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The proposed derivation of the auxiliary boundary conditions is not based on the assumption that 
the interaction between cells of a crystal is weak, and therefore adds much to the earlier studies of 
the Frenkel exciton. Besides the crystal excitations (vibrations) that are at resonance with the 
light, nonresonant excitations that lead to numerous additional short low-amplitude light waves 
are considered for the first time ever. A method of excluding the short waves and of correspond- 
ingly decreasing the number of the auxiliary boundary conditions is proposed. The auxiliary 
boundary conditions are obtained without assuming predominance of the long-range or of the 
short-range interactions [S. I. Pekar, Crystal Optics and Additional Light Waves (in Russian), 
Kiev, Naukova Dumka, 19821, by taking into account an inhomogeneous solenoidal-field wave 
with k2 = 0 [S. I. Pekar and V. I. Pipa, Sov. Phys. Solid State 25, 206 (1983)l. 

PACS numbers: 63.10. + a, 63.20. - e 

Pekarl has shown in 1957 that in the region of exciton 
absorption of light there exist, besides the two ordinary bire- 
fringence waves, supplementary solutions of Maxwell's 
equations, namely additional light waves (ALW). In Ref. 1 
was introduced the concept of a generalized exciton-an ele- 
mentary excitation of a dielectric, characterized by a single 
continuous quantum number, the quasimomentum k, while 
all the remaining quantum numbers are discrete. An optical 
phonon is a particular case of a generalized exciton, and all 
the general-theory results obtained for an infinite crystal can 
therefore be extended to include also this phonon. In parti- 
cular, ALW appear in the vincinity of the frequency limit of 
the optical phonon (the IR band). In the problem of the pas- 
sage and reflection of light at the vacuum-crystal interface 
the Maxwellian boundary conditions are insufficient for a 
unique determination of the amplitudes of the reflected and 
transmitted waves in terms of the amplitude of the incident 
wave. Auxiliary boundary conditions (ABC) are needed. It is 
known1.' that the latter depend on the particular model of 
the exciton. The ABC for a Frenkel exciton were obtained in 
Refs. 1-3. In the present paper we obtain ABC for another 
particular exciton case-the optical phonon. The phonons 
are obtained as a result of quantization of the harmonic crys- 
tal-lattice vibrations. This quantization, as is well known, 
can be effected also after first developing a classical theory of 
lattice vibrations. In a bounded crystal it is necessary to for- 
mulate and use the boundary conditions even in the classical 
treatment of normal lattice vibrations. The subsequent 
quantization does not change the boundary conditions. The 
classical theory of lattice vibrations is therefore sufficient for 
the formulation of the ABC. 

Infrared optical-exciton waves in a crystal (polaritons) 
are described by the ion equations of motion 

and by ~axwel i ' s  equations 

v-1 

The integer lattice vectors m (or n number here the unit 
cells of the crystal, and the subscripts p and v number the 
ions within the cell boundaries. u,, is the vector of the dis- 
placement from the equilibrium position of thep-th ion with 
mass M, and charge e,, in the cell m; f is the number of ions 
in the cell; e is not necessarily a multiple of the unit charge: 

amp,nv5apv,n-my (4) 

El is the solenoidal part of the electric field; P(r,t) is the 
specific polarization of the crystal; v is the volume of the unit 
cefi. The light waves are assumed to be long. We neglect the 
variation of E, within the limits of the unit cell. 

If the term e, El in (1) is discarded, meaning that the 
retardation in the solenoidal part of the field is neglected, the 
system (1) describes not a light wave (an optical exciton), but 
an oscillating exciton. It can then be seen from (1) that the 
term - aw,nvu,v is a potential force acting on the ion m p 
and caused by the displacement of the in nv. If the distance 
In - ml is large, this force can be calculated as being the 
force acting on the charge e,, in the electric field of the corre- 
sponding dipole produced in the cell n as a result of the dis- 
placement of the ion nv. The value of aW,,, so obtained will 
be designated by the symbol PW,,,. This value, however 
calls for a correction that is larger the shorter the distance 
In - ml. Using the symbol a,,,,,,, for this correction we can 
write the exact equality 

Here a,,,, is large when In - ml is of the order of one or 
two lattice constants, and decreases rapidly with increasing 
Jn - mi. We shall therefore call the terms 0 and a in the 
right-hand sides of (6) and (1) the contributions from the 
long-range and short-range interactions, respectively. 

In an infinite crystal, the solution of (1 )  can be sought in 
the form 
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Substitution of (7) in (1) yields the final system of equations 
for u,, 

f 

~'M~uo.= a, (k) uov-ePElo, (8) 

where 

In the right-hand side of (8) the contribution to the sum 
from the long-range interactions is equal to the product, 
with negative sign, of the charge e, by the electric field pro- 
duced at the location of the ion 0, by an aggregate of electric 
dipoles with a dipole moment 

and localized at all points nv except the point Op. This field 
can be calculated by Ewald's method and represented in the 
form 

t 

Here E(0) is the microscopic electric field in the zeroth cell. 
For long waves (i.e., smalllk( compared with the reciprocal 
lattice constant), the only ones considered hereafter, this 
electric field can be calculated as continuous and is equal to2 

The second term of (1 1) is an analytic function of k (Ref. 14) 
and its inclusion makes the macroscopic field exactly equal 
to the effective field. Without loss of generality, this term can 
be regarded as included in the term for the short-range inter- 
actions. The homogeneous system (8) can then be represent- 
ed in the form 

O~M,,U~,, = 4nepk(k' ") + a, (k) uo.,, 
11k2 

At fixed k, the system (13) determines 3f eigenfrequencies 
w,  (k) and amplitudes (1 = 1,2, ..., 3f ). We orthonormalize 
the amplitudes as follows: 

Three of the 3f amplitudes u$(l= 1,2, ..., 3f) pertain to 
acoustic vibrations for which the frequency and the dipole 
moment of the cell are equal to zero at Ikl = 0. They will be 
disregarded hereafter. 

We seek the solution of three inhomogeneous system (8) 
in the form of an expansion in the complete system of vectors 
u$L in 3Jdimensional space. As a result we get 

where 
f 

The solution of the system (1)-(3) determines the disper- 
sion law of all the light waves (vibrational optical excitons) in 
the crystal 

where j numbers the optical waves and N is their total num- 
ber. The explicit form (17) of the solutions was obtained, 
subject to the generalized-exciton assumption, in Refs. 1 and 
5-7. 

We proceed now to consider light waves in a semi-infi- 
nite crystal located in the half-spacez > 0. We seek the solu- 
tion of the system (1)-(3) in this case in the form of a linear 
combination of the solutions for an infinite cyrstal. Inas- 
much as translational symmetry in the xy plane is preserved 
in a semi-infinite crystal, we can seek the solution of these 
equations in the form 

where k, is an arbitrary vector in the xy plane. This means 
that the linear combination should include only the waves (7) 
and (17) with equal w and with identical xy-plane projection 
k, equal to k, (k, = k, + k,,). To pick out the waves includ- 
ed in the linear combination it is therefore necessary to spe- 
cify the values of w and k, in the dispersion law (17) and 
determine kzj from the latter. 

It is convenient to choose as the coefficients of the linear 
combination of the solutions the same light-field amplitudes 
Ey which are contained in (7) and in terms of which urn, are 
expressed in (7) and (16). As a result, the aforementioned 
linear combination of solutions should be of the form 

N N 

On going from an infinite crystal to a semi-infinite one 
no change occurs in Eqs. (2) and (3), while (1) becomes "trun- 
cated," i.e., the indices m, and n, in it take on only positive 
values: m,,n, = 1,2,3 ... . In addition, in contrast to the Fren- 
kel exciton, the interaction between the unit cells of the crys- 
tal is not assumed to be weak. Therefore an increase in the 
distance from the ions to the half-spacez < 0 can substantial- 
ly deform the near-surface cells of a semi-infinite crystal and 
alter the coupling coefficients aW,,, for them. We designate 
these changes by - AaW,,, . We stipulate that at positive m, 
the substitution a,,,,,,,-mrn,,,, - Aa,,,,, transform Eq. (1) 
into the equation for a semi-infinite crystal. To this end we 
must have Aa,,,,, = aw,nv, at m, > 0 and n,<O, while at 
m, > 0 and n, > 0 the quantity - Aa,,,,, = - Aa,,,, is 
the aforementioned subsurface change of the coupling con- 
stant, a change included in this case in the short-range-inter- 
action term. 

The linear combination (19) certainly satisfies the equa- 
tions for an infinite crystal. Therefore, if it is substituted in 
the corresponding truncated equations for the semi-infinite 
crystal, the latter will not be satisfied, and contain residual 
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terms 

Substituting (19) in (20) and subdividing the coefficients 
av,,, in accord with (6) into long- and short-range interac- 
tion terms, we can represent the residue (20) in the form 

N N 

where the contribution from the long-range interactions is 

and that from the short-range interactions is 

The contribution (22), with the sign reversed, is equal to the 
force of the electric field acting on the ion mp and produced 
by an aggregate of electric dipoles having dipole moments 

and localized in the half-space n3(0. Since k, is small the 
aforementioned electric field can be calculated as contin- 
uous. The potential of this field is equal to2 

L (r) =i(kT, r) - 1 kT 12. 

Thus, 
N N 

The residue It&, decreases with increasing m, >O as 
exp ( - Ik, Im,). If the calculation of the potential q, were 
not restricted to the continuity approximation and were cal- 
culated by direct summation over n3<0, the residue (27), 
which decreases slowly with m,, would acquire additional 
terms that decrease rapidly over one or two lattice constants. 
These terms can be included without loss of generality in the 
residue R& that is due to the short-range interactions. 

We consider now the contribution made to the residue 
by the short-range interactions. Since Aa,,,,,,, decreases ra- 
pidly with increasing In3 - m31, we can confine ourselves in 
the sum over n3 in (23) to only a few terms with the smallest 
values of In3[. The exponential factor in (23) can then be 
replaced by exp (&,en). Taking into account the transla- 
tional symmetry of the semi-infinite crystal in the xy plane, 
we can represent (23) in the form 

. = I  

where 
~ a ~ , ~ ( m , )  = ~ a ~ ~ , ~ a " " " - ~ ) .  

n 

On going from an infinite to a semi-infinite crystal, the 
changes in Eqs. (1) are not restricted to the fact that the sum 
over n in them becomes truncated, so that when (1 9) is substi- 
tuted in the right-hand sides of Eqs. (1) the aformentioned 
residues R',, appear. As shown in Ref. 3, if some perturba- 
tion (light, ultrasound, or some other) produces in a semi- 
infinite crystal waves with specific polarization of the form 

N 

p (r, t )  = Pjeqk,r-mt) , kj=k,+kzj, (30) 
1-1 

there appears in the crystal an inhomogeneous perturbing- 
field wave 

~ ~ = k ~ ~ ~ i ( k s - ~ t )  , ko,=i(k,(, ko2=0. (31) 

Here 

No such wave exists in an infinite crystal. Consequently, on 
going to a semi-infinite crystal there appears in the right- 
hand side of (I), besides the residue R',, , an additional term 
e, hCexp [i(k,*m - wt )I. 

The peculiarity of the wave (31) is that its total electric 
field E, the magnetic field H, and the polarization P are 
equal to zero. Therefore if a wave equation is written for one 
of these quantities, say E, the wave (31) will be included 
among the trivial (zero) solutions of the wave equation, and 
the dispersion equation will not have a corresponding root. 
The latter was the reason why this wave was unobserved for 
many years. The wave (3 1) was therefore called in Ref. 3 the 
"lost" wave. This wave is not connected with the spatial 
dispersion and with the spectral regions of the exciton reson- 
ances, and exists at all w in the region where macro-electro- 
dynamics is valid. 

Since = 0 at k = 16, the denominator of the first 
term in the right-hand side of (13) is zero. Therefore I&! 
(k,) = 0, i.e., the wave (3 I), as can be seen from (16), does not 
cause ion displacement u,, and makes no contribution 
whatever to the linear combination (19) and to the residue 
(20). 

Writing (26) in the form L (r) = i(k,,r) and using (21), 
(25), and (27) we easily rewrite the contribution made to R',, 
from the long-range interactions in the form 

This contribution is exactly cancelled out by the aforemen- 
tioned additional term e,, k,,C exp [ik,m - wt )] that appears 
in (I)  in the term with the perturbing field. The residue in (1) 
therefore will be only the contribution from the short-range 
interactions, given according to (21) and (23) by 

(34) 
In order that the linear combination (19) of the solution 

of Eqs. (1)-(3) for an inifinite crystal be the solution of the 
problem for a semi-infinite crystal, the wave amplitudes 
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IEUoI must be chosen such that the residues (34) vanish at all 
p and at m, > 0. Equating these residues to zero at some 
value of m,, we obtain a system of homogeneous equations 
relative to the quantities 

Since the determinant of the system differs from zero, we 
obtain the conditions uov = 0. Using Eq. (1 6) for uovj , we can 
express these conditions in the form 

N Sf-3 ( I ) .  
uov= y, c (poi 9 EaO) u::' (kj) 

= 0, 
1-1 I = (  

Q [ o I ~ ( ~ ~ ) - o ~ ]  

In this case the residues (34) vanish also for the other values 
of m,. 

We substitute p$)(kj) and G;(kj) in the numerators of 
the fractions of (35), assuming that I kj 1-0; these vectors will 
depend only on the direction of kj . Then poi = 0 for the three 
acoustic oscillation branches with numbers 1 = 3f, 3f - 1 
and 3f - 2, i.e., the corresponding terms are absent from 
(35). 

Equations (35) are in fact the sought auxiliary boundary 
conditions (ABC) that determine uniquely, in conjunction 
with the Maxwell boundary conditions, the amplitudes 
(Elio( of all the wave that are produced in the crystals, as 
well as of the wave reflected into the vacuum, in terms of the 
amplitude of the wave incident from the vacuum on the crys- 
tal. 

Using the second equation of (12) as well as Eqs. (7) and 
(16) for u,,,. , we can obtain for the polarization-wave ampli- 
tudes the expression 

The common bar over the two vectors denotes a tensor dyad. 
At such a value of p, if all the limiting natural frequencies 
w,(s = k/lk[) are close enough to one another and w ap- 
proaches all the a, simultaneously, there exist in the crystal 
3f - 3 additional light waves (ALW).' It is therefore neces- 
sary that the ABC reduce just to 3f - 3 scalar equations. 

It seems at first glance that the ABC (35) constitute 3f 
scalar equations, and thus do not correspond to 3f - 3 
ALW. However, multiplying (35) by Mv and summing over 
v we obtain the known identity 

v = i  

(at the limiting optical lattice vibration the mass center of the 
unit cell is at rest). It follows from this identity that three 
scalar equations in (35) are the consequence of the remaining 
ones. The number of independent equations obtained from 
the ABC (35) is 3f - 3. 

Multiplying Eqs. (35) bye, and summing overp we can 
obtain from them the condition 

Iff = 2 we can obtain, conversely, (35) from (37). The condi- 
tions (35) and (37) are perfectly analogus to the correspond- 
ing ABC in the case of a Frenkel e~citon. ' ,~.~, '  

It can be shown that when the limiting frequency w, of 
one of the excitons deviates from the remaining ones, as well 
as from w, the refractive index n of one of the ALW becomes 
very large (n - lo2 and larger). This light wave becomes exci- 
tonlike (see Ref. 7, 5 17); it comes close to the normal vibra- 
tion of the crystal lattice 1, and in particular its dispersion 
law in the region of large k corresponding to large n tends to 

o=a[ ( k )  . (38) 

We get thus a one-to-one correspondence between the vibra- 
tional exciton I, whose limiting frequency wls moves away 
from w, and one of the additional light waves, which coin- 
cides with this exciton in the limit as n - + ~ .  We agree to 
assign to this ALW the same number as the exciton that 
moved off resonance, i.e., j = I. Equation (38) should then be 
written in the form w = wI(kl). The smallest (practically 
zero) denominator of all the fractions contained in (35) is 
then wlZ(kl) - w2, where 1 is the number of the aforemen- 
tioned solitary nonresonant normal vibration, for which the 
difference w, - w2 is large. It can be shown that 

where MIS is the effective mass of the optical phonon and dl 
is the longitudinal-transverse splitting of its energy (for de- 
tails see Ref. 7, $8 12 and 17). 

Assume now that the limiting frequencies wls with 
1 = 1,2, ... g(3  are degenerate and close to w, while the re- 
maining w,  with I = g  + 1, g + 2, ..., 3f - 3 are far enough 
from w (nonresonant). Each nonresonant normal vibration 
corresponds to an excitonlike ALW. The latter are num- 
bered by the indices j = g + 1, g + 2, ..., 3f - 3. These waves 
have very large n and k, and will therefore be called short." 
The other light waves will be called long. The sum over j in 
(35) can be broken up into a sum over long and a sum over 
short waves. In the latter it is possible to retain only the 
dominant terms j = 1 whose denominators are almost zero. 
Next, since the short waves have very large n, all are directed 
normal to the crystal surface, i.e., their k, have the same 
direction, and consequently uc? (k, ) is independent of j. We 
denote them by ug?. The ABC (35) can therefore be rewritten 
in the form 

- 3  ( I ) *  
, E k j  + p . ~ ~ ~ ) ) u l :  (t) 

= 0; 
al"k,) -a2  (kr) -az 

long 1-1 I-g+i 

Choosing as the basis the complete system of orthonor- 
malized 3)dimensional vectors ug)( ... u$,! ...), whose k is di- 
rected normal to the surface((k1-4), we can expand in their 
terms any vector ubf?(kj): 

Substituting (4) in (39) and equating to zero the coefficient of 
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each ug,!, we can rewrite (39) in the form 

(PI:)' . EUO) A:" 
= 0 1 ' = 1 2 , .  . . . g (41) 

long 1-1 
012(kj) -a2 

11' (pp', EUO) A* (p$)* , Ell,)  + =o, 
a12(kj)-02 01'2(k1')-02 

long I = *  

Since the sum over jlong in (42) is finite and 
w, ,'(k,, ) - w2z0,  their solutions are 

The amplitudes of all the short ALW corresponding to non- 
resonant normal vibrations are thus equal to zero. Equations 
(41), on the other hand, are the sought ABC when not all the 
normal vibrations are at resonance with the light, but only g 
of them. In this case it is necessary in the second equation of 
(36) to replace that part of the sum 

which contains nonresonant denominators with small kj by 
the "background"/polarizability &,(a, s j )  The ABC (41) 
contain amplitudes of only long light waves. The number of 
the equation is g, i.e., exactly the number of the ABC. 

Equations (41) become simpler in the following three 
cases. 

1. Normal incidence of the light, ug,!(kj) = ug,!, i.e., 
A;' = 6,,,. and the p$) are independent ofj. Equations (41) 
take the form 

= 0, 1=1,2,. . . , g. 
long 

Multiplying these equations by pc) and summing over I we 
obtain 

[Per (r, t )  ] r-o=07 T. e. [B (0. k'i) -Po  (0. sj) IEU(=O. 
long 

(45) 
where p,, is the partial contribution of the resonant normal 
vibrations to the specific polarization. 

When comparing the conditions (37) and (45) it must be 
emphasized that the total polarization (37) on the crystal 
surface is zero if account is taken of the contribution made to 
the polarization by all light waves, including the short ones. 
The exciton polarization (45), however, is equal to zero when 
account is taken of the contribution made to the polarization 
by only the long waves; the total long-wave polarization 
differs then from zero. 

2. The light wave incident from vacuum and all the 
waves excited in the crystal are polarized perpendicular to 
the incidence plane (s-polarization). This is realized, e.g., 
when the incidence plane is a mirror symmetry plane of the 
crystal. The dipoles pc) then either lie in the incidence plane 
and therefore do not interact with the light, or are perpendic- 
ular to the incidence plane. In the latter case the singular 

term in (13) is zero, a,, and w, do not depend on s in the limit 
as lkl-4, and 4,!(kj) = G,!, i.e., A:' = 8,. . The p$ do not 
depend on j. Equations (41) take the form (44), (45). 

3. Oblique incidence and arbitrary polarization of the 
light waves. Assume that the singular term in (13) is small 
compared with the sum and can be regarded as a small per- 
turbation. Then, discarding this term in the zeroth approxi- 
mation, a,, and wl do not depend on s as 1 k l 4 ,  therefore 
G,!(k,) and 4,! are solutions of one and the same system of 
linear equations. It is then possible to confine oneself in (4) at 
1 <l<g to summation over only the degenerate solutions ug 
with l < l  '<g. In other words, 

II' 
At =O at K g ,  l'>g and at Z>g, l'<g. (46) 

Taking this formula into account, we easily obtain from (40) 
@ 

and in (41) it is necessary to sum over I from 1 tog. Multiply- 
ing (41) from the right by pb[), summing over I ', and using (47) 
we obtain 

long 1-f 

These ABC coincide with (45). 
If we now introduce the singular term as a perturbation, 

the ABC are slightly modified: first, u$,!(k, ), A 1'' and p&) with 
I, I ' (g acquire corrections of first order of smallness. Second, 
small deviations from (46) appear, the values of A!' with 
I<g, I ' > g will differ from zero but will be small. Therefore 
the ABC (41) will contain the part of the sum 

long I-g+l 
- , ,, 

which was discarded in the zeroth approximation. This sum 
is of second order of smallness, since A f" in it is of first order 
but the denominators of all fractions are nonresonant; in the 
case of long waves they are much larger than the resonant 
denominators contained in the remaining part of the sum 
(41). If we neglect the part (49) of (41) (retaining only terms of 
first order of smallness), the ABC (41) take the form 

long l=i 

These ABC reduce to (48), i.e., to (45). 
Thus as a result of elimination of the short waves the 

intial ABC (35) were reduced with the aid of quite exact 
transformations to the conditions (41). The latter were re- 
duced in cases 1 and 2 to the ABC (45), i.e., (48), without any 
approximations whatever. In case 3, however, substantial 
approximations had to be used to obtain the ABC (48) and 
(50). 

There is another procedure of excluding the short 
waves and transforming the ABC. If account is taken of the 
third equation of (2), the first term of the right-hand side of 
(1 3) can be written in the form - e, Ei and it yields, together 
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with the last term of (8), the force - e, EO, where E0 is the 
amplitude of the total electric field. As a result, Eq. (8) takes 
the form 

The force that causes the oscillations is here the total electric 
field of the light wave, and the matrix a,, (k) takes into ac- 
count only the interaction of the nearest cells of the ~ r y s t a l . ~  
This matrix is not singular, i.e., as l k 1 4  this matrix itself, 
its eigenvectors i$ii (k), and the eigenfrequencies Z1 do not 
depend on s. Therefore in the formula analogous to (40), 
namely, 

- (1' (k Gous;  
uov j) = l kjl +O, (52) 

I' 

2:' #O only if the vibrations land I ' are of the same frequen- 
cy (the sum has not more than three terms). 

Since (5 1) and (8) are equivalent, their solutions uov and 
$, should coincide. Expressed in terms of E;, they are 

where 

In lieu of (36) we now obtain 

and the ABC take as before the form h, = 0. Transforma- 
tions similar to those given in the first variant allow us to 
write the ABC, prior to exclusion of the short waves, in the 
form 

=o, 
short 

Here I number the oscillations that are degenerate with I '. It 
is assumed that the limiting frequencies Z1 with I = 1,2, ...,g 
are mutually degenerate and are close to w, while 25, with 
1 = g +  1 ,g+  2 ,..., 3f - 3 arefarenoughfromw. 

Short waves are excitonlike, but in contrast to E:~ their 
E; is not equal to zero. Therefore the short waves can be 
excluded from the ABC (56) only approximately, with much 
lower accuracy than in the first variant. Putting 
Sls =wIs - GI 2(0). we obtain for short waves - w12(k1) - u2=: - aIS. Assuming that a tg  < 1<3f - 3, j # I  or 
I~g ,g<j (3f  - 3 we have 

We can approximately express from (56) with I '  > g  the am- 
plitudes IEiO,,,, I in terms of (E;,,, (, and it turns out that 
IE;ShO, l/lE;lon, 1 is of the order of the ratio in the left-hand 
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side of (57). It can then be easily shown that in Eqs. (56) with 
I '(g the sums over j,,,,, are of second order of smallness 
compared with the sum over j,,,, . Discarding the sum over 
jSho,, we obtain ABC for only long waves: 

long 1-1 
. .. 

They are similar and equivalent in accuracy to the ABC (50), 
but are more advantageous than (50) because by using (52) 
and (54) they can be rewritten in a more convenient form 

- ( 1 )  - (1)' 
Poj ( P O ,  9 E?') 

long 1-1 VQ [ 6 j 1 2  (kj) -a2] 

Long 

Herex0(w) is the "background" polarizability of the crystal. 
Thus in case 1 considered above it is necessary to use the 

ABC (45) of the first variant, since they were obtained with- 
out the restrictions (57) and without the associated approxi- 
mation. An exception is the case when the normal to the 
crystal surface coincides with the principal axis of the polar- 
izability x .  In this case, at normal incidence there exist in the 
crystals only transverse or only longitudinal long waves. For 
transverse waves E; = E:,, 6 ,  = 0, i.e., the two variants co- 
incide. In particular, the ABC (45) coincide with (59). The 
longitudinal waves haveass (w,k) = CO, so that it is more con- 
venient to describe them by using the tensor x, = - 1/4a 
(see Ref. 7, § 11). They have Pex = P. There can be no more 
than two longitudinal waves, and they differ in the sign of 
k:k2 = - k,, with Z2(kl) = Z2(k2). In this case both ABC 
Pex = 0 and the ABC Fe, = 0 reduce to the condition 

i.e., they are mutually equivalent. 
In case 2 all the light waves excited in the crystal are 

also transverse, therefore the ABC (45) and (50) are equiva- 
lent. 

In case 3 the ABC of the first variant (41) was obtained 
without the restrictions (57) and without the corresponding 
approximation, but these ABC are complicated. The result 
of their simplification, the ABC (50), were obtained subject 
to the restrictions (57) and are equivalent in accuracy to the 
ABC (59) of the second variant. 

We note in conclusion that the vectors P;) and their 
dependence on sj can be determined by using § 17 of Ref. 7. 

"Nonetheless, Ikl for them is small compared with the reciprocal of the 
lattice constant. 
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