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An analysis is given of the role of temporal dispersion in angular anomalies of transport coeffi- 
cients that are due to points (lines) of zero curvature such as parabolic points and points of flatness 
on the Fermi surface. The presence of such points leads to sharp frequency-angular anomalies and 
to the temperature dependence of electronic absorption and of the velocity of high-frequency 
sound in critical directions of propagation. The role of transverse and longitudinal electric fields 
in such cases is elucidated. The equations of the theory of elasticity and electrodynamics in the 
collisionless limit as ( l e a , ,  where 1 is the electron mean free path) are examined under the 
conditions where the transport coefficients have singularities. 

PACS numbers: 72.50. + b, 72.15.Lh, 43.35.4~ 
1. INTRODUCTION 

We shall examine effects due to the temporal dispersion 
of the contribution of electrons to the elastic moduli of met- 
als. '' 

The linear response functionx (w,k) of a metal to a stim- 
ulus proportional to exp[ - i(wt - kr)] is, of course, a func- 
tion of the frequency w (temporal dispersion) and of the wave 
vector k (spatial dispersion). When the frequency is low in 
comparison with the Langmuir frequency w, and the exter- 
nal magnetic field is absent, a measure of the temporal dis- 
persion is the product w ~ ,  where r is the electron relaxation 
time, whereas spatial dispersion can be measured by kl and 
k6, where I = U,T is the electron mean free path, u, is the 
Fermi velocity, and S is a parameter describing the distribu- 
tion of the electromagnetic field in the metal (its precise mag- 
nitude is determined in each special case). When sound prop- 
agation in metals is investigated, it is essential to take into 
account the accompanying electromagnetic field because the 
application of any field to a metal is accompanied by the 
redistribution of its electrons. The resulting electromagnetic 
field ensures, in particular, that the system remains electri- 
cally neutral. 

Spatial dispersion is much more important than tempo- 
ral dispersion during the propagation of sound waves2s3 
This is so because k l =  (v,/s)w~)w~ (s is the velocity of 
sound) and, when kl) 1 (which is possible even when w ~ g  1), 
we have the transition to the collisionless situation. In parti- 
cular, the attenuation of sound is determined by the reso- 
nance collisionless interaction between electrons and the 
sound wave (Landau damping4). This is why, as k l e ~ ,  not 
all the Fermi electrons participate in the formation of the 
response of the metal: only those that move in phase with the 
wave do so.3 Their position on the Fermi surface ~ l p )  = E, is 
determined by the resonance condition kv = w (p,~,v = a&/ 
ap are, respectively, the quasimomentum, energy, and veloc- 
ity of the electrons), and this defines a curve on the Fermi 
surface which is often referred to as a "belt." Moreover, if, 
for kl( 1, the relative absorption determined by electron vis- 
cosity5 is such that r / w  - w ~ ,  then, in the collisionless lim- 
it," we have3 T/w -s/u,. Thus, it would appear that w~ 

plays a very minor role and, in particular, it is immaterial 
whether w~ < 1 or w~ > 1. However, there is a series of rela- 
tively subtle effects that are sensitive to the product wr. 
These effects will, in fact, be examined in the present paper. 

The point is that there are two special situations in 
which, for kl- 1, the transition from low-frequency viscous 
absorption to collisionless absorption does not take place. In 
particular, any Fermi surface, whatever its complexity, has 
points at which the curvature is z e r ~ . ~ , ~  These points corre- 
spond locally to flat or cylindrical areas" and, for kl) 1, they 
ensure that the collisionless viscous growth in the relative 
absorption with frequency will continue provided only the 
wave vector k of the sound waves is directed so that electrons 
in the neighborhood of these particular points interact with 
the sound wave. When this happens, the wave vector will be 
referred to as the critical wave vector and will be given the 
subscript c (kc ). 

The experiment reported by Fil' et al." confirmed the 
frequency, temperat~re,~'  and angular dependence in this 
situation. In an earlier paper12 it was reported that the sound 
absorption coefficient of copper for k11 [loo] rose to kl-40. 
S u ~ l o v ' ~  has shown that sound then propagates in the critical 
direction, and the increase in r corresponds to the theoreti- 
cal  prediction^.^-'^ 

The viscous increase in absorption for kl, 1 in the criti- 
cal direction (for k = kc) is limited by temporal dispersion 
(the value of the product w ~ )  and, for sufficiently large wr, 
we find that the main contribution is due to the belt electrons 
located outside the points of zero curvature (absorption then 
reaches the usual collisionless limit), or absorption is satu- 
rated at some relatively high but finite level. The form of the 
function r = r ( w ~ ,  k z  kc ) is closely connected with the lo- 
cal geometry of the Fermi surface and the electrical fields 
accompanying sound (see below). 

2. TRANSPORT COEFFICIENTS AND THEIR PROPERTIES 

We shall suppose that we are dealing with a Fermi sur- 
face of a general form which has lines of zero curvature and 
points of flatness, but does not contain finite flat, cylindrical, 
or conical portions (cf. Ref. 10). 
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The propagation of sound in a metal is described by the 
equations of the theory of elasticity for the displacement vec- 
tor u = u(r,t ), the right-hand side of which contains the den- 
sity of force F due to the action of electrons on the lattice:14,15 

wherep is the density of the metal and 2,,2 is the matrix con- 
sisting of the squares of the velocity of sound (without in- 
cluding the contribution of nonequilibrium electrons; in our 
formulation, it is the well-known matrix consisting of ele- 
ments (S:), , for given x = Wk i.e., given direction of propa- 
gation of the sound). The current density j and the deforma- 
tion force fare given by the following expressions that relate 
them to the electric field E and the displacement vector u:15 

j=eZ(vRvl~El+elco(vRAl~u~, 

iek i o  kZ 
f=  - <MvI>EI+  - <ARAz)u,. 

P P 
Here, the "electric field" E differs from the present electric 
field (cf. Ref. 15) by the vector 

Equations (1) and (2) must be augmented with the Maxwell 
equations. Angle brackets indicate integration over the Fer- 
mi surface: 

where A is a vector with components Ailx1, and Ail = A ,  
- (Ail)/(l) is the renormalized deformation p~tential .~ 

We note that (1) is identical with the density of states at the 
Fermi boundary: (1) = v,. All the transport coefficients in 
(2) that appear in front of El and ul contain the quantity 

under the integral sign. This quantity is the Fourier compo- 
nent of the Green function corresponding to the transport 
equation (in the r-approximation, v = 1/r) for the electron 
distribution function. 

Because of the presence of the factor R, the transport 
coefficients depend on w and k, and may exhibit singularities 
as v - 4 .  We emphasize that Eqs. (2)-(4) are valid for real 
frequencies w and wave vectors k. Since the transport coeffi- 
cients are integrals over the Fermi surface, their singularities 
are connected with the multiple zeros of the denominator in 
(4). Let k*v - o = wg,q) where 6 and 7 are orthogonal di- 
mensionless coordinates on the Fermi surface. The neces- 
sary condition for the existence of singularities is that the 
Fermi surface should have points p, (with coordinates cc, 
7, ), satisfying the conditions 

In general, this condition can be satisfied only by imposing 
certain definite requirements on the vector k (the frequency 
w can be conveniently looked upon as given, or a function of 

the wave vector that is determined by the solution of the 
dispersion relation). Let us first show that each point on the 
Fermi surface will produce a singularity. Consider an arbi- 
trary point on the Fermi surface. The velocity at this point is 
v. Suppose, further, that the direction of the wave vector k is 
the same as that of the velocity v. When k z o / v  = kc, the 
equation for the belt is then 

where the positive and negative signs correspond, respec- 
tively, to elliptic and hyperbolic points on the Fermi surface. 
When k = kc, the belt defined by (6) changes its topology, 
and this gives rise to a singularity in the transport coeffi- 
cients (Fig. 1). Since u)s, this singularity lies well away from 
the mass shell k = o/s, although it may be reflected in the 
acoustic properties of metals (see previous section1.16). For 
metals for which the Fermi surface does not have dents or 
necks, the transport coefficients have no other singularities. 
However, the Fermi surface of most metals is quite complex, 
and it has been that points on the Fermi surface 
with zero curvature (parabolic points) are sources of angular 
anomalies (singularities in the direction x) .  Each parabolic 
point strictly defines the critical direction of the wave vector 
x = xc , and a line of parabolic points defines a cone of criti- 
cal directions. For example, surfaces of revolution with lines 
of parabolic points are shown in Fig. 2a. On real Fermi sur- 
faces, the lines of parabolic points cross at points of flatten- 
ing (Fig. 2b). We note that a Fermi surface of the form shown 
in Fig. 2b is encountered in metals belonging to the molyb- 
denum group (hole octahedron). It will be seen below that a 
doubly critical direction corresponds to an enhancement of 
~ingularity.~' Since the Fermi surface has a center of inver- 
sion, each point p, has its own "antipode" p,. , and 
v,. = - v,. There are, therefore, closely spaced cones of 
critical directions whose angular separation is z2u/kvc. 
The detuning, defined as the modulus of the complex quanti- 
ty a = 68 - i/kl, characterizing the departure from the con- 
dition given by (3 ,  plays an important role in resonance 
properties (60 is the deviation from the resonance direction, 
i.e., the minimum angle in the direction perpendicular to the 
line on a unit sphere that corresponds to critical directions). 
Cones of critical directions corresponding to the antipodal 
points can, of course, be distinguished only when the detun- 
ing is small enough: Ja 1 .(w/ku,, i.e., at any rate, for or> 1. 
The dependence of the structure of singularities on or is a 
typical example of the role of temporal dispersion. 

FIG. 1. Structure of critical belts for k = o/u ,  (u is the limiting plane 
perpendicular to k): (a) the critical belt has shrunk to a point at the ellipti- 
cal point; (b) the critical belt has a self-crossing point at the hyperbolic 
point. 
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FIG. 2. Lines of parabolic points on the Fermi surface: (a) Fermi surface as 
a body of revolution; lines of parabolic points do not cross; (b) fragment of 
the Fermi surface (hole octahedron) in metals belonging to the molyb- 
denum group; (c) crossing of lines of parabolic points on an octahedral 
cavity of the Fermi surface (cf. Fig. b); points of crossing produce doubly 
critical directions. 

Some of the transport coefficients have the structure 
(kvR@), where the function @ satisfies the condition 
(Qi ) = 0. This is so in the case of (Aik R kv) and (kvRv, ), 
where v, = v - x(vx) is the projection of the velocity onto 
the plane perpendicular to the vector k. For these coeffi- 
cients 

and the symmetry of the function @ = Qi ( 6 , ~ )  is important 
for estimates of (R@ ) (Ref. 1). We have assumed that v is 
independent of ( and q. Equation (7) signifies that the singu- 
lar part of such transport coefficients contains a small factor 
w (w*+ as v 4 ) .  The following expression is important in 
the analysis of the singularity in longitudinal conductivity: 

3. STRUCTURE OF TRANSPORT COEFFICIENTS FOR NEAR- 
CRITICAL DIRECTIONS 

The singular part of any transport coefficient (xR ), 
that is due to a parabolic pointp, on the Fermi surface can be 
written in the following form: 

where the subscript c refers, as before, to the point p, (we 
recall that the curvature is zero at this point). The coefficient 
m, is of the order of the electron mass, and is defined by the 
equation dS /vc = m, 2dgdq. The variables (and q are mea- 
sured from the values (, , qc [cf. (6)].  The nature of the singu- 
larity will, of course, depend on the form of the function 
!PC ({,q), which is, in fact, a dimensionless function of w [see 
(5)]. In the case of an ordinary parabolic point 

The positive sign in this expression corresponds to an 0-type 
parabolic point, whereas the negative sign corresponds to a 
X-type point.s The case of a point of flattening will be exam- 
ined below. When the integral in (9) is evaluated, we must 
confine our attention to terms having singularities for 
kl+ w and 68  = 0 (this is indicated by the subscript "sin" 
under the integral). The existence of antipodal points must 
be taken into account in the analysis of the angular singulari- 

It is clear that the structure of the angular dependence 
due to a pair of antipodal points is fundamentally related to 
the symmetry of the functionx (p). Whenx ( - p) = x (p), the 
Re (xR ),, add, whereas the Im(xR ),, subtract. When 

x ( - p) = - x (p), the opposite takes place (this occurs for 
(A, Rv, )). The symmetry of the Fermi surface may lead to 
the appearance of multiple pairs of parabolic points. Natu- 
rally, when (xR ), is evaluated, the contributions of all the 
pairs must be summed, and the transformation properties of 
x (p) between one pair and another must be taken into ac- 
count. 

It is clear from the foregoing that, when 6 8  = 0, the 
expression given by (9) does not allow a limiting transition to 
the collisionless situation (I-+ c4 ). In fact, it diverges, and the 
nature of the divergence is determined by the function 
!PC ( 6 , ~ ) .  When p, is an ordinary parabolic point and 
Imx = 0, the divergence is logarithmic: Re (xR ) diverges at 
an X-type point, whereas Im (xR ) has a finite jump. The 
opposite occurs at an 0-type point [cf. (lo)]. 

The existence of a point of flattening ensures that the 
expansion of !PC ( 6 , ~ )  begins with a cubic term in at least one 
of the variables for a particular direction of the wave vector 
(doubly critical direction). It may be shown1 that near dou- 
bly critical directions 

where the angles q, and 8 define the unit vector x and 
Sq, = q, - 9, , where 8, ,pc , is the doubly critical direction. 
The existence of three small parameters (Sq,, SO, l/kl ) com- 
plicates the structure of the singularity. On the (6p, 68)  
plane, we have the line 

and the belt changes its shape when this line is crossed. 
When IS8 - 4(Sq,)3/27flI (Sq,, l/kl, the denominator of the 
integrand in (9) can be given the form 

from which it is clear that, when Sq, <O and kl+co, the 
crossing of the line given by ( 12) is accompanied by an 0-type 
singularity, whereas, for Sq, > 0 and k l - + ~ ,  the singularity is 
of the X-type. When 

we have the estimate 

In kl.  111 -- 
(ISPI)" (14) 

The approximation given by (1 3) improves with increas- 
ing distance from the point Sq, = 68 = 0 (although 

I, IS8 1.4 1). Exact directional resonance requires separate 
analysis. When Sq, = 68 = 0, Eqs. (9) and (1 1) yield 

In the general case, when 
y (8, r1) =6rpE2+7E"+qZ, 

the asymptotic behavior of J for Sq, = 0 is J- (kl )1'2-"n. 
Well away from the line given by (12), the term y{ (or 

ye ) can be neglected, and the nature of the singularity in p8 
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*++&rY point of flattening 

FIG. 3. Portion of the (66, Sq)  plane. The transport coefficients have 
singularities on the thick line. X- and 0-type singularities are indicated. 

for k 1 - t ~  depends on the sign of Sp: when Sp  > 0, we have 
an 0-type singularity and, when 6 p  < 0, the singularity is of 
the X type. Since we are then close to the critical direction in 
p, the singular part is anomalously high according to (1 1): 

Figure 3 shows a portion of the (Sp, SO plane and the 
lines of singular points. As can be seen, the presence of the 
points of flattening (crossing of lines of parabolic points) re- 
sults in an enhancement of the singularities in the transport 
coefficients. 

4. FIELD RENORMALIZATION 

We shall now use the Maxwell equations 

to eliminate the electric field E from the expression for the 
deformation force f. We shall divide the procedure into two 
stages. We begin by eliminating the longitudinal field 
Ell = x(xE) from f and from the transverse current j, . Using 
the condition jx = 0, we have 

E,,=-k{ ( k )  ( 1  ) ko ( (vk)  R (Au) ) 1. ( 18) +- < ( vk )  'R> e < ( V ~ ) ~ R >  

Substituting this in (2), we obtain15 

(vLR (kv )  >< (kv)  Rv,? 
( (kv )  R (kv)  > 

<v,R (kv )  ) ( (kv )  RAl) 
< (kv)  R (kv)  > 

iok2 (AR (kv )  ) < (kv)  RAl) 
f = - {<ARAJ - 

P < (kv)  R (kv)  > 
(AR (kv)  > < (kv )  Rv,> + i..{ (Nlu , )  - 

P < (kv )  R (kv)  > 

The subscript I labels the three components of the vectors, 
and the subscript a labels two components (on the plane 
perpendicular to the wave vector k) .  

The structure of the expressions in braces in (19) and 
(20) shows that they will not become infinite as k 1 - t ~  even 
when x coincides with one of the critical directions x,. In 
fact, when x = x, , the singular part of any of the coefficients 
( UR V), (U, V are arbitrary functions on the Fermi surface) 
will be equal to U (p, ) V (p, ) (R ), and the singular terms in (1 9) 
and (20) will cancel out. The above statement ensues from 
this. An analogous phenomenon takes place in the tilt ef- 

fect.I9 The cancelation of singularities is the result of the fact 
that one point on the Fermi surface (p = p, ) provides a con- 
tribution to each singularity since, otherwise (several none- 
quivalent points, flat segment), the infinities will not, in gen- 
eral, cancel out [see (19) and 20)]. 

The cancelation of divergent terms does not mean that 
the singularities in the transport coefficients vanish. In fact, 
the singularities remain in the derivatives with respect to k 
and w. 

As sound propagates, the renormalization due exclu- 
sively to the longitudinal field is practically unimportant be- 
cause the singular part of the longitudinal conductivity (8) 
contains the factor w2, so that the second terms in the curly 
brackets are always small." In fact, they are small if 
IJ ((kv,/w [see (8) and (9)], i.e., 

wr((s/v,) exp (v,/s) for parabolic point 

(21) 
~ r ( ( v , / s ) ~  for a point of flattening. 

It is clear that these conditions impose practically no restric- 
tion on wr and, even if we ignore the fact that inequalities 
opposite to those given in (21) cannot be satisfied, as we shall 
see below, a self-consistent solution of the dispersion relation 
(allowance for resonance) leads to a "self-limitation" of the 
magnitude of attenuation to the effect of renormalization 
due exclusively to the longitudinal field.1°.12 

We shall therefore neglect renormalization due to the 
longitudinal field alone. The neglect of the second term in 
( 19) and (20) produces the simpler expressions 

ik20 
f = -  

iek 
<ARAl>u,+ - <ARv,>E,. 

P P 

To eliminate the transverse field E, from (23), we must 
use the Maxwell equation (17). Omitting the Tolman- 
Stewart terms, we have 

It is convenient to take axes 1 and 2 (311k), so that the off- 
diagonal component of the conductivity tensor 
a,, = e2(v,R V,) is equal to zero. For kl-w and x = x, , 
this requires that one of the axes (to be specific, axis 2) must 
be directed at right-angles to the plane containing the vec- 
tors x, and v, We then have" 

and 

It is clear that these expressions do not diverge as I-+ w (even 
for x = x, ). In fact, as I--+m, only one term in the sum over a 
(the one with a = l,v2' = 0) is found to diverge, but its limit- 
ing value is equal to minus the first term in braces in (26), and 
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this ensures the possibilitiy of a transition to the "collision- 
less" limit. 

It is important to note that this limiting transition es- 
sentially corresponds to the intermediate asymptotic behav- 
ior vF/s> I J I >(k6, )2vF/s, where 6, = c/w, , because (26) is 
valid when the conditions in (21) are satisfied. It is precisely 
for this reason that the designation "collisionless" has been 
placed in quotation marks (see, however, Sec. 6). 

Renormalization has produced a substantial complica- 
tion of the dependence of the transport coefficient on the 
wave vector. It is essential to take into account the relation- 
ship between k and 

(4ne20/c2) I < va2R) I -S I I I /GLZvp 

(for x # x ,  , the factor I J ( must be replaced with unity). 
When w,(s/S, [(s/vF)lJ 1]'12, the "field terms" can be 

neglected and we obtain the following expression for the 

io k2 
f = -  <ARAr>ul. 

P 
(27) 

The necessary condition for this expression to be valid for 
x-x, is that the following two inequalities be satisfied: 

I J I << vF/s, I J I << o ~ v ~ ~ ~ ~ / s ~ .  (28) 
When w <s/6, - 101Os-l, the second condition is stronger 
(ifit does not vanish by symmetry) whereas, for w >s/6,, the 
first condition, which is identical with (21), is the stronger. 

5. RENORMALIZATION OF THE VELOCITY OF SOUND. 
ATTENUATION COEFFICIENT 

When the detuning from resonance is large enough, we 
can use perturbation theory to evaluate the renormalized 
velocities of sound. As a rule, for a nonsymmetric direction 
of the vector k, the matrix of the squares of velocities 2,' is 
nondegenerate, and the correction to each of the three velo- 
cites s,(i = 1,2,3) can be calculated separately. In the oppo- 
site case, degeneracy can be taken into account in a standard 
fashion. Projecting the force given by (27) in the direction of 
the j-th eigenvector ej u, of the unperturbed problem (e, is 
the polarization unit vector), we obtain the following expres- 
sion from (1): 

(29) 
This is valid for relatively large detuning (cf. Ref. 8). When 
the detuning is small, the presence of the resonance denomi- 
nator in the integrand of (27) requires special examination. 
When the velocities of sound corresponding to different po- 
larizations are appreciably different from one another, the 
resonance interaction involves only one branch and, in the 
resonance approximation, the dispersion relation governing 
the renormalized velocity of sound s = w/k, assumes the 
fom10.20 

where x = s/v,, xo = s,/u, = C O S ~ ,  , and the subscript on 
the integral signs has the same significance as before [see (9)]. 
The form of the function PC ({,r]), which determines the na- 
ture of the resonance, depends on the nature of the point p, 
[see (10) and (1 I)]. It is assumed in (30) that x = x, or 8 = 8,, 
and that the detuning from resonance is determined only by 
the mean free path. 

For an X-type point 

The coefficient in front of the logarithm is of the order of (s/ 
v,)~.  As kl-+ CO, we have with logarithmic precision 

and 

r S j  UP --- ln-, 
o U p  Sj 

i.e., the resonance has resulted in an increase in the attenu- 
ation coefficient by a factor of ln (uF/s). Equation (32) is valid 
if l/kl( IImxI, i.e., if 

In view of the foregoing, this condition is less stringent than 
(2 1). 

In the case of an 0-type point, the large logarithmic 
factor at resonance (as kl-CO ) contains only 

and the singular part of the attenuation coefficient due to the 
appearance of the 0-type belt for x = x, is nonzero only 
because of collisions, and ~ / w - ( w T ) - '  for WT>U~/S. We 
thus see that the resonance interaction may result in a fall in 
atten~ation.~'  The fall in r / w  with increasing wr does not 
involve the nonresonance part of the absorption coefficient, 
which reaches its usual level as or increases. 

For a point of flattening [see (30), (1 I), and (15)], an 
analogous analysis leads to the restriction of the absorption 
coefficient and velocity to 

which occurs for o r ) (~~ / s , ) ' ~ ' .  
Strictly speaking, the conditions given by (28) must be 

satisfied for (33)-(36) to be valid. When these conditions are 
not satisfied, we must use (26) rather than (27) for the force, 
so that the resonance terms are annulled. It is important to 
remember, however, that the terms in the expression for the 
force that are due to the transverse field may vanish identi- 
cally, for example, by symmetry, as in the case of sound 
propagation in an "easy" direction. One should then be de- 
finitely able to observe the above self-limitation due to the 
resonance interaction between electrons and the sound wave 
(see also the remarks introduced in the Conclusion). 

Let us now consider long-wave sound for which 

979 Sov. Phys. JETP 58 (5), November 1983 Kaganov et al. 979 



and the force f is given (for all x )  by the following expression 
that is simpler than (26): 

Each of the transport coefficients in (38) has a complex 
angular dependence due to the local structure of the Fermi 
surface. The formula can be used to calculate the dispersion 
of sound and the absorption coefficient for a specific Fermi 
surface and specific directions of the wave vector k .  We now 
make only one observation. When the equations given by (1) 
are solved for any correct expression for the force f, this 
should, of course, yield a complex frequency w = w' + iw" 
corresponding to the attenuation of the wave (for our chosen 
dependence on time, w" < 0). This is not at all easy to demon- 
strate in the general case. If we use perturbation theory [this 
is valid because the resonant terms in (38) cancel out], we can 
readily show that in the nondegenerate case, 

Hence, it is clear that w" < 0, as should be the case. The first 
term in braces is always greater than the sum of the other two 
because the first integral may be looked upon as the square of 
the modulus of the function (Aej) specified on the belt, and 
the second and third may be regarded as the squares of pro- 
jections along the "unit vectors" 

The orthogonality of 6, and 5, follows from the fact that o,, 
is zero (see below). Comparison of (39) and (29) will show 
that, as k increases, the attenuation coefficient will increase 
because of Joule losses. 

6. COLLISIONLESS LIMIT 

When x # x ,  , the formulas describing the collisionless 
situation (I+m ), can be obtained by substituting v = + 0, 
and do not require separate analysis. We note that the at- 
tenuation coefficient does not then vanish or become infi- 
nite. As we have already pointed out, the attenuation is de- 
termined by collisionless Landau damping, and the solution 
of the dispersion relation obtained by equating to zero the 
determinant of the system defined by (1)-(4) and (17) shows 
that on - - (s/uF )W1 and I w " I <a. Since (2)-(4) are valid for 
real k and w, the solution of the dispersion equation requires 
that the functions that appear in it and are given in the form 
of integrals over the Fermi surface [see (3) and (4)] must be 
analytically continued into the lower half-plane of the com- 
plex variable w = a' + iw". The usual procedure is as fol- 
lows. The first step is to perform the limiting substitution 

Y-+ + 0, and to evaluate the corresponding integrals. The 
dispersion equation is then solved, assuming that the values 
of the coefficients in this equation are given by their analytic 
continuation into the lower half-plane. Analysis shows that, 
for x # x ,  and lo" I <w, this procedure does not lead to error. 
We shall now demonstrate this by considering a simple ex- 
ample. If we take the force in the form given by (27), and 
introduce the simplifying assumption that the electron spec- 
trum is isotropic, we find that the integral defining the 
imaginary part of the force assumes the form 

Im cp ( y )  =O. 
If w is real, we have 

Im Z(x) =izq ( x )  . (41) 
The analytic continuation of the function I (x)  to the 

lower half-plane of the complex quantity x = w/kv requries 
a deformation of the contour in y (see Fig. 4), and this gives 

When x" (x', this again yields (4 1). 
Let us now consider the limiting transition to infinite 

mean free path for x = x ,  . Each of the integrals in (19) and 
(20) will diverge as x-x, and I-+ co , and the expressions for 
the conductivities and elastic moduli will tend to the finite 
limits 

ie2va 
= { - - v c v a c e  v - v c  R v - v  > E. 

W 1 
ivp 

v C A c +  ( v - v c )  R ( A - A )  ) } u ,  (42) 

As before, the subscript n labels the components perpendic- 
ular to the wave vector k and the subscript I labels all three 
components. The letter c labels quantities taken at points on 
the Fermi surface that correspond to zero curvature (for 
p = p, ). The integrals in (42) and (43) are evaluated over the 
entire Fermi surface. They have the usual (as for x # x ,  ) or- 
der of magnitude, since the numerators of all the integrands 
are co (p - p, ), and vanish for p = p, . Comparison of the 
second terms in the curly brackets with the first shows that 
the former (integral) terms are smaller by a factor of kvF/w 
than the latter. However, they are still quite important. The 

~m'x =O 
I I 

Irn x<O 

FIG. 4. Contour of integration in the analytic continuation of (40). On the 
last figure on the right, the point (x', x") belongs to the contour. 
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point is that (42) and (43) are valid only for Im w = 0. If, on 
the other hand, they are used to solve the dispersion equation 
and to calculate the frequency renormalization, it is readily 
verified that the integral terms lead to the appearance of 
attenuation, and (Im w ( -ws/vF #O. Rigorous analytic con- 
tinuation to the lower half-plane of w = w' + iw" for func- 
tions of the form of (9), which appear in (19) and (20) and 
diverge for w" = 0, shows that7' these functions are finite for 
J- w" #O: when pc is an ordinary parabolic point, we have 
J- 1n(w'/w1' I - ln(vF/s), and whenp, is a point of flattening, 
we have J- lol/w" 1 116-(~F/~)116 [cf. (14) and (15)l. More- 
over, it is readily seen from (8) that it is impossible to "over- 
come" the small factor in front of the singular part of longi- 
tudinal conductivity and thus perform the above limiting 
transition from (19) and (20) to (42) and (43). In other words, 
when the dispersion of the velocity of sound and of the at- 
tenuation coefficient is investigated, the longitudinal field is 
unimportant even for x = xc and 1- CQ , and the transition to 
the collisionless limit can be performed by using (26). In the 
case of long waves [see (37) and (38)], we have for x = x, and 
v 4  

Since (26) does not contain the longitudinal conductivity, 
even a logarithmic increase in the singular parts of the inte- 
grals in (26) is sufficient to give us the limiting formula given 
by (44) (J- In(vF/s) as v d ) ,  and w" -(s/vF)wl (see above). 

Whether the formally valid (for w" = 0) formulas given 
by (42) and (43) can be used remains an open question. If 
there is reason to neglect the integral terms in these expres- 
sions (for example, as a result of symmetry considerations), 
the sound waves will "intermingle" with the electromagnet- 
ic waves. In fact, the Maxwell and elasticity equations yield 

where I is the unit matrix and the Tolman-Stewart terms 
have, of course, been omitted. The parameter governing the 
change in the velocity of sound is 

The properties of the coupled waves are more simply demon- 
strated if we neglect the elastic anisotropy of the crystal. If 
we divide the vectors A' and u into longitudinal and trans- 
verse parts (AC = A, ' + A, " ;u = u, + ut ), we obtain a set of 
two equations and, by equating to zero their determinant, we 
obtain the convenient expression 

k2 (s'-s?) ( S ' - S ~ ~ )  1 
-= 
kZ-ko2 S2-z2 a12fa12 ' 

I I / * 
k', ko/( l -~)' / '  ko k 

FIG. 5. Wave vector k as a function of the velocity of the "intermingled" 
waves according to (46): (a) A < 1; (b) A > 1.  The interval of values of k for 
which one of the waves is attenuated is shown shaded. 

where s, and st are the velocity of longitudinal and trans- 
verse sound, respectively, and the directions of the axes are 
discussed above. The solution of (46) depends on the size of 
the dimensionless parameter 

Figure 5 shows the renormalized wave velocities 
s = s , (k ) for A < 1 and A > 1. It was assumed in the deriva- 
tion of (45) that s , <vc, so that s = s+(k ) for k 5 k, is repre- 
sented by the dashed curve (see Ref. 1 for further details). 

7. ELECTROMAGNETIC AND ELECTRON-VIBRATIONAL 
SPECTRAOFAMETAL 

In our analysis of the propagation of sound in metals, 
we used the condition for slow waves (s<vF). When we exa- 
mine the complete spectrum of a metal, we cannot, of course, 
use this condition, and the analysis becomes very laborious. 
In particular, the original (unsimplified) expressions given 
by (19) and (20) have to be used for the density of force and 
current. Introducing new notation, these can be written in 
the form 

io k2 iek 
f d  = - P Brllul 3- - P D ~ ~ J - E , .  

The tensors that appear in these expressions are readily in- 
terpreted by comparing them with (19) and (20) (in Ref. 15, 
the corresponding matrices are indicated by asterisks-for 
example, uasl =aas *). 

We shall make only one simplification (which we have 
already used): we shall assume that uasl = 0 for a#@. 
Usually, this is not even a simplification because the matrix 
oasL can be diagonalized by a suitable choice of coordinates 
in the plane perpendicular to k. The only exception is pro- 
vided by rare cases (which we shall not examine) in which Re 
X oasl and Im aasl are diagonalized by a different choice of 
axes. When a,, = 0, we have 

where ual is the principal value of the tensor oasl. Substi- 
tuting the above expressions into the equations of the theory 
of elasticity, and equating the determinant to zero, we obtain 
the following dispersion relation between w and k (the Tol- 
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man-Stewart components are omitted): 

In principle, this should enable us to determine all the 
branches of the spectrum, i.e., the dependence of the com- 
plex frequencies w on the wave vector k, for which we must 
perform the analytical continuation of all the functions on 
(50) to the lower half-plane of w = w' + iw". Temporal dis- 
persion of the moduli [due to the Green function (4)] in- 
creases the degree (in the frequency w) of the dispersion 
equation and this, in turn, leads to an increase in the number 
of roots. The new roots are due to the resonance denomina- 
tor in (4) and can be treated as the electronic branches of the 
spectrum. The analysis of all the branches of the spectrum in 
the general case of an arbitrary Fermi surface has not been 
carried out. It appears that there are no weakly attenuating 
spectrum branches other than the acoustic and plasma 
branches (cf. to be sure, Ref. 8), but the problem arises as to 
whether the equation w = kv, can be regarded as the disper- 
sion relation for the waves. Let us turn to the dispersion 
relation given by (50). Apart from the question as to whether 
the dispersion function D (w,k ) vanishes at w = kv, , strictly 
speaking, there is no unattenuated wave with this type of 
dispersion law (at any rate, for a general Fermi surface; see 
the Introduction) because the necessary condition for the 
absence of the unattenuated wave is D (w,k) oo (w - kv, )., and 
this is possible only in exceptional cases (see Refs. 10 and 20). 
On the other hand, any singularity of the dispersion function 
will be reflected in the structure of the fields excited in the 
metal and, when w = kv, , all the components of the tensors 
in D (o,k) have singularities. The question is-how will these 
singularities appear? To answer this, we must consider some 
specific formulation of the problem. Thus, to establish the 
appearance of the singularity at k = kc = w/uF (see Sec. 2), 
we must consider the penetration of the wave of frequency w 
into the half-spacez > 0 occupied by the metal. As 1- oo, any 
singularity of D (w,k ) as a function of k = k, (the z axis is 
perpendicular to the boundary of the metal, v, = max v,) 
will appear in the form of a nonexponentially attenuated 
wave with the following structure: 

where z is the distance from the boundary and n decreases as 
the singularity ofD (w,k) becomes stronger. In particular, the 
asymptotic behavior of the electric field under the condi- 
tions of the anomalous skin effect2' is E a z - ~ ,  and this is a 
manifestation of this effect. Nonexponential attenuation of 
longitudinal and transverse sound is examined in Refs. 1 and 
16, respectively. In a metal with a nonspherical Fermi sur- 
face, the discussion given in Sec. 2 shows that the amplitude 
of the nonexponentially attenuated wave will depend on the 
structure of the Fermi surface at the limiting point at which 
u, reaches its maximum value [see (6) and Fig. 11. When the 
point of contact coincides with a parabolic point or point of 

flatness, this should appear as a change in the dependence of 
the wave amplitude on distancez. Evidently, by studying the 
nonexponentially attenuated waves (see Ref. 22), we should 
be able, at least in principle, to establish the singularities in 
the transport coefficients in the collisionless limit (see Secs. 5 
and 6, and Ref. 24). 

8. CONCLUSION 

Since they are functions of frequency w and wave vector 
k, the dynamic moduli of a metal in the collisionless limit 
( 1 - t ~ ~  ) exhibit singularities whose nature is very dependent 
on the local structure of the Fermi surface near the point p, 
at which kv - w = 0 has a repeated zero. The 0- and X-type 
singularities are standard in the sense that, for an arbitrary 
Fermi surface, there are always critical directions of propa- 
gation of sound x, , the approach to which produces a loga- 
rithmic divergence of I (R ) I .  The approach to a critical di- 
rection can be measured by the "detuning" a = 88 - i/kl. 
The only exception is provided by the doubly critical direc- 
tions associated with points of flatness, i.e., the crossing of 
lines of parabolic points on the Fermi surface (see Fig. 2b), 
the approach to which produces a divergence of the form (see 
Sec. 3) 

If the points of flatness form a line on the Fermi surface (for 
example, when the Fermi surface has a cylindrical segment, 
the cross section of which includes a point of zero curvature, 
which is encountered in quasi-two-dimensional metals), we 
have a stronger singularity of the form9 

The equations of the theory of elasticity involve the re- 
normalized transport coefficients.15 We have shown (Sec. 4) 
that, in the dispersion relation for sound waves, renormal- 
ization due to the elimination of the longitudinal electric 
field is totally unimportant becauses/vF - The contri- 
bution of electrons to sound velocity and absorption in met- 
als can be evaluated with the aid of (26). Renormalization 
due to the elimination of the transverse electric field is signif- 
icant for relatively long sound waves (k<[(s/v,) 1 J I]'1Z/8L ) 
and, fork, [(s/vF) I J I]'lZ/SL, the expression for the forcebe- 
comes simpler [see (27)], which makes this case particularly 
convenient for the experimental study of angular anomalies 
[the higher frequency, which is necessary for the validity of 
(27), will rise to sharper angular anomalies as wr increases; 
see Secs. 2 and 31. 

Transverse renormalization is "sharpened up" (as is 
longitudinal normalization) in such a way that it removes the 
divergence in the expression for the force given by (26) as 
T+W and 8 = 8,. This means that the infinite increase in 
the electronic part of the force given by (26) due to the reso- 
nance interaction between the sound wave w = sk and the 
quasiwave w = kv, is possible only when the terms in (26) 
that are due to renormalization are absent, for example, as a 
result of symmetry, just as for the propagation of longitudi- 
nal sound in an "easy" direction. On the other hand, Eqs. 
(33)-(36) show that the resonance will saturate by itself, and 
will lead to a self-limitation of the absorption coefficient r 
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and the velocity of sounds. The condition for self-limitation 
demands high enough frequency [see (34) and (36)l: or)(v,/ 
s)B, wherep = l/ln(v,/s) for an X-type point, P- 1 for an O- 
type point, and P- (s/v,)~/' for a point of flatness. 

Since experiments on the propagation of sound are 
usually performed at a fixed frequency, and the variable is 
T = T(T) or I = V,T, it is interesting to consider the depen- 
dence of r and As on T for o = const [this will also enable us 
to consider the transition to the collisionless limit, T-co]. 
Suppose that ~((s/~,)(s/v,)"~ [see (37)l. For values of T 

that are not too high, we must use (26), which excludes the 
resonance interaction. As r increases, the role of k in the 
denominator of the term containing a = 1 [see (26)] becomes 
smaller and, as shown in Sec. 4, we have the possibility of a 
transition to the "collisionless" limit in accordance with (38) 
and (39) (the reason why the word collisionless is given in 
quotation marks is explained above). 

When w)(s/6, )(s/v,)"~ and T is not too high, the terms 
in (26) due to the elimination of the transverse electric field 
can be neglected, and we can use (27) which describes the 
resonance interaction of sound with electrons [see (33)-(36)l. 
It may turn out that, for sufficiently large values of T, the 
divergence in (R ) will "turn on" the terms due to renornial- 
ization. Let us verify this by comparing the two limiting ex- 
pressions for k8 at relatively low and relatively high r. Thus, 
let us suppose that the terms due to renormalization are 
turned on for sufficiently high values of r (including even 
T-+w). The quantity r must then be calculated from (39), 
and this yields r /o -s/u, or w" = Im w - - (s/vF)w1. This 
means that the maximum value that I J I can assume during 
the analytic continuation into the half-plane Im o < 0 [see 
the beginning of Sec. 6 and (19)] for T- w is of the order of 
ln(v,/s) for 0- and X-type points, and - (v,/s)'/~ for a point 
of flatness. However, to compensate the divergent terms, we 
must ensure that [compare this with (28)] 

OK ( s / G L )  [ ( s / u ~ )  1 J I ]  'I1. 

This means that the inclusion of terms due to renormaliza- 
tion is possible only in the narrow frequency interval 

for the 0- and X-type points and, in the somewhat broader 
interval, 

( ~ 1 6 ~ )  ( s / v p )  '12a~< ( ~ 1 6 ~ )  ( S / V = )  '"- (52) 

for points of flatness. After inclusion of terms due to renor- 
malization, the quantities r and As which become anoma- 
lously high due to resonance [see (33), (35), and (36)] fall to 
their usual values that are characteristic for 3t # x, . For fre- 
quencies greater than (s/S, )[(s/uF)ln(vF/s]1/2 (for (s/SL )(s/ 
vF)'l3), the terms due to renormalization are excluded alto- 
gether, and Eqs. (33), (35), and (36) describe the collisionless 
propagation and attenuation of sound. The increase in r and 
As as compared with the ordinary values is responsible for 
the structure of the Fermi surface at the point of local flat- 
tening. 

It is clear from the foregoing that experiments with 
high-purity specimens at maximum possible sound frequen- 
cies are the most convenient for the observation of angular 

anomalies. We emphasize once again that we have not con- 
sidered the possibility of finite cylindrical or flat areas on the 
Fermi surface. The presence of such areas would substantial- 
ly facilitate the observation of a n ~ m a l i e s . ~ - " ~ ~ ~  

The singularities in transport coefficients in the colli- 
sionless limit (I-+ a, ) as functions of real quantities, namely, 
the wave vector k and frequency o ,  can appear not only as 
field drag by electrons into the body of the conductor (see 
Sec. 7) but also, for example, as frequency singularities in the 
cross section of the metal for the scattering of electromagnet- 
ic waves.23 
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