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The propagation of surface waves in smectic A is considered in the limit in which permeation 
effects are not important. The form of the possible modes and the region of their existence are 
found. It is shown that under ordinary experimental conditions propagating modes are absent far 
from the smectic-nematic transition point. 

PACS numbers: 61.30. - v, 68.10. - m 

The propagation of surface waves in liquid crystals of 
the smectic A type has been considered repeatedly in recent 
years. Interest in this phenomenon is connected with the fact 
that smectic A represents a layered system, which possesses 
solid elastic properties in one direction (perpendicular to the 
layers) and liquid properties in the remaining two directions. 
The viscous properties of such liquid crystals are strongly 
anisotropic. It is evident that the study of the dynamics of 
such systems is of interest by itself and, in addition, furnishes 
additional possibilities for the experimental determination 
of a number of characteristic parameters. 

The propagation of surface waves in incompressible 
smectic A was considered in Ref. 1 without account of vis- 
cosity and permeation effects. Two propagating modes were 
found. One represents a capillary wave, similar to the capil- 
lary waves in a liquid, while the other is an elastic wave, 
corresponding to the bulk mode of second sound of smectics. 
In the present work we shall show that account of the viscos- 
ity imposes additional limitations on the region of existence 
of these modes and in practice leads to their disappearance in 
any region that is not very close to the smectic-nematic tran- 
sition point. 

References 2-4 were devoted to the study of surface 
waves under conditions in which the permeation effects are 
important. This case corresponds to very low frequencies 
and wave vectors, or to the same geometry in which the pin- 
ning of the layers to the walls of the vessel in which the 
sample is located is important. In addition, boundary condi- 
tions on the free surface of the liquid crystal were chosen in 
Refs. 2 and 3 in a form which corresponds to a fixed, immov- 
able structure of the layers near the surface, in which case the 
upper layer does not coincide with the surface itself. Thus, 
the boundary conditions are written down in principle for a 
liquid and do not take into account the elastic properties of 
smectic A .  Such an assumption does not appear to be well 
substantiated, the more so in the case in which the permea- 
tion effects are not important. 

In connection with what has been said above, it would 
be useful to consider surface waves with account of viscosity 
in the case in which the permeation efects do not make the 
principal contribution, i.e., the geometry of the sample is 
such that the effects of pinning of the layers to the wall are 
not important (a sufficiently long sample), while the frequen- 
cies and the wave vectors are sufficiently large. 

We consider smectic A which occupies the half-space 
z < 0 in a geometry in which thez axis is perpendicular to the 

layers. Its free energy as a function of the derivatives of the 
displacement of the layers u(r) is the following: 

where F,, is the free energy of the undistorted state, the sec- 
ond term describes the elastic energy of compression of the 
layers, and the third, the energy of the lateral flexure. The 
equations of hydrodynamics for an incompressible smectic 
are written as follows5: 

div v=O, 
pzii=-p,r+qti, j+gGiz, 

6-vz=vg. 

Here Y is the permeation coefficient, qU the viscous stress 
tensor, which has the form 

wherep, is the coefficient of viscosity. The restoring force g 
actng on the layer along a direction normal to it is obtained 
from (1) in the form 

We shall seek a solution of Eqs. (2) in the form of a 
surface wave propagating in the x direction and damped in 
the interior of the sample. As usual, we represent the varia- 
bles entering into the hydrodynamic equations in the follow- 
ing form; 

The symbol I with positive real part corresponds to a wave 
that is damped out as z-+ - m. 

It is easy to see from (2) that the effects of permeation 
will be unimportant at ~ ~ v B q ~ ( 1  - A 2q2), where A = (k / 
B )'I2 is a characteristic length. In this case, to the study of 
which we limit ourselves, the third equation of the system (2) 
has the form u = v, and means that the molecules of the 
smectic move together with the layers. 

Sustitution of (5) in (2) leads to a biquadratic equation 
for I, the solution of which is 
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The boundary conditions on the free surface, which the solu- 
tion must satisfy, have the following form in our case: at 
z=g, 

while at z = 0, 

Here tU are the components of the stress tensor, g is the 
vertical displacement of the surface, a is the coefficient of 
surface tension. We represent the velocity, pressure and dis- 
placement in the following form 

i dv, uz " =-- u=- 
q dz' io ' 

where the coefficients Cl and C2 must satisfy the boundary 
conditions (7). We substitute (8) in (7) and obtain 

The condition of solvability of this system gives the disper- 
sion equation 

where I , ,  are determined by Eq. (6) (we recall that we should 
keep only those values of I with positive real part). The solu- 
tion (10) corresponding to the case q < ap/p12 is not of inter- 
est, since here C, = - C2 and, consequently, all the quanti- 
ties in (8) are identically equal to zero. 

We now investigate the expression in the square brack- 
ets in (10). Its analysis (which, although not complicated, is 
rather tedious) allows us to obtain the form of the possible 
modes in a number of regions of values of the wave vectors. 

The complete solution of the dispersion equation can only be 
found numerically, as a function of the parameters of the 
problem. 

We shall give the final results only for the extreme cases, 
in which the propagating modes were predicted by the auth- 
ors of Ref. 1. 

a) At q > B /a two solutions satisfy the dispersion equa- 
tion (10). One, under the additional condition q >ap/p12 
represents a propagating capillary wave w2 = aq3/p, similar 
to that found in Ref. 1, while the other, at q>ap/p12, is a 
damped wave and has the forn w = iaq/pl. 

b) At q < B /a the solution of the dispersion equation 
satisfying the boundary conditions is the propagating mode 
a2 = Bq2, which is similar to that found in Ref. 1. However, 
even in this case, there is the additional condition 
4 < (BP)"~/P,. 

Thus, account of the viscosity imposes additional limi- 
tations on the region of wave vectors that are characteristic 
for the existence of the propagating modes. These limita- 
tions, as will be seen below, can be very important. In the 
case in which the smectic A is located far away from the 
transition point to a nematic liquid crystal, the typical values 
of the parameters are the following: 

B- lo6 dyn/cm2, a- 10' dyn/cm, p, - 10 dyn.s/cm2, p -  1 
g/cm3. 

Then 

It is seen from the above expressions that the capillary waves 
corresponding to case a) do not exist under such conditions. 
So far as the surface mode corresponding to case b) is con- 
cerned, its wavelength will be too long (of the order of 0.1 
cm), and thus it cannot be observed experimentally by light 
scattering, which is customarily used for the observation of 
surface waves. 

The situation can be changed in the region of the smec- 
tic A -nematic transition, since the elastic modulus B de- 
creases in this case and vanishes at the transition point. De- 
pending on the temperature behavior of a and p ,, regions of 
existence of propagating surface waves can arise. Therefore, 
the experimental investigation of surface waves near the 
transition point is of interest, since it will give additional 
information on the temperature dependences of the charac- 
teristic parameters. 

The authors thank E. I. Kats for useful discussions. 

'J. D. Parsons and C. F. Hayes, Phys. Rev. A10, 2341 (1974). 
'A. Rapini, These de doctorate d'Etat, Orsay, No. 1361. 
3A. Rapini, Canad. J. Phys. 53, 968 (1974). 
4D. J. Langevin, J. de Phys. 37, 737 (1976). 
5P. C. Martin, 0. Parodi and P. S. Pershan, Phys. Rev. A6, 2401 (1972). 

Translated by R. T. Beyer 

933 Sov. Phys. JETP 58 (5), November 1983 V. G. Kamenskl 933 


