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The magnetic properties of a very thin superconducting cylindrical film and of a two-dimensional 
superconductor of cylindrical form are studied. Below the Kosterlitz-Thouless transition tem- 
perature the magnetic moment of such systems oscillates as a function of the magnetic field. In a 
metastable state the magnetic moment of the cylinder may exceed its equilibrium value consider- 
ably. This effect permits, in principle, observation of surface superconductivity on Tamm levels in 
dielectrics. 

PACS numbers: 73.60.Ka, 74.30.Gn 

1. INTRODUCTION 

The investigation of ordering and phase transitions in 
two-dimensional systems (in particular, on the surfaces of 
three-dimensional objects) is now attracting very much at- 
tention. Among the problems involved is two-dimensional 
(surface) superconductivity, more specifically the supercon- 
ductivity of a "surface metal," i.e., the superconductivity in 
the case of a degenerate partly filled band of electron surface 
(Tamm) levels.' Such a band can exist in principle both on 
the surface of a three-dimensional metal and on the surface 
of a three-dimensional dielectric. It is hardly necessary to 
prove how interesting and possibly how important for tech- 
nical applications it is to investigate such superconducting 
systems. 

To be sure, the feasibility of two-dimensional supercon- 
ductivity was considered in Ref. 1 only within the frame- 
work of a self-consistent approximation and specifically the 
BCS approximation. Yet, as became clear subsequently (see, 
e.g., Ref. 2), when account is taken of fluctuations, no long- 
range order can exist in two-dimensional systems, let alone 
one-dimensional ones. This, however, does not prevent an 
actual appearance of superconductivity in very thin wires 
and films, as well of quite remote metal layers in layered 
compounds (see Ref. 3, Chap. 6 and the cited literature). The 
resultant problem is the subject of many studies, and it was 
made clear in the upshot that two-dimensional ordering and 
such phenomena as superconductivity, superfluidity, and 
ferromagnetisml' can be observed also in two-dimensional 
systems, the influence of the fluctuations notwithstanding 
(see Ref. 3, Chaps. 1 and 6, and Ref. 5, as well as the literature 
cited there). When the mechanism of Kosterlitz and Thou- 
less is considered, the foregoing pertains to a temperature 
below a certain value Tc corresponding to the dissociation of 
vortex pairs. We note that for systems with finite dimensions 
(for a cylinder of finite length, etc.) even a self-consistent 
description is practically always well applicable at T <  Tc , 
owing to the weak (logarithmic) divergence of fluctuations of 
spin-wave type in a two-dimensional system. 

The discussion of the properties, particularly electrody- 
namic, of two-dimensional (surface) superconductors is thus 
of real physical significance. The possible applications are to 
layered compounds, very thin (atomic) metallic films on var- 
ious surfaces, and others (it is not excluded that the anoma- 

lous diamagnetic effects observed in CuCl and CdS are also 
somehow connected with surface superconductivity6). 

We point out that we shall consider below the magnetic 
properties of surface superconductors only in the case when 
the "superconducting electrons" are localized near the sur- 
face, as is the case for filled Tamm levels in dielectric samples 
or for metallic layers of atomic thickness on dielectric sub- 
strates. A system of Tamm levels on the surface of a metal in 
the presence of electron scattering from the surface into the 
interior of a metal, and a superconducting film of atomic 
thickness on the surface of a normal metal were considered 
in Ref. 7. 

It seems quite obvious from physical considerations 
that a two-dimensional superconducting "film" in which the 
superconducting electrons are localized in a layer of thick- 
ness a (generally speaking, atomic in scale) will always be- 
have below T, as a thin macroscopic superconducting film 
having a thickness d and satisfying the conditions 

where go is the superconducting correlation length at T = 0, 
while A, is the London penetration depth of the magnetic 
field in a bulky sample of the same material. 

The behavior of such films in a magnetic field is known, 
and it seems at first glance that the magnetic-field compo- 
nent parallel to the field can be regarded as continuous in the 
absence of transport (total, flowing over the film) current. 
Indeed, at a-3 x cm we have (a/A, )'- even at 
A, - 3 X lop5 cm and the "film" diamagnetic moment due 
to its superconductivity is not larger or is of the order of the 
diamagnetic contribution to the magnetic moment in the 
normal state (for some more details see Ref. 8). In accord 
with the foregoing, in the theory of superconducting layered 
compounds (see Refs. 9 and 10, as well as Ref. 3, Chap 6) the 
magnetic field parallel to the layers is regarded as contin- 
uous. If it were always possible to proceed in this manner, a 
very thin superconducting film and two-dimensional super- 
conductor would in fact not interact with an external mag- 
netic field parallel to their surface. As a consequence, an 
experimental study of the magnetic properties of the film (of 
its magnetic moment, susceptibility, etc.) would be difficult. 

As noted in Ref. 8, however, for multiply connected 
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two-dimensional superconductors (e.g., in the case of super- 
conductivity on the surface of a cylinder), the magnetic mo- 
ment produced in a parallel magnetic field is considerably 
stronger than in the normal state. Yet this effect was not 
analyzed in detail in Ref. 8, and its investigation is precisely 
the purpose of the present article. 

Specifically, we consider below the behavior of a two- 
dimensional superconductor in the form of a round cylinder 
of radius R in an uniform external magnetic field parallel to 
the cylinder axis and having an intensity H,. We assume in 
Sec. 2 that the temperature Tis close to T, and to the critical 
temperature T, of the self-consistent-field approximation 
(it is useful to single out the latter case since it is especially 
simple and known results can be employed). In Sec. 3 the 
temperature is already assumed arbitrary (0 < T < T, ). 

2. TEMPERATURE REGION CLOSE TO T,, 

In the temperature region close to T, we can use the 
well known Ginzburg-Landau (GL) approximation, which 
was used in a number of detailed studies of the behavior of 
macroscopic cylindrical films in an external field (see, e.g., 
Ref. 11 and the bibliography therein). In particular, an 
expression was obtained in Ref. 11 for the thermodynamic 
potential F of a thin superconducting cylindrical film of 
radius R in an external field that can be expressed in the case 
d /R( 1 of interest to us in the form 

wherep = Rd /A (T), 4, = nR 'H,/Qi,, @, = hc/2e is the 
flux quantum, $ is the modulus of the order parameter (of 
the wave function) of the superconductor in relative units,'' 
{ (T )  is the temperature-dependent coherence length, and 
n = 0, 1, 2, . . . is the (integer) number of flux quanta 
trapped inside the cylindrical cavity. 

In units of the flux @,, the total magnetic flux inside the 
cavity, with account taken of the leakage of the field through 
the cylinder wall, is equal to1 

where Hi is the magnetic field inside the cavity. 
For a magnetic moment Mper unit length of the cylin- 

der we have 

A characteristic feature of expresions (2)-(4) is that the de- 
nominators contain the screening factor p = Rd/R i ( T ) ,  
which can be large at R>d even for a very thin film d4AL 
(thus, at d - 3 ~  10-'cm, A, - 3 ~  lo-' cm, and R-0.3 cm 
we havep - 10). As a result, the thin cylindrical film screens 
the internal cavity against the external field. Indeed, as fol- 
lows from (3) at p ) l  (and $= 1)'' the total flux inside the 
cavity is equal to the captured number of flux quanta 4i z n  
and is independent of the external-field flux 4, . In the imme- 
diate vicinity of T,, when the length A, ( T )  becomes large, 

FIG. 1 .  Dependence of the magnetic moment of a thin superconducting 
cylinder on an external magnetic field H, parallel to the cylinder axis: a) 
the parameterpsl, b ) p(1. 

the factorp decreases and the cylinder becomes transparent 
to the external field (in this case, naturally 4i ~ 4 ,  ). 

It can be seen from (2) that when 4, increases the mini- 
mum of the potential F corresponds to a state inside the 
cavity such that the number n of flux quanta is as close as 
possible to 4,. As a result, when 4, increases transitions 
from one quantum level to another n + 1 can take place in 
the system, and in the absence of hysteresis the transitions 
occur at values 4, = n + 1/2. Such transitions are observed 
in experiment and are manifest, in particular, by oscillatory 
dependences of the critical temperature of a very thin cylin- 
drical film on the magnetic field (the Little-Parks effectI3). 
These oscillations are easiest to see at TzT,  in mirocy- 
linders of small radius. l4 With increasing R and also at lower 
temperatures, when the factor p increases, hysteresis phe- 
nomena are strongly pronounced. " The quantum number n 
no longer adjusts itself to the external field 4, and states with 
n ##, may occur, although such states are thermodynamic- 
ally unfavorable, i.e., are metastable. 

The foregoing is illustrated in Fig. 1, which shows sche- 
matically the dependence of the magnetic moment of a cylin- 
drical film on an external magnetic field in accord with (4) at 
p% 1 and $=: 1 (Fig. la) and at p( 1 and $=: 1 (Fig. 1 b). The 
arrows mark the values of 4, = n + 1/2 corresponding to 
the points of equilibrium transition from the level n to the 
level n + 1. The dashed line continues the M (4, ) dependence 
into the metastable region. It can be seen that the magnetic 
moment of the film increases rapidly with increasing 4, at 
p% 1, and a transition of the system to another quantum level 
should be accompanied by a magnetic-moment jump that is 
in principle observable in experiment. 

As already mentioned, an analogy can be drawn 
between a very thin superconducting cylindrical film and the 
two-dimensional superconducting state, if the latter is pro- 
duced on the surface of a cylindrical sample (the connection 
between the phenomenological parameters of the functional 
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(2) and the microscopic parameters of a "surface" supercon- 
ductor will be established in Sec. 3 of the article). Therefore 
the magnetic moment of a two-dimensional superconduct- 
ing film should also have the anomalies noted above. 

3. EQUILIBRIUM STATES OF SYSTEM AT ARBITRARY 
TEMPERATURES 

The semiphenomenological GL theory used above is 
valid, generally speaking, only near the critical temperature 
T, of the self-consistent-field approximation. For two-di- 
mensional supercondcutors, the GL approximation can be 
used when the temperature Tis close to the Kosterlitz-Thou- 
less transition temperature T, , and the latter is close to T, . 
Far from T, the quantitative treatment is by other methods, 
although it can be assumed beforehand that the results of the 
GL approximation will remain qualitatively correct also far 
from T, . We consider therefore a thin superconducting 
"dirty" cylindrical film in a magnetic field parallel to the 
axis, at arbitrary temperatures, within the framework of the 
BCS theory. To this end we use the Eilenberger equations" 

e [ a+i7 vA(r) *'/I~V fT  (v, I) =AT (r)g (v, r) , I 
*=o+g(r) /2~,  A* =A* (r) +f* (r)/22, (5) 

A* ir) =hnT f * (r), A (r) =A (r) , A+ (r) = ~ * ( r ) ,  
0 

whereil is the parameter of the electron-phonon interaction, 
r is the electron mean free path time, the functions? * (r) and 
g(r) are the values of the functions f 7 (v, r) and g(v, r) aver- 
aged over the direction v of the electron motion, and A(r) is 
the vector potential. 

Equations (5) are obtained from the condition that the 
functionalI5 

be a minimum when varied with respect to f * , g, and A * . 
The minimum value of the functional (6) yields the difference 
between the equilibrium values of the free energy in the su- 
perconducting and normal states. 

We transform to a cylindrical coordinate frame (z, r, q, ). 
The vector potential has one nonzero component A,, which 
is independent of e, in the gauge divA = 0. The functions f * 
and g depend only on q, and this dependence is given by 

fT (v, r) =fT (v) eeinQ, g(v, r) =g (v), A7 (r) =Aefi"', (7) 

where A is independent of the coordinates. 
Substituting (7) in (5) we obtain equations for f * (v), 

g(u), and A: 

g"v) +f+ (v) f-(v) =I, a=o+g/2.t, 

n*=A*+f*/2~, ~ = h n f i x  f-, (8) 
0 

&(R) ='/,HIJI, 

where Hi is the field inside the cylinder. 
Equations (8) contain the effective vector potential 

2 = A ,  - @,n/27rR, and the equations (8) themselves are 
obtained from the equations for a superconductor in the ab- 
sence of an external field by replacing w with w + iq-v, where - 
q, = eA / C  and q, = q, = 0. They are equivalent to the equa- 
tions for a superconductor in the presence of a uniform cur- 
rent, when the momentum of the mass center of the Cooper 
pairs is equal to 2q (Ref. 16). 

Our task in the first stage is to calculate the supercon- 
ductor free-energy functional that depends on the param- 
eters A and 2. Adding next the free energy of the magnetic 
field, we obtain the total functional, whose minimization 
with respect to A, n, and A, determines the thermodynamic 
parameters of the system. We confine ourselves to the most 
realistic case, when the superconductor is "dirty" and the 
inequality r T, 4 1  is satisfied. Equation (8) can then be 
solved by using the smallness of the parameter r T,. As a 
result, the functions f * (v) andg(v) are determined accurate 
to terms of order (r T, )2. We can next substitute f * andg in 
the functional (6) and obtain the sought functional 3 (A, 2 ). 
An alternate procedure is to obtain an algebraic self-consis- 
tency equation for A and find a function 3 (A, 2 ) that would 
yield this equation when varied with respect to A. In addi- 
tion, this functional must define the known free energy of the 
superconductor in the absence of the field, i.e., at A = 0. 
These conditions yield uniquely the functional 3 (A, 2 ). We 
obtain as a result 

F ( A ,  x)=Fs(A)+F*"t(A, X ) ,  
AZ '12 (9) 

F 8 ( A ) = N ( 0 )  { : - 2 n ~ ~  1.1 [(I +;;) -I]}, 

where Fs (A ) is the functional of the superconductor (per 
unit area) relative to the homogeneous order parameter A in 
the absence of external fields, the term Fin, describes the 
suppression of the superconductivity by the magnetic field, 
and r, is the effective time of breaking of the Cooper pair by 
the magnetic field. The quantity N (0) is the two-dimensional 
denisty of states. 

With account taken of the magnetic-field energy, the 
total functional of the system (per unit cylinder length) is of 
the form 

1 
9- (A, n, A,) =2nR F, (A) + - Q ( A )  dZ 8n 
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where the quantity ( 6 ~ ) " ~  plays in this problem the role of 
the London penetration depth, Q (A ) is the electromagnetic 
kernel for a thin superconductor with a homogeneous order 
parameter A, andp is the resistivity of the two-dimensional 
superconductor in the normal state. In order of magnitude, 
6 z  105a(6,/l). In the case of a pure two-dimensional super- 
conductor we have 6 = mc2/4.rrl 2n,, where n, is the two- 
dimensional density of the superconducting electrons. 

After minimizing (9) with respect to A, (or H i )  we ob- 
tain per unit area of the cylinder 

F ( n ,  A )  = F ,  ( A )  + Q ( A )  @02(+a-n)2  
3 2 n q 2  [ I+Q ( ~m ' (11) 

4nM 
-= @,-@a = 

Q ( A ) R ( n - + a )  
@ o 2 [1+Q ( A )  R / 2 ]  ' 

Relations (10) go over into (2) and (4) if T+T, , with 

It can be seen from (10) that independently of the tem- 
perature the minimum with respect ton is equal to the near- 
est integer part of the number 4,, and in the equilibrium 
state the magnetic moment of the system oscillates between 
- M, and M,, where M, = @,/8?r[l + 2Q -IR --'I (see Fig. 
I), with M0(@d8.rr. The deviations of the field inside the 
cylinder from the external field do not exceed @,/21rR in 
absolute value. 

When minimizing with respect to A we recognize that in 
the equilibrium state the ratio of the magnetic contribution 
of the magnetic functional 9 in (10) to the superconducting 
contribution9, is oftheorder of ( T  )/R 12, i.e., theeffect of 
the magnetic field on the value of A is small everywhere 
except in a narrow vicinity of the point T,, of the order of 
( T, - T )/T, / R  '. Outside this vicinity the equilibri- 
um parameter is practically equal to the parameter of the 
superconductor without a field. 

4. METASABLE STATES AND THEIR LIFETIMES 

If no equilibrium with respect to the number n is 
reached, the magnetic moment of the cylinder can substan- 
tially exceed M,. We obtain now that range of values of 
4 = 4, - n at which superconductivity continues to exist in 
the form of a metastable state. The critical value of4 is deter- 
mined from the condition that the minimum of F (A, n) with 
respect to A vanish at a specified value of n, i.e., from the 
conditions aF/dA = a 2F/aA = 0. They lead to the fol- 
lowing expressions for the critical "superheating" field 
fiC = @@/.rrR 2: 

R,2=4,54N(O) Ao26-', R B 6 ,  TKT,o. 

At low temperatures is smaller by a factor =/A, (0) than 
the thermodynamic magnetic field of a bulky superconduc- 
tor with the same values of T,, u,, and 7. In the case I z a  
this factor is about Near T, the quantity gc contains 
one additional small factor t. 

FIG. 2. Transition from a state with the number n (in the upper part of the 
cylinder). The normal "core" of the vortex (small black circle) moves 
along the cylinder whose radius is much larger than 6. 

The transition between states with different quantum 
numbers n is of first order in the magnetic field. Let us esti- 
mate the activation energy of the critical seed of the new 
phase (of the phase with a different number n) for such a 
transition. We assume that the intermediate state between 
two phases with different numbers n and n + 1 should con- 
tain a normal region with area of the order 2(T) on the sur- 
face of the cylinder, and near this region the state with value 
n on one end of the cylinder changes into a state with number 
n + 1 on the other end. The change of the phase on circling 
around the normal region is 237. The magnetic-flux quantum 
by which the magnetic fluxes inside the cylinder in the states 
n and n + 1 differ passes through the normal region from the 
outer region of the cylinder into the inner. Near the cylinder, 
the force lines of the field pass through the normal region in a 
direction perpendicular to the cylinder surface (Fig. 2). In 
other words, a vortex passes through the cylinder, with an 
energy l7 

The vortex is produced on one end of the cylinder, is separat- 
ed from it, and the further displacement, which requires no 
activation energy, of the vortex from one edge of the cylinder 
from the other transfers an additional flux @, from the outer 
space into the interior of the cylinder over its entire length. 
The activation energy of the state with new n is approximate- 
ly equal to the vortex-formation energy, and according to 
(10) and (1 3) it is ofthe order ofA, t (I /a). At I-a the lifetime 
of the metastable state with nonequilibrium value of n can be 
large enough only at low temperatures T4Td, and near T, 
the equilibrium with respect to n is established rapidly. At 
/)a the metastable state can exist for a long time everywhere 
except in a narrow vicinity of the point T,. The Kosterlitz- 
Thouless temperature Tc is also determined essentially by 
the parameter I /a. The quantity k, Tc is the energy preced- 
ing the logarithmic factor in the right-hand side of (13), i.e., 

(see Ref. 18). At I>a we obtain 
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In the dirty superconductor limit 1)a the value of T,  may be 
noticeably lower than T ,  . 

A relatively large macroscopic nonequilibrium mo- 
ment, of the order o f R  R (per unit length), can be observed 
for the cylinder in sufficiently clean two-dimensional super- 
conductors with I)a in a wide temperature range 
( (T,  - T ) / T ,  ) a / l ) .  In the limit of dirty superconductors 
with 1-a this is possible only at low temperatures T <  T,  
and T-4 T ,  . 

We have considered the behavior of a superconducting 
cylinder in a field parallel to its axis. The presence of a field 
component perpendicular to the cylinder surface will, natu- 
rally, distort the results. To neglect the effect of this perpen- 
dicular component H,  it is necessary that it cause no pene- 
tration of vortices into the cylinder. Such a penetration sets 
in when H, exceeds a critical value 2a%/@$-,@dSR.  
Therefore all the results are valid so long as H, < @,/SR. 
This is a rather stringent restriction. Thus, at 1 / a  - 10' and 
R -0.1 the component H,  must not exceed Oe (see 
expression (10) for S ). 

5. CONCLUSION 

We list the main conclusions of the present paper. 
1. With increasing external magnetic field, the system 

considered goes over from a state with an azimuthal quan- 
tum number n into a state with a number n + 1, where n is 
the integer closest to HorR 2/@o. With change of n, the flux 
inside the cylinder changes by @. As n is varied, all the ther- 
modynamic parameters of the system oscillate as functions 
of the external field Ho, with a period @ d a R  2. The magnetic 
moment of the cylinder also oscillates and reverses sign on 
going through those values of Ho at which the quantum 
number n changes. 

2. We note that in the equilibrium state a parallel mag- 
netic field does not destroy the superconductivity in a thin 
cylinder at temperatures t > g i / R  2, all the way to fields of 
the order of the paramagnetic limit. As applied to an un- 
closed film, this conclusion is valid without restriction on 
the temperature. 

3. In the equilibrium state, the field inside the supercon- 
ducting cylinder changes (compared with the external field) 
by an amount not exceeding @,,/rR 2. In the metastable state 
this change is much larger, and total screening of the field is 
possible in parallel fields of the order of 0.1 Oe. The lifetimes 
of the metastable states can be large in sufficiently pure su- 
perconductors with 1)a. The same condition is practically 
essential for the elimination of the influence of field compo- 
nents perpendicular to the cylinder surface. This component 
must not exceed lo-' R -'(I / a )  Oe, where R is the cylinder 

radius in centimeters. 
In the case of observation of two-dimensional supercon- 

ductors, the magnetic measurements that are clear from 
foregoing exposition will also be found useful. 

The authors thank Yu. E. Lozovik and V. V. Shmidt for 
a helpful discussion. 
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2'It can be seen from (2) that the minimum of 9 corresponds to values 
$-- 1 in a wide range of q5,, if (T )/R < 1 (for details see Ref. 11). 
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