutral on the whole. Such a redistribution of electrons 
among groups has important consequences for the electrical 
conductivity of semiconducting and semimetal and 
for the propagation of acou~tic"'~ and electr~magnetic"~'~ 

ing magnetic field of the wave. The electrostatic fields which 
arise interact with the longitudinal field of the wave and 
cause it to grow. To the best of our knowledge, this instabil- 
ity mechanism has not been discussed previously in the liter- 
ature. 

1. DISPERSION RELATION FOR THE COUPLED WAVES 

We consider an uncompensated semimetal or semicon- 
ductor with two groups of carrier, in uniform, static, and 
mutually perpendicular electric and magnetic fields (Fig. 1). 
For each group we assume 

waves. a, vM,<<vB<Q, k l a l ,  
In this paper we show that the nonequilibrium filling of 

(1) 

the valleys in a multicomponent solid-state plasma with a where w is the wave frequency, LI is the cyclotron frequency, 

drift may cause a specific electromagnetic-wave instability and I is the mean free path. 

associated with the alternating magnetic field of the wave. The system of equations comprises Maxwell's equa- 

The amplification of electromagnetic waves in solids has tions (without a displacement current), the continuity equa- 

been studied by several investigators (see Refs. 13-16, for tions for the types of 
example). It has generally been assumed that the light carri- 
ers of a bipolar conductor are magnetized by the external 
magnetic field H,, while the heavy carriers are not.14-l6 It 
has been the relative motion of the carriers along the direc- 
tion of the wave vector k which has caused the waves to 
become unstable. Furthermore, most of the studies (Ref. 14 
is an exception) have dealt with cases in which the carriers 
drift along the direction of H,. In Ref. 14 the amplification 
resulted from a Hall drift, but the holes were assumed immo-' 
bile (this was an extremely important assumption). 

We derive the wave spectrum here for external fields in 
the Hall configuration under the assumption that the carri- 
ers of both types are magnetized. The amplification is caused 
by either a dissipative drift perpendicular to k or by the dif- 
ference between the nondissipative components of the drift 
velocity if there is a complicated carrier dispersion law. The 
conductor may be either bipolar or monopolar with several 
groups of electrons. The insteility mechanism has no 
threshold, in contrast with the Cerenkov mechanism. The 
instability consists of a spatial separation of the fluctuations 
of the densities of the different types of carrier, caused by the 
longitudinal (Ilk) Lorentz force resulting from the alternat- 

an, I 
div ja+vMna=O, 

d t  e 

and material equations for the partial currents, 

ja=-eNaVa+Ba (E+cdi [Vax HI ) + e D a V h ,  (3) 

Here E and H are the alternating fields; j, , Va , na , and N, 
are respectively the current, drift velocity, nonequilibri%m 
density, and total density of the carriers of typea; iY and Da 

FIG. 1. 

1006 Sov. Phys. JETP 58 (5), November 1983 0038-5646/83/111006-04$04.00 @ 1984 American Institute of Physics 1006 



are the conductivity and diffusion tensors; e is the modulus 
of the electron charge; and c is the speed of light. System (2), 
(3) is written in a fixed coordinate system, since the Hall drift 
velocities of the carriers are generally different in the case of 
an anisotropic dispersion law. 

We consider waves which are propagating in a plane 
perpendicular to E, at an arbitrary angle 6 to the magnetic 
field H, (Fig. 1); we do not consider the case of nearly per- 
pendicular propagation, in which helicons cannot exist: I T /  
2 - 6 (>y = Y, /a. Assuming that all the alternating quan- 
tities in (2) and (3) are proportional to exp [i(k.r - wt )], we 
can reduce the system of equations to 

Here r0, = Y, + k 2D?tX is the damping rate of the nonin- 
teracting drift wave, whose existence in a two-component 
solid-state plasma was first pointed out in Ref. 11. The in- 
dices p and Y run over the values of 6 and (; 

Here ui, = Cek is the static conductivity, Q, is the state 
a 

density of the carriers of type a, and a,, is the Kronecker 
delta. 

The meaning of some of the quantities in Eqs. (4) de- 
serves comment. The quantity V, is the propagation velocity 
of intervalley perturbations along k in a system of carriers 
which are drifting with different velocities Vz and Vt  , while 
D,, is the ambipolar diffusion coefficient which determines 
the diffusive "dissipation" of such perturbations. The reason 
for the appearance of these quantities as well as for the renor- 
malization of the conductivities a,, is the requirement of 
quasineutrality. The differences A 5 ,  their combinations 
W,, and %,, , and the "conductivities" sik are nonzero when 
the corresponding components of the conductivity and mo- 
bility tensors are not identical for different carrier groups. 
The alternating transverse currentsjC andjc , which are pro- 
portional to these quantities, couple the helicons with each 
other and with drift waves. The degree of wave coupling is 
determined by the anisotropy of the carrier energy spectrum 
and by the orientation of the magnetic field with respect to 
the crystallographic axes. The two cases (1) a,, = u,, = 0 
and (2) a,, - uyz -axy # 0 are substantially different: In the 

first case, there is only a weak coupling of waves, and only 
the damping of the waves is changed substantially in almost 
all real materials; in the second, the waves are strongly cou- 
pled. 

2. WEAK INTERACTION OF WAVES 

Here we consider the case a,, = uyz = 0. The Hall ve- 
locities of the carriers, C and Vt  , are identical in this case 
and equal to V, ; A Vc = 0; W6 = PC = A VC ; and sc, ,sC, . 
The dispersion relation can be written 

(af2-o~+2iof~, ,")  (af+ird0) =@ (k, o f ) .  (5) 
Here w, = + k 2~2/4~156c  and r are the spectrum and 
damping rate of the helicons in the absence of a drift, and 
w' = w - kV, . The function @ (k, w')  on the right side of (5) 
is a polynomial in k and w' with a degree lower than that of 
the expression on the left side. To save space, we omit the 
lengthy complete expression for @ (k, w'). 

There is a well-developed procedure for analyzing dis- 
persion relations of this sort (see Refs. 17 and 18, for exam- 
ple). We omit the straightforward but extremely lengthy de- 
tailed calculations and proceed immediately to the final 
results, which we will briefly analyze. In the region of a sub- 
stantial coupling of the unperturbed solutions of Eq. (5) (esti- 
mates show that the condition 1 0 ' 1  NIw, I /y)  holds in this 
case), the helicon damping rate is 

rh(*)=rh0+~rh(')*~rh(1), @I 

where the plus and minus signs correspond to fast and slow 
helicons, respectively. Equations (6) are applicable under the 
inequalities 

M (k) =min (1, 1 o h  1 /rdO). 

In general, these requirements are more stringent than the 
condition that the wave coupling be weak. They mean that 
the correction to the helicon spectrum is small in compari- 
son with lo,, I, while in the case of weak coupling the correc- 
tion would have to be small in comparison with 

l k V %  + Iwh 1 1 .  
It can be seen from (6) that one of the helicons may be 

unstable. This possibility arises under the inequality 

In this case, for parameter values satisfying 

where 

(9) 
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0. 
R,= -{-i+sgn 2 oh [I- 4 

v A l r d 0  1 0' I 

the damping rate becomes negative for one of the helicons. 
Just which helicon this is depends on the sign of the product 
A Vc rc . We cannot say anything definite about the sign of 
this quantity in general, since it depends on both the particu- 
lar material and on the orientation of the field E,. If we are 
dealing with a bipolar crystal, however, the sign of the term 
A r  r' is determined unambiguously: sgn(A Vc re ) = sgn Ew 
For definiteness we assume Vx > 0. Since Vx - - sgn E,, it 
is clear that it is the fast helicon which is unstable in bipolar 
crystals. 

Turning now to the drift wave, we assume that the un- 
perturbed drift wave is weakly damped: k V, ST:. Its damp- 
ing rate in the case of a weak coupling with a helicon is 

Expression (10) was derived under the assumption that the 
second term on the right side is small in comparison with (wi 
+ rY) ' l2 .  It can be seen that under the conditions 

the drift wave also becomes unstable. 
Analysis of the nature of the instability reveals the fol- 

lowing: The interaction of helicons with the drift wave can 
drive only a convective instability. As for the interaction of 
the fast and slow helicons, we note that it leads to both con- 
vective instability and-under certain conditions-absolute 
instability. Only a slow helicon (oh < 0) can be absolutely 
unstable. A necessary condition for this instability is that the 
branch point in the helicon spectrum, k, = ~PV,  16cc J/c2, 
must fall in the instability region for the slow helicon, found 
from (9). 

3. STRONG INTERACTION OF WAVES 

In the extremely anisotropic case with a,, -ayz -a,, , 
the coupling of the unperturbed solutions of Eq. (5) becomes 
strong, and the wave spectra are greatly deformed. The dis- 
persion relation can nevertheless be written in a form similar 
to (3 ,  where the coupling of the unrenormalized solutions 
corresponding to the vanishing of the left side is weak. This 
dispersion relation is 

We omit the extremely lengthy expression for the function 
b (k, o). 

Analysis of this case is complicated because all the ve- 
locities ( V z ,  Vi,  Vd , Vh , A Vc ) are of the same order of 
magnitude. In other words, there is no drifting coordinate 

system which is common to the helicons and the electrostatic 
intervalley perturbations of the electron density. In fact, we 
do not, in general, find even the helicons with the customary 
spectrum. The solutions 

o 'Qh*- i rhO ( 12) 

correspond to ordinary helicon solutions only in the limit 
(w, 1 )  )kA Vc I .  We might note that one of solutions (12) may 
be unstable even if we ignore the right side of ( I  1). 

As examples we consider two limiting cases. We first 
assume Iwh I % lkA Vc 1. In this case the spectra of the unre- 
normalized helicons are 

o=kvh+,h-i(rh0+'/,kAVLrc Sgn o h ) .  (I31 

The damping rate of one of the helicons becomes negative as 
soon as I kA Vc I exceeds a value on the order of r i . The right 
side of (1 1) gives rise to additional imaginary terms in (13), 
with a modulus less than or on the order of T i .  Although 
these terms are clearly important for an accurate determina- 
tion of the instability threshold, we will not discuss them 
here. 

Now assuming I oh I 4 1 kA Vc 1, we find from ( 12) 

In this limit the helicon spectra are linear with different 
phase velocities, and one of the helicons is clearly unstable, 
since the function (k, w) adds terms - yo, to the imagi- 
nary part of ( 14). 

The drift-wave spectrum could also be found by pertur- 
bation theory from (1 1). Quite naturally, this spectrum may 
also be unstable if r : is small in comparison with a quantity 
on the order of T i .  However, we will omit the lengthy 
expression for the damping rate of the drift wave. 

4. INSTABILITY MECHANISM 

To understand the instability mechanism, we consider 
for simplicity the weak-coupling case. In the limit of suffi- 
ciently long waves the dissipative processes (the scattering 
and diffusion) become inconsequential in r ',* ', and we have 
r ',* ' z f kA Vc re /2. The same damping rate can be found 
by the following arguments: A drift wave is an electrostatic 
wave. In the presence of drift, helicons also have a large 
electrostatic component (on the order of kV,/lwh I ) .  If we 
consider the coupling of the n, and ns oscillations with the 
electromagnetic wave only through the longitudinal field 
E x ,  we can write the helicon spectrum as follows (we are 
ignoring collisions): 

[cf. (13)l. 
A more detailed analysis shows that Im o in (15) stems 

from the longitudinal component of the Lorentz force 
caused by the alternating magnetic field of the wave. If the 
drift velocities of the two types of carrier are identical 
(A V6 = 0), this force will also be the same for the two types 
of carrier. We can eliminate this force by transforming to a 
drifting coordinate system, and there will of course be no 
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oscillation growth. If, on the other hand, the drift velocities 
are different (A V6 #0) ,  the longitudinal (Ilk) components of 
the Lorentz force will lead to a spatial separation of the fluc- 
tuations, associated with the quasineutrality condition, of 
the densities n, and nB . This effect will in turn give rise to 
longitudinal electric fields which will oppose the process. 

This picture of the instability is confirmed by the fol- 
lowing calculations. If we ignore intergroup relaxation in the 
continuity equations, and if we retain in expression (3) for the 
current only the first term and that associated with the longi- 
tudinal Lorentz force, we find the following equation for n, : 

The substitution a+ in (16) changes also the sign of the 
second term. We see that in a coordinate system drifting with 
the carriers of one type the density of these carriers does not 
depend on the time, while that of the carriers of the other 
type increases exponentially. The electric fields of course 
stop this growth but they drive an instability of the electro- 
magnetic wave. 

The vortical fields E6 and Ec give rise to an additional 
damping of the helicons when there is wave coupling. Some 
of the energy is lost by diffusion, while some is pumped into 
the drift wave through its small transverse components. This 
process corresponds to the A r  jf)  and rd terms quadratic in 
A Vc [see (6)  and ( l o ) ] .  If the pumping of the drift wave ex- 
ceeds its natural losses the wave will start to grow. 

This instability mechanism can apparently operate also 
in several other cases, according to Refs. 16 and 19. Those 
papers, however, dealt with a situation in which the mecha- 
nism proposed above is not the fundamental one. Further- 
more, in those studies this mechanism could be manifested 
only when the self-magnetic field of the current is taken into 
account, while this is not necessary for the instabilities dis- 
cussed there. 

We conclude with a brief discussion of the role played 
by the self-magnetic field of the Hall current in our problem. 
The sample should be regarded as bounded, at least along the 
E, direction. It is not difficult to show that the self-magnetic 
field in a plate of this type is oriented, just as the external 
field, along the z axis and its x profile is 

where H, is the self-field, AN is the difference between the 
carrier densities, and H (0) is an integration constant. The 

Hall velocity of the carriers also begins to depend onx. These 
results are valid when the drift velocity changes only slowly 
over the plate thickness 2, i.e., under the condition 

4nANEO9<Ho2.  

If this condition is not satisfied, a packet of spatial harmon- 
ics corresponding to the interval A Vd should be excited at 
the given frequency. It would apparently be possible to 
achieve amplification of only some of these harmonics by 
suitable choice of parameters. 
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