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A diagram technique for Hubbard operators is used to study a Heisenberg ferromagnet with 
uniaxial anisotropy in the form of an arbitrary function q,(S;) and an arbitrary spin. The expres- 
sions for the effective interactions and Green functions obtained explicitly in the zeroth approxi- 
mation of the self-consistent field method make it possible to construct the perturbation theory 
series both in terms of the reciprocal interaction radius r0-3 and in terms of T /Tc . The tempera- 
ture correction to the energy and the magnon damping are calculated in the low-temperature 
region. The corrections free-energy and magnetization corrections necessitated by the magnon 
interaction are calculated in second order in ro-3. It is shown that in an anisotropic ferromagnet 
there appear additional contributions that can exceed by several orders the corrections previously 
obtained by Dyson for the isotropic case. 

PACS numbers: 75.30.Ds, 75.30.Gw, 75.40.Fa 

1. INTRODUCTION 

It is well known that low-temperature thermodynamics 
of Heisenberg ferromagnets is determined by the properties 
of the spin-wave excitations and by the character of the inter- 
action between The small number of magnons at 
T4Tc (T, is the Curie temperature) allows us to assume 
that the temperature corrections necessitated by the interac- 
tion of the quasiparticles are determined by the two-particle 
scattering ampl i t~de .~  Dyson has shown3 that for isotropic 
ferromagnets the temperature correction to the free energy 
for the magnon-magnon interaction is 

G F ( ~ ) ~ J T % { , ( A / T )  ; 
and for ( S  ) the correction is 

GS'mZy, ( A / T ) B , ,  (A l l ' )  T' 
(the notation is defined in the text below). 

A characteristic feature of anisotropic ferromagnetics 
is the non-equidistance of the single-ion energy levels. This 
circumstance leads, when the anisotropy is included in the 
zeroth Hamiltonian R o ,  to violation of the generalized 
Wick theorem for spin and to the need of using 
special devices to calculate single-cell blo~ks.',~ On the other 
hand, the use of the Dyson-Maleev to investi- 
gate the physical properties of anisotropic ferrornagnet~'~-'~ 
reduces the problem to a nonideal Bose gas only for the sim- 
plest anisotropy of the D (9)' and is restricted to low tem- 
peratures because of the unwieldy projection operator. " 

Zaitsev1"I6 proposed a new approach to the theory of 
Heisenberg magnets, based on representation of the spin op- 
erators in terms of Hubbard operators. This made it possible 
to generalize the Vaks-Larkin-Pikin diagram technique4v5 to 
include the arbitrary single-node operators. This approach 
yielded6 the spectrum of the spin waves and permitted an 
analysis of the singularities of the susceptibility for S = 1 
and the anisotropy D (Sfz)'. For an arbitrary value of S, the 
representation obtained in Ref. 17 for the spin operators in 
terms of Hubbard operators was found to be convenient for 
the investigation of both isotropic and anisotropic ferro- and 
antiferromagnets. 

In this paper the diagram technique for the Hubbard 
operators1"16 is used to investigate the spectrum and the 
damping of spin-wave excitations as well as the thermody- 
namic corrections, due to magnon-magnon interaction, to 
the free energy and magnetization of a uniaxial Heisenberg 
operator with arbitrary spin S. The uniaxial anisotropy in 
the form of an arbitrary function of the operator S; is taken 
into account exactly by including it in the zeroth Hamilton- 
ian. It is shown that besides the Dyson term there appear in 
the anisotropic ferromagnets additional contributions that 
contain a lower power of the small parameter T/Tc and 
therefore exceed by one or two orders the corrections ob- 
tained by Dyson. 
2. LARKIN'S EQUATION FOR AN ANISOTROPIC 
FERROMAGNET 

We shall describe the uniaxial anisotropy of a Heisen- 
berg ferromagnet with arbitrary spin by the term 

where q, is an arbitrary function of the operator S;, and f is 
the number of the site. We use the representation df the spin 
operators in terms of the Hubbard  operator^"^'^: 

where the Hubbard operator 

x,"'"=lf, M / x ~ ,  M I  
is defined on the eigenfunctions I f,M ) of the operator S;, 
and 

rs ( M )  = [ ( S - M )  ( S + M + i ) ]  ". 
This representation is convenient because Ra assumes a 
simple operator structure: 

Q 

and the entire complicated form of the anisotropy goes over 
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into a c-number function p(M ). This enables us easily to in- 
clude Za in the zeroth Hamiltonian, and as a result we can 
write the Hamiltonian of an Heisenberg magnet with anisot- 
ropy (1) in the form 

. . 

The Hubbard operators Xf"  act in the space of the eigenfunc- 
tions of the operator S;. The vector a is related to the transi- 
tion from the state I M ') into the state J M  ) in accord with the 
rule 

It follows from the completeness condition 

that in place of 2S + 1 diagonal operators Xf M,M we can use 
2S zero-trace operators, as was done in fact in Refs. 14-16. 
We, however will make use of all the operators XFM=h,  
(with nonzero traces) that make up the vector h f .  It is then 
easy to calculate the components of the root vectors: 

ax (MI, M2) = ~ M M , - ~ M M I  

and the same commutation rules as in Ref. 16 are preserved: 

[ h f ~ ,  Xifa] =dff'aMXfa, [Xfa, =6ffr (ah),  
ad 

[Xf5, Xf*'] 4t*Na+pXt t 

where Nu + differs from zero and is equal to + 1 if a + Pis  
again a root vector. Diagonal operators with nonzero trace 
were used earlier in the anisotropic s-f metal problem. l9 in 
Eq. (2) we separated the self-consistent field4-6 
h, = hm - (h,  ) . The dependence of the matrix elements 
of the transverse interaction is determined by the relations 

zfmaB=zfmy(a)y(~), 

y (a) = [(S-M) (S+M+l)] ", a=a(M+1, M), ( 5 )  
7 (,a) =0, a+a (M+ I, M) . 

The components of the longitudinal interaction are of the 
form I%"' = I fmMM1.  

The dynamic characteristics of the ferromagnet in ques- 
tion are connected with the properties of the Matusbara 
Green function 

We denote by XaB(k,w, ) the complete aggregate of the dia- 
grams that are irreducible in one transverse interaction line, 
with incoming and outgoing vectors a and 0, respectively. 
From an examination of the diagram series for the Fourier 
transform DaB(k,w, ) of the Green function (6) we get the 
Larkin equation: 

where 2, and I, are matrices with respective components 
ZaB(k,wn ) and I  y. A distinguishing feature of Eq. (7) is the 
explicit connection between Duo and the components of the 
matrices 8, and I,, whereas in Refs. 14-16 DaB was ex- 
pressed in terms of the reciprocal matrix 2, -', whose deter- 
mination at arbitrary S calls for unwieldy transformations. 
It is easy to obtain from (7) the Larkin equation for the trans- 
verse Green function K + -(k,wn ) in the anisotropic case 

z+- (k, on) 
K+- (k, o.) = z q  (a) Y (B)D.% (k. on) -- l+'/,h.t- (k , 

As X, 4 Eq. 8 goes over into the corresponding equation 
of Refs. 4-6. 

For the Fourier transform of the longitudinal function 

DM,. (fz; mz') =-(Z?~~M(T)LM'(T') ) (10) 

we obtain similarly 

where HMM' (k, w, ) is the corresponding irreducible part for 
the longitudinal function (lo), and I  I ,  is a matrix whose com- 
ponents are the integrals of the longitudinal interactions 
I F ' .  

3. ZEROTH APPROXIMATION OF THE SELF-CONSISTENT- 
FIELD (SCF) METHOD AND EFFECTIVE INTERACTIONS 

In the approximation considered, the irreducible parts 
in (7) and (1 1) are equal to 

1 
a k  (k, on) =tiaBb (a)  Da (on), Da(on)=- 

ion+- a E  ' (12) 
xMM' (k, on)  =6MMvnM-nMnM', (13) 

where, as in Refs. 14-1 6, we use the concept of the end factor 
b (a) = ( a h  ) ,; the occupation numbers n, are defined by 
the relation 

nM'(hfM>,. (I4) 

From (12) and (7) we easily obtain DaB(k, wn ) in the zeroth 
approximation of the SCF method: 

The Green function (8) takes consequently, in the same ap- 
proximation, the form 

We introduce the effective interaction ja8(q, w, ) defined by 
the following diagram series2': 
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et0=A+S [Io-Zk] , A=gl~~H+q (S) -q (S-I), 

After summing this series we have 

PYq, @.)=la'(q) [i+'/2Zq y (crt)I'(ar, an)  ] -' _ (19) 
a* 

For a longitudinal effective interaction 

we have after summation 

The explicit expressions obtained here for D 2' (k, o, ) and 
for the effective interactions permits construction of a series 
of successive approximations in powers of the reciprocal in- 
teraction radius, as was done for the isotropic case by Vaks, 
Larkin, and Pikin.4*5 On the other hand, in the region T4Tc 
we can go over consistently to a spin-wave description of a 
ferromagnet with arbitrary form of uniaxial anisotropy. 

4. FIRST APPROXIMATION OF THE SCF METHOD 

At T4Tc,  in first order in l/r& the irreducible part of 
the function (7) is equal to 

ZEP(k, an) =~<G'(kl on) + ~ ; r  (k, an) , (22) 
where the first term is described by Eq. (12), and the second is 
given by the sum of diagrams of Fig. 1. 

The first three diagrams are valid also in the isotropic 
case, since diagrams d) and e) make a nonzero contribution 
only in the presence of anisotropy. As a result we find that 
near their poles the transverse function (17) can be written in 
the form 

Kf- (k, a,) =2(S')/ [ion-ek0+P(k) 1, (23) 

where 

FIG. 1. Diagrams of first order in l/ri at T<T, for P'@(k, w, ) .  

x ( I q  nq[eZ+eqO+Ea-Ea-zl-', 
q 

(24) 

R [cp] =% (S-I) -cp (S) -9 (S-2), nq= [exp (eqO/T) -I] -'. 

It follows from (23) that the spectrum of the spin-wave exci- 
tations is of the form 

The function A is written in the form 

-- I 'I?' Ks/,(T). 
2 ZSIo+R[cp] 

Following Refs. 4 and 5, we have introduced in (25) the quan- 
tities 

It can be seen that for a uniaxial ferromagnet, besides the 
usualtemperaturecorrection a T 512~5,,(A / T )  totheenergy 
there is also a term that contains a lower power of the ratio 
T /Tc .  This circumstance leads in ferromagnets with finite 
anisotropy to a stronger temperature dependence of the 
magnon energy than in the isotropic case. 

The magnon damping can be represented in the form 

where u, = E, - , - E, - A - E: and 8 ( x )  is the Heaviside 
unit step function. It follows from (26) that the damping of 
magnons with momentum k will differ from zero only in the 
case when the system contains a magnon having an energy E: 

such that the sum of the energies of these two magnons coin- 
cides with the energy difference of the levels E, -, and E, . 
Since the minimum magnon energy is A, the condition noted 
above cannot be satisfied in the case when 
E, + A > E, - , - E, , and the damping vanishes. We note 
here that the result (26) was obtained for p(S;) = D(S;), in 
Ref. 8. 
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5. FREE ENERGY AND MAGNETIZATION 

In the low temperature region (T4Tc) the expression 
for the free energy can be represented in the form 

Where Eo is the ground-state energy per site 

E o = - ' / z Z o S 2 - g p H S  (8)  , (28) 

and F, is the free energy of a gas of noninteracting magnons. 
The graphic expression for F,  takes the form 

A distinguishing feature of (29) compared with the corre- 
sponding isotropic-case series is the additional summation 
over the vectors a. In the considered temperature region, 
owing to the end factors b (a), there remain in the sums only 
terms with a = ao(S,S - 1). At a#ao(S,S - 1) the factors 
b (a) yieldexponential termsofthe type exp( - T,/T), which 
we shall neglect. From (29) we find that 

x l n [ i  - exp (--$)I . Fi= 
q 

The quantity S F"' in (27) is due to magnon-magnon interac- 
tion. In second order in 1/ri of the SCF method, the contri- 
bution to S F"' is determined by the diagrams shown in Fig. 
2. The last two of them are features of only the anisotropic 
case. Comparing the diagrams with the analytic expressions, 
we obtain 

k 

where 

FIG. 2. Plots of second order in 1/6 at T<T, for the free energy. 
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The term SFg) in (3 1) describes the decrease of the free ener- 
gy on account of the interaction of the spin waves and corre- 
sponds to the usual Dyson correction previously obtained 
for the isotropic c a ~ e . ~ . ~ "  The second term in (3 1) is connect- 
ed with the additional spin-wave interaction that occurs in 
anisotropic ferromagnets because of the nonequidistance of 
the single-ion energy levels. 

It can be seen from (32) and (33) that at a finite value of 
the anisotropy 6FE) can exceed SFg) by several orders, since 
it contains a lower power of the small parameter T/Tc. We 
note here that to obtain the analytic expressions we have 
used the condition 

exp {- (gp,H+ZoS+R [q] ) IT) 9 1. 

This means that the results are valid also at anisotropy val- 
ues that are comparable in order of magnitude with the ex- 
change energy. 

Knowing the free energy, we easily obtain for the mag- 
netization, with allowance for the spin-wave interaction, the 
expression 

where 

We represent SF in the form of two terms: 
~S'=~DS'+~,S ,  (36) 

The first term in (36) corresponds to the Dyson correc- 
tion, which in our case differs only by the anisotropy-in- 
d u ~ e d  renormalization of the gap A in the spin-wave spec- 
trum. The second term vanishes when the anisotropy tends 
to zero, and also at S = 1/2. At a finite anisotropy the contri- 
bution made to SF by the second term can substantially 
exceed the contribution of the Dyson term. We can conclude 
from this that in anisotropic feromagnets the magnon-mag- 
non interaction plays a larger role than in the isotropic case. 
In fact, in the case p(S;) = D (S;)2 at TdA < I s  we easily 
obtain the asymptotic expression 

In the case A 4 T(IJ it follows from (37) and (38) that 
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'An arrow headed by a circle denotes the function 2g0. Two circles in an 
oval denote the function 2,MM'.. 

in which case the gap plays an insignificant role in the mag- 
non spectrum. 

In conclusion, we discuss the possibility of experimen- 
tally observing the contribution S , S  to the total decrease of 
the magnetization with rising temperature. To this end we 
compare the value of the Bloch term (35) with the value of 
S , S .  We assume for simplicity that q, (S;) = D (S;)2. Then 
R [p ] = - 20. We consider separately the two cases D > 0 
and D < 0. 

a) D > 0, anisotropy of the easy axis type. Choosing D / 
IJz0,2,3T/2aSI0z0,2, l /rO3z+, we find that the de- 
crease of the magnetization on account of the magnon inter- 
action is on the order of one percent compared with the de- 
crease of the magnetization due to the Bloch term. 

b) D < 0, anisotropy of the easy plane type. At H = 0 the 
magnetization of the ferromagnet lies in the easy plane. In an 
external magnetic field gp, H > (D )(2S - 1) perpendicular 
to this plane, the spins are aligned along the z axis an'd we 
obtain an experimental geometry in which our analysis is 
valid. Choosing a ferromagnet with relatively strong anisot- 
ropy, we can choose a magnetic field such that the quantity 
Z,/,(A /T )  in (38) ceases to introduce additional smallness. 
Therefore the decrease of the magnetization on account of 
the interaction is much higher in this case and can amount to 
several times ten percent compared with the magnetization 
decrease due to the Bloch term (35). 

The authors thank E. V. Kuz'min, I. S. Sandalov, R. 0. 
Zaitsev, and D. E. Khmel'nitskii for helpful discussions of 
the results. 
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