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A dynamic theory is developed for neutron scattering by a crystal that executes forced vibrations 
under the influence of an external alternating field. The interference of coherent neutron waves 
having different frequencies leads to the appearance of a pendellosung effect in such crystals, to 
suppression of reactions, and to temporal intensity beats. The possibility is also demonstrated of 
resonant suppression of the anomalous passage of neutrons by ultrasound, of enhancement of the 
temporal beats, and of a change of the character of the pendellosung oscillations (neutron-acous- 
tic resonance). 

PACS numbers: 6 1.80.Hg, 63.20. - e 

1. INTRODUCTION r is the neutron radius vector, is then a periodic function of 

The influence of forced crystal-atom oscillations excit- the time with a period T = 2?r/O. 

ed by external alternating fields (laser, ultrasound, etc.) on We represent the Hamiltonian of the neutron + crystal 

neutron scattering and on nuclear reactions in which neu- system in an alternating field in the form 

trons participate has been investigated in many studies.'" &(t) =%,+v (t) . (3) 
Inelastic scattering of neutrons by polaritons produced by 
laser-wave mixing with phonons were considered.' A kine- 
matic theory was constructed2 for potential scattering of 
neutrons by crystals with account taken of the anharmoni- 
city of the oscillations. The possibility was discussed3 of neu- 
tron acceleration in a medium in which a laser excites intra- 
molecular oscillations. Also considered4 was the effect of 
laser radiation on magnetic scattering of neutrons. The cross 
section for nuclear reactions in the small-oscillation approx- 
imation was calculated in Refs. 1 and 5. The cross section for 
oscillations of arbitrary amplitude was calculated in Ref. 6. 
Many earlier studies (see, e.g., Refs. 7 and 8) were devoted to 
the effect of low-frequency crystal vibrations on neutron dif- 
fraction. In this article is developed a theory of multiple neu- 
tron scattering by a crystal that executes coherent forced 
vibrations of arbitrary amplitude under the influence of al- 
ternating fields. 

2. BASIC EQUATIONS 

It is known that an oscillator executes in an alternating 
field quantum oscillations about an instantaneous equilibri- 
um position that vibrates classically in turn. The forced vi- 
bration of the equilibrium position have the frequency O of 
the external force. Therefore the radius vector of the x-th 
atom of the 1-th unit cell of a crystal in an alternating field is 

( 0 )  ( 0 )  
RI.(t) =RIx +XI, (t) f ulx', R1x =l+px, (1) 

where the vector p, determines the equilibrium position of 
the x-th atom in the cell, X,, (t ) is the displacement, due to 
the classical vibrations, from the instantaneous equilibrium 
position of this atom, and u,', is the displacement, due to the 
quantum motion, from the instantaneous equilibrium posi- 
tion. Assume that a traveling displacement wave having a 
wave vector q and an amplitude A, is excited in the crystal: 

The operator of the interaction of the neutron with the i-th 
(i = 1, x) atom of the crystal, D!neut'(t ) = D,(r - Ri(t )), where 

. , . . 
h 

The operator &Pois equal to the sum of tke neutron kinetic- 
energy operator X, of the Hamiltonian H, of theAquantum 
oscillations of the crystal, and of the Hamiltonian H y  of that 
part of the electromagnetic field which corresponds to the y 
quanta. The perturbation operator is 

where vT is the interaction of the nuc leus~i th  the field. We 
denote the eigenfunctions of the operator 2Yo by la), 1 b ) , Ic) 
o~X,,~, ,  , and the corresponding eigenvalues by E,,,, . Let the 
initial state of the system as t + - UJ be described by the 
functionx, = la)exp(ikor), where la) is the initial quantum 
state of the scatterer and ko is the wave vector of the incident 
neutron having an energy E = @kO2/2m. The initial energy 
E, of the quantum motions of the system is equal to the sum 
of E and of the energy 8, of the quantum oscillations of the 
crystal. 

The system wave function !P (t  )satisfies the Schrodinger 
equation 

i t i a y  ( t )  /at=% (t) ( t )  . (5) 

Its solution that satisfies the chosen initial condition can be 
reduced to a simple form by changing to a new Hilbert space 
of functions that are periodic in time with a period T. Where- 
as usually the time enters as a parameter and the scalar pro- 
duct of the functions is defined as an integral only over the 
spatial variablesx of the system, here we regard the time as a 
variable on a par with x. We define the scalar product of the 
functions p(x,t ) and $(x,t ) as 

T 

k ( x , t )  19(x,t))= J d t J  dnp0(x,t)cp(x,t). (6) 
a 

The orthonormalized basis vectors take in the new space the 
form la; n )  = x, T - ''2exp(inOt ). Any function of the new 
space can be expanded in a series in the vectors la; n )  with 
constant coefficients. We introduce in the new space the op- 
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erator Po = Zo - iM/at in place of ZK The vectors 
la, n J are the eigenvectors of the operator Eo with corre- 
sponding eigenvaluess + n3.0. In the new space, the inter- 
action operator "V V(t ) has the matrix 

{a'; nllVla; n)= - ate-icnr-n)r 
T (t) =Vafa (n'-n) , (7) 

where V,., (n). The total Hamiltonian is % = Po + V. The 
wave function of the system then takes the form 

Y (t) =qe+ ( x ,  t) exp (-iE.t/fi) , 

The scattering operator is defined by the expression 

We consider now neutron scattering by the i-th atom of 
the crystal. If a neutron wave exp(zk, r)  is incident, the scat- 
tered wave $2 - X, is a coherent sum of waves - exp(inf2t ). 
These waves can be further rescattered in the crystal. Using 
the proposed formalism, we calculate the matrix of neutron 
scattering by the i-th nucleus: 

(neut) (neut) 
( neut ) (n'-n'l)i~,b (nu-n) i 

=vbrb ( ~ ~ - n ) ~ +  r( y, vb'o 
E.-E,-nNhQ+ ir/2 7 (10) 

e n" 

where Ic) are all the intermediate system states produced 
when a neutron is captured by the nucleus on a resonant level 
of width r and energy E,. The amplitude for scattering by 
the i-th nucleus as the scatterer goes from the state la) into 
la'), when n'-n of the 3.0 quanta are given up by the neutron 
to the external field, is connected with the t-matrix by the 
relation 

f;yn' (k, 

m 
=- - {a', k'; nllTila, k; n)'exp {-i (k-k'- (nl-n) q) R,'" }. 

2nfiz 
(11) 

Averaging the amplitude f Ci-") over the states of the scat- 
terer and over the isotopes we obtain the amplitude for co- 
herent neutron scattering by the x-th nucleus: 

j:2-n) (k, k'),=in'-n -6, exp (-W.(Q) ) la'-n (QL)  [ 

whee 6 is the coherent-scattering length, Q = k - k', J ,  (z) is 
a Bessel function of order n, f, ( E )  the amplitude of reso- 
nant scattering of neutrons by the nucleus in the absence of 
forced vibrations: 

p, is the relative number of resonant nuclei in the x-th site, I, 
and I are the spins of the initial and compound nuclei, rneUt 
is the partial neutron width, ny and nJ are the numbers of 
phonons having a frequency w, in the initial and intermedi- 
ate states, and w(ny) is the Gibbs distribution over the phon- 
ons. 

In the kinematic approximation we obtain for the cross 
section for coherent neutron scattering by the crystal the 
expression 

where N '  is the number of unit cells with volume u,, T / ~ P  is 
the reciprocal-lattice vector, and F ("' is the amplitude for 
coherent scattering by one cell of the crystal: 

(k, k') = exP ( i ~ ~ . )  f EL (k, kt),. 
X 

It can be seen from (14) that within the framework of the 
kinematic theory one obtains coherent peaks on rigorous 
satisfaction of the generalized Bragg conditions 

3. DYNAMIC THEORY 

We consider a crystal in the form of a plane-parallel 
plate with lattice vector 1 = /,a, + 12a2 + l,a,, where ai are 
the basis vectors l1,I2=0, q= 1, T 2  ,..., 

03 ; l3 = 0, 1,2 ,..., N, - 1. Let the origin of the (x,y,z) co- 
ordinate system be at the point 1 = 0, the axes x and y lie in 
the (a,, a,) plane, thez axis be directed towards the interior of 
the plate, and k, > 0. The thickness; of one layer of the unit 
cells is d = a, e, where e, is a unit vector along the z axis. 
From (8) and (9) follows a system of exact equations that 
determine the multiple scattering of the neutrons by the 
crystal: 

N 

$+=-+ (~.+iq-%'~)-'ksgr 
i-i 

where N is the number of atoms and $i is the effective wave 
incident on the i-th atom. Since fgd, the system (17) can be 
replaced by an approximate equation for the coherent neu- 
tron function $(r, t ) in the medium: 

where the angle brackets ( ) denote averaging over the states 
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of the crystal and over the isotopes. It can be verified by 
direct substitution that the solution of (18) is of the form 

where the wave vectors in the crystal take on the values 

K(n, v) =K,+T,-nq (zo=O). (20) 

From the boundary conditions at z = 0 it follows that 

Substitution of (19) in (18) yields the system of algebraic 
equations 

[IC(n,v)+n(2mQlh)-k,21C(n,v) 

= C ; F ( - - ~ ' )  ( ~ ( n ' ,  v'), K(n, v) )C(nl. v') . 

Let the Bragg conditions (16) be satisfied approximately 
only for the wave with Kl = KO + T, - n,q. In this case the 
deviation from the exact Bragg condition is determined by 
the parameter 

where Q, = n,q - T,, k, = ko - Q,. The two-wave approxi- 
mation is satisfied if 

Following Ref. 10, we distinguish between two cases. If the 
neutron wavelength is constant and the direction of incident 
is varied then 

where y, = k,,/k,, 8 is the angle between k, and the plate 
surface, and 8, is the Bragg angle. If, however 8 = 8, and il 
is varied, then 

The vectors KO, K, and the corresponding wave ampli- 
tudes C,, C ,  are defined by the equations 

(aoo-6) C , f  a0,Ci=0, aIoCo+ (ai1-28-6) Ci=O, (26) 

where 

The roots of Eqs. (26) are 

Furthermore, the plus and minus signs correspond to 8, and 
S,, respectively. At n, = 0 the equations obtained agree with 
the results of the theory of elastic deformation of neutrons.'' 
For Laue diffraction the wave amplitudes are 

Near the Bragg conditions, the two pairs of waves corre- 
sponding to the values of 8, and 8, have amplitudes - 1. One 
of these pairs, $,(r, t ) is more damped, and the other $,(r, t ), 
is less damped. To suppress the inelastic scattering and the 
(n,y) reaction completely we must have A = 0." By way of 
example we consider the case of an isolated resonance, when 
r > h ,  9, where 9 is the recoil energy of the nucleus. The 
resonant scattering amplitude is then f,, ( E )  
-(E - Eo + ir/2)-I." If in addition EzE, ,  W>T,  as 
well as k,, = k, (the analog of symmetric Laue diffraction), 
we have 

where z ~ k  A and zf=k' . A. By changing the orientations 
of k and k' relative to A we can attain total suppression of the 
reaction (A = 0). The coherent wave 

moves then without the damping due to the reaction (anoma- 
lous passage). The reason is that the amplitude for the cap- 
ture of such a neutron by a nucleus is - A  = 0, i.e., no com- 
pound nucleus is produced under these conditions. 

In Laue diffraction, energy is also pumped from the 
refracted wave into the diffracted one and back upon pene- 
tration into the interior of the crystal (pendellosung effect). 
Beats are consequently produced between the transmitted 
and diffracted neutron beams when the wavelength or the 
plate thickness is changed. In the case of potential scattering, 
when Im z ( ~ e  8 and the crystal can be regarded as nonab- 
sorbing, total energy transfer from one wave to the other 
takes place at k,, = k,. One period of these oscillations 
takes place over the extinction length d, : 

d,=ko .u0 [21 6. erp ( ~ Q I P ~ ) ~ X P  ( - ~ n ( Q i )  )Jn*(Qik) I] - 

X 

(32) 
We consider now Bragg diffraction by a semi-infinite 

crystal. The reflection coefficient, which determines the rel- 
ative number of reflected neutrons, takes then the form 

If the crystal is non-absorbing we have total reflection of the 
neutrons (R = 1) when E varies in an interval of 
(E  - (a,, - aoO)/2(<( - ao,a,o)"2 having a width 
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Thus, the intensity of the reflected neutrons is - I J,, (QIA) 1 .  
The solution obtained above for the pair of waves IK,), and 
IK,) can be regarded as the zeroth approximation, and the 
small amplitudes of the remaining waves can be obtained 
from (22) by iteration. Their superposition leads to small 
temporal beats of the neutron fluxes. The resultant equa- 
tions contain Bessel functions, so that the physical results 
should oscillate when the argument of the functions k,,, A 
or Q A changes. 

4. NEUTRON-ACOUSTIC RESONANCE 

We solve now Eqs. (22) in the kA( 1 approximation. Let 
a sound wave q = qe, propagate in the crystal along the z 
axis, and let condition (24) not be satisfied. The essential role 
in the expansion (19) is played then by neutron waves with 
n = 0, 1. Their amplitudes C (n, v) can be formally regard- 
ed as components of the vector C in a six-dimensional Eu- 
clidean space with basis unit vectors In, v), i.e., 

We then rewrite the algebraic equations (22) in the form 

h 

The n-th zeroth-approximation operator d,(n)  acts here 
only in the n-th subspace with unit vectors In, 0) and In, I),  
where it has the matrix 

do (n) oo=aoo+ns, d o  (4 o ~ ( k 8 ,  

do (n) lo=alo, do (n) ,,=a1,+2e+ns, s=q-mQ/% ,, (37) 

and the detuning parameter of the elastic diffraction is de- 
fined by Eq. (24) with n, = 0. At 0- 10' sec-' both terms in 
s are of the same order of magnitude. We confine ourselves to 
consideration of symmetric Laue diffraction (7, e, = 0) in a 
crystal with one atom p̂ er unit cell. The nonzero matrix ele- 
ments of the operator d' are then 

The eigenvalues of the operator 2 , (n)  are 

6:"' (n) =6:0'+ns (i==l, 2), (39) 

where 6yJ is given in (28). The corresponding eigenvectors 
ei(n) are obtained by rotation of the basis vectors In, 0) and 
In, 1 ). By varying the ultrasound frequency L? one can make 
the branches of the dispersion surface 6YJ(n) intersect, so that 
at a certain value of E 

We call such an intersection of the branches neutron-acous- 
tic resonance, by analogy with the x-zay acoustic reso- 
nance.12-l4 Even a small perturbation of d' in the vicinity of 
the intersection of the dispersion branches mixes substan- 
tially the vectors eioJ(n) and distorts 6yJ(n). When the unit 
vectors ef"(0) and efJ(l) are ~ i x e d  we obtain the following 
eigenvectors of the operator d: 

e+--e,'o' (0) cos (qd2) +&' (4) sin (cp/2), 

(0 )  @-=-el (0) sin (q112) +eiO' (4) cos (cp/2), (41) 
where the angle q, is defined as' 

Corresponding to these vectors are the eigenvalues 

In addition, we have also a pair of vectors e; , which are 
obtained from (41) by replacing e$(O) by eYJ(0) and e',0)(1) by 
eyJ( - 1). They correspond to values 6; = S * - s. Thus, in 
the absence of ultrasound, waves with eigenvalues 8;) and 
SfJ propagated in the crystal and anomalous passage of the 
wave with SfJ took place, since ImS$" <ImS(,'". Resonant 
mixing of these waves by ultrasound leads to the appearance 
of new waves with S , and 6; , for which ImS * > ImS$" (at 
s = ReAK and 2a = ImAK, where AK = S(P) - SfJ, we have 
ImS * = Im(Sy) + SfJ)/2). As a result of which, in neutron- 
acoustic resonance, when qlle,, the anomalous passage of the 
neutrons through the crystal is suppressed. 

Using the conditions for the continuity of the wave 
function on the boundary z = 0, we obtain at E = 0 the fol- 
lowing expression for the coherent wave function of the neu- 
tron inside the crystal: 

-tj (r, t) =e-it [ (cos2 ( ~ 1 2 )  ei6+' 
+sin2 ( ~ 1 2 )  ei6-l) (cos f eikor+i sin ceiktr) 
-1/2 sin cp (eia+z-ei6-z ) (COS (3Cf Ot )  eiko' (44) 

-i sin (3b+Qt)eika')], 
where k, = k, + T~ and f = qz/2. It can be seen from (44) 
that in the case of neutron-acoustic resonance the intensity 
of the transmitted and diffracted neutron beams is subject to 
strong temporal beats. In addition, the pendellosung intensi- 
ty beats take place at several frequencies, i.e., are described 
by a sum of several sinusoids. In contrast to Ref. 13, we did 
not use a quasistatic approximation, so that the results need 
not be time-averaged. 
1) If s < 0, s is replaced in (42)-(44) by IS/. 
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