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Effects produced by long-wave fluctuations in systems of hydrodynamic type are considered. A 
generating functional is derived, and can be used to formulate a diagram technique with which to 
take into account higher orders in the interaction between fluctuations. It  is shown that to the 
second order of perturbation theory the diagram technique is equivalent to the kinetic equation 
for the distribution function of the fluctuations. Corrections to the speed of sound in nematic 
liquid crystals are calculated as an illustration of the method. 

PACS numbers: 47.10. + g, 43.35.Bf 

INTRODUCTION have the form 

During recent years the problem of interaction between 
long-wave (hydrodynamic) fluctuations has been the subject 
of intensive investigations. There exists an extensive litera- 
ture devoted to this subject. In Refs. 1-3 corrections to the 
equations of hydrodynamics were considered for different 
systems, making use of the method of kinetic equations for 
the determination of the distribution of fluctuation in non- 
equilibrium situations produced by hydrodynamic motions. 
Corrections arise from taking into account terms of third 
order in the expansion of the entropy in terms of the fluctuat- 
ing variables; these terms describe the interaction between 
the fluctuations. It was found that the corrections have a 
nonlocal character, and their magnitude'at low frequencies 
exceeds that of the Barnett terms. 

However, in a number of cases the method of kinetic 
equations turns out to be essentially useless. This happens in 
those cases when the interaction between the fluctuations 
produces essential modifications of the macroscopic equa- 
tions of the system, such as, for instance, near the points of 
second-order phase  transition^,^.' or in two-dimensional sys- 
t em~ . "~  Taking this interaction into account requires that 
an adequate method be constructed for the calculation of 
higher-order effects. The authors have developed such a 
method, based on a representation of the correlators in the 
form of path integrals, and allowing one to formulate a stan- 
dard Feynman diagram technique. A preliminary communi- 
cation about this method was published as Ref. 9. 

In the present paper we describe this method and show 
that for three-dimensional systems the kinetic equations 
method and the second-order corrections of perturbation 
theory coincide. As an illustration of the method we have 
derived the corrections to the speed of sound in nematic liq- 
uid crystals. As will be seen, the main contribution to the 
correction come from modes which exhibit minimal damp- 
ing; in a nematic such modes are the oscillations of the direc- 
tor. 

The first two terms in the right-hand side of Eq. (1) are the 
standard hydrodynamic reactive (Fa ) and dissipative terms; 
the third term in the right-hand side of Eq. (1) are random 
forces. It is tacitly assumed in Eq. (1) and in the sequel that if 
a quantity is labeled by an index it also depends on the corre- 
sponding spatial variable r; summation over repeated indices 
and integration over the corresponding spatial variable are 
implied. Accordingly, the symbol Sab denotes a product of 
the Kronecker delta in the subscripts a, b and a Dirac delta in 
the difference of the appropriate spatial coordinates. 

The reactive terms Fa in the right-hand side of Eq. (1) 
are entropy-conserving, thus leading to the identity 

(6SIdcp.) Fa=O. (2) 
By differentiating this equation twice and thrice with respect 
to q, we obtain the following identities (where the superscript 
denotes functional differentiation with respect to pa ): 

YdFbd+ Ybd;6d=O, (3) 

Y d b d C f  YbdF,dC+ YodoFad+ YbdCF,d- Y,~dFdC+~dYaiY~~Fdfh=o.  

(4) 
Here 

YadSdb=6,b. ( 5 )  

In the expressions (3), (4) we have omitted terms which are 
linear in Fa and S" , since at equilibrium these terms vanish. 

The dissipative terms in the right-hand side of Eq. (1) 
must lead to the law of increase of entropy. Thus y,, is a 
positive definite integral kernel, which must be symmetric 
on account of the Onsager reciprocity theorem. The proper- 
ties permit the following representation: 

'h 'la 
yub=7oa y b d  - (6) 

The random forces in the right-hand side of Eq. (1) can be 
represented in the following form: 

'h 

1. THE DIAGRAM TECHNIQUE fa=-yabEb. (7) 

The correlator (correlation function) for the quantities 6 has Let pa (t,r) be a set of quantities which characterize the 
long-wave degrees of freedom of the system. An essential the following form: 

characteristic of the system is the entropy functional S de- (E. ( t )  E a  (t')  ) =26 (t-t') 6.b. (8) - - 
pending on these quantities. The equations of motion for q, By a standard reasoning one can show (see, e.g., Ref. 10) that 
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such a form of the correlator (8) leads to the following 
Fokker-Planck equation for the distribution function W: 

As can be seen from Eq. (9) and the identity (2), the distribu- 
tion function relaxes to the equilibrium value 

Wmes. 
The factor in front of this expression will depend on the 
choice of the variables e, and becomes a constant when the 
reactive forces preserve phase volume 

Fa0=0. 

The physical properties of the system are determined by 
the correlators of the quantities e, which can be determined 
by averaging over the "microcanonical" ensemble 

a 6 + F ~ - ~ ~ . S . +  f a )  det [6." - -(Fa-yaS'+fa) 1. 
at 69b 

Here the delta function and the determinant are to be under- 
stood in the functional sense; the argument of the delta func- 
tion contains Eq. (1) and the determinant guarantees the nor- 
malization of the distribution. We further transform this 
distribution by a method which is close to that of Ref. 1 1. We 
raise the delta function into an exponential making use of the 
auxiliary variables pa and express the determinant in terms 
of a path integral over the fermion fields $a and v. As a 
result of this the probability density fore, can be obtained by 
path integration with respect to the variables p, $, and of 
the following distribution function: 

In the sequel we shall make use of correlators of various 
quantities which occur in Eq. (10). We average Eq. (10) over 
the random forces by integrating with respect to 6 with the 
weight corresponding to Eq. (8): 

1 
exp (- J d t ~ . ~ . )  . 

The distribution function obtained after averaging over 5 
allows one to obtain in the standard mannerl2,l3 the generat- 
ing functional for the correlators 

- - Dcp Dp D$ D$ exp [ i  I dt ( L + P ~ + ~ . ~ ~ + P Q + ~ v ~ )  ] . 
(11) 

The Lagrangian in Eq. (1 1) has the following form: 

Here 

P.=Fa-yaasb+iyabpb. (I31 

Expanding the Lagrangian (12) we obtain to second and 
third orders, respectively 

L'2 '=- ipaB."~-~B~$b+iPaTabPbr  (14) 

L(3)=-t12ipa (VlabC+ VZDIC+VZoeb) ( p b ( p c + i p a ~ ~ b p b T e  

Here 

B:=i (6,"dlBt+F,b-y,,S"b). (16) 
The vertices in Eq. (1 5) have the form 

V1obc=i (F.)c-yadSdbc), 

Starting with Eqs. (14) and (15) one may use the standard 
Feynman diagram technique for the construction of pertur- 
bation theory which takes into account the ternary interac- 
tion. 

We now introduce the Green's functions which are the 
pair correlators defined by the generating functional (1 1); 

The last equality can be verified starting from the structure 
of the generating functional (1 1) with the Lagrangian ( 12), or 
directly, from the distribution function (lo), i.e., before aver- 
aging over the random fields (the white noise 6 ); this equality 
follows from the fact that in the expansion of the argument of 
the exponential in Eq. (10) the coefficients ofpa e,,e,, . . - e,, 
agree, up to a factor, with the coefficients of @' $, e,, . . e,, . 

The function D is the pair correlator of observable 
quantities, the function G determines the linear response of 
the system to the quantity y, which, as can be seen from Eqs. 
(12), (1 3), plays the role of an external force for the quantities 
e,. Thus, the poles of G (w) define the eigenvalue spectrum of 
the linear modes of the system. As follows from the structure 
of the quadratic Lagrangian (14), to the zeroth approxima- 
tion 

D::' ( t - t J )  =2 d t " ~ : ~ ' ~  (t-t") y c d ~ ~ o ' d  (1'-t"). 

All other pair correlators vanish in this approximation. Tak- 
ing into account Eq. (19) and the identity (3) one can verify 
the following relation 

D::' ( t - t l )  = i ~ ? ) '  ( t - t ' )  ~ , b + i ~ , . ~ b ( ~ ) ~  ( t f - t ) .  (20) 
In diagram language this yields the equality represented in 
Fig. 1. Here the dashed line represents the D function, the 

FIG. 1. 
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solid line the G function, and the black oval the function 
- iY. 

Starting with the structure of the expression (10) one 
can show that the correlators which contain only powers ofp 
vanish (this circumstance cannot change on averaging over 
f ). Indeed, when calculating the correlators which do not 
contain $and $we can integrate the function Wwith respect 
to these variables, which yields a determinant corresponding 
exactly to the transition from the variables pa to the varia- 
bles dpa /dt + Fa + yabSb +fa.  Integrating the distribu- 
tion function so obtained over the latter variables, we obtain 

J D (2 + F.-;.~P+~) erp [ ipa( + F . - - Y . ~ . S ~ + ~ ~ ) ]  

From this follows directly the assertion we made that the 
correlators involving only powers ofp vanish. This leads to 
the result that the self-energy function of the p-q, type also 
vanishes, since it enters into the diagram in Fig. 2 for the 
( pp) correlator. 

Thus, the corrections to the function G are expressed by 
the diagram of Fig. 3, with the rectangle depicting the self- 
energy function which in the sequel shall be denoted by 8. 

2. THE SECOND ORDER OF PERTURBATION THEORY 

We now enumerate all second-order diagrams contrib- 
uting to 8. The diagram represented in Fig. 4 yields the re- 
normalization of the constants, and this renormalization 
must be included in the redefinition of the original param- 
eters. The diagram depictedjn Fig. 5 cancels out a similar 
diagram with a fermion line on account of Eqs. (1 5) and (1 8). 
Consequently, to second order in the interaction, for 8 one 
must only consider the diagrams of Fig. 6, where we must 
substitute as vertices the expressions (16) for V,, V,, and V3 
which we denote by black, white-black and white triangles, 
respectively. 
The function G (w) has poles only in the lower half-plane, 
since in the second diagram of Fig. 6 one must consider only 
the first term on the right-hand side of Eq. (20) in the expres- 
sion for D. 

The expression (17) shows that the diagram equality 
represented in Fig. 7 is valid. Thus, the diagrams of Fig. 8 
cancel identically (here the small black disk denotes the sum 

v: + vz + Vk). 
We now consider the diagram represented in Fig. 9. 

Owing to the symmetry of the left vertex, the vertex V, on the 
right enters in this expression in the combination 

The last equality was obtained taking into account the iden- 
tity (4). The first two terms in the right-hand side of Eq. (21) 
yield a zero contribution to 8 ,  since they contain the matri- 
ces B, which, when contracted with the corresponding G- 
functions, yield unity. Thus, the integrands produced by 
these terms contain no singularities on one side of the real 
axis, and the integral over the frequencies vanishes. On the 
mass shell the contribution of the last term contains an extra 
power of the frequency; the dissipative part of the left vertex 
in this diagram also has an extra power of the frequency. 
Therefore, all that was said leads to the result that to lowest 
order in the frequency of the oscillations one needs to take 
into account only the third term in Eq. (21), and substitute 
the reactive part of V, for the vertices. Consequently we ob- 
tain the following expression for the quantity 8 (w, k ): 

The result obtained by computing this expression agrees 
with the results obtained by means of the kinetic equation. 

3. THE NONLINEAR HYDRODYNAMIC EQUATIONS OF 
NEMATICS 

The nonlinear equations of the hydrodynamics of ne- 
matic liquid crystals have been derived in Ref. 14. We utilize 
the final form of these equations, omitting the auxiliary an- 
gular-momentum-density variable which was introduced in 
Ref. 14. 

The quantities which characterize the hydrodynamics 
of a nematic are: the mass densityp, the energy density E, the 
momentum density g, and the director n. Representing the 
entropy functional S i n  the form 

with s(r) the entropy density, the differential of the entropy 
density can be represented in the form 

TdsadE-pdp-vdg+hddni- Vk((9ktn0.  (23) 

Here T is the temperature, p is the chemical potential, and v 
is the velocity. On account of the identity n dn = 0, the 

FIG. 3. 
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relation (23) determines only the part of h which is orthogo- 
nal to n, and we will therefore assume that the longitudinal 
part of h vanishes. The pressure P is now defined as follows 

P=pp+Ts+vg-E. (24) 

The nonlinear hydrodynamics equations for nematics have 
the following form 

<3b FIG. 8. 

Here r ]  are the viscosity coefficients and K are the heat con- 
duction coefficients. We note that by reducing the equations 
to the form (1) we will obtain an operator y containing, ac- 
cording to Eq. (23), the quantities r]T, KT, and T/y,. All the 
viscosity coefficients r ] ,  have the same order of magnitude 
and the coefficient y, in Eq. (30) is of the same order and has 
the dimension of viscosity. We introduce the dimensionless 
parameters 

b,=yi lql ,  b.=qalql (a=2,  3, 4, 5 ) .  (31) 

In order to determine the quantities hi and Qik we use 
the expression of the energy density E as a function ofp, g, s, 
and n: 

E=gZ/2p+& (p ,  S )  +EF. (32) 
\ - -  , 

dn Here E is the internal energy and EF is the Frank energy 
-2 + vk~,ne+'lznk(Vi~k-Vkvi)  
dt related to the inhomogeneity of the director field. 

Starting from Eqs. (23) and (32) we obtain 
-I/,), (&,-ninm) n,(VnVm+Vmvn) =dRIahi. 

. (33) 
Here il is a reactive parameter and R is the dissipative func- 
tion. The reactive stress tensor and energy-flux density are, The Frank energy is not uniquely determined. In particular, 
respectively one may always add to it the divergence of some quantity. As 

-I-'/, (n,  ( h v )  -hi ( n v )  +Ani (hv) +Ahi ( n v )  ) . (27) 

The invariance of the entropy with respect to spatial rota- 
tions allows one to reduce the divergence of (26) to the diver- 
gence of a symmetric tensor 

Taking account of the identity (23), the system of equations 
(25) yields the following equation for the entropy density: 

will be shown below, we shall be interested in vertices of the 
type pVn Vn. Therefore, neglecting terms of the type 
n, VkhTini we can write the Frank energy in the quadratic 
approximation in the form 

E,='/,N, ViniVknk+'/,NzV inkVink+'/,N,ninkVinmVknm. (34) 

This expression corresponds to the standard form15 with the 
Frank coefficients: 

K,=N,+Nz, Ka=Nz, K3=Ns+Nz. 
We introduce the following notations: 

a ,=N, /N , ,  a3=N,/N,. (35) 
We shall assume that at equilibrium the director is 

along the third axis and choose as two independent variables 
describing its oscillations the components n, and n, which 
vanish at equilibrium. The set of variables entering into the 
Lagrangian will be denoted by p, , pp , pi ,  and &-they are 
the deviations from the corresponding equilibrium values 
(the variablesp have the appropriate indices too). Here and 
in the sequel Latin indices always take on the values 1, 2, 3 
and   reek indices run from 1 to 2. 

The dissipative function R which occurs in (25) and (29) has An analysis of the linearized equations (25) shows that 
the following expression in the quadratic approximation in the following modes are possible in a nematic: a sound 

R = ~ ~ ~ , ~ V ~ V ~ , +  l / Z ~ i k V t T V h T +  h,hZ/2yl, (30) mode (two eigenvalues o = * ck ), a thermal mode, and four 

where diffusion modes, which, if one neglects a small mixing, are 
respectively the diffusion of the transverse velocity and the 

V,k='/z (V,vk+Vkv,)  ~ ~ k = ~ o 6 t k + ~ l ~ i ~ k ,  diffusion of the director oscillations. 

~nm=q16,~6km+~z6,R6,m+qs6ikn,nm+ qdtnnknmf q5nin~nnnm. In the case of sound propagation its velocity must sa- 
tisfy the inequality o>r, k 2, where r, zr]/p is the sound 

FIG. 7. 
-=- FIG. 9. 
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damping coefficient. Consequently we have the inequality 
a ,=qo/pc2<l .  +. l E)p8, 

k ,  
We restrict ourselves to calculating the corrections to order 
zero in the small parameter a,. 

Making use of Eqs. (25) we can now write down the 1 k  1 -k2 
original Lagrangian for nematic liquid crystals, restricting 
ourselves to terms of the second and third order. We carry 

( ",:) =x,( ;) @'+k,( k ,  )"' 
out the following linear transformation: 

and the appropriate transformations forp, guaranteeing that 
Tp2 z PT0 1 ( ~ ~ = - ( ~ ~ - 8 z ) @ 1 + - - ; - g 2 ,  c p p = - ~ @ i + ? q 2 ,  the determinant of the transformations is unity. Here 
c4 C 

Z=To+p, 0= (d In T/d  ln p) ,, s=op, c2= (dpldp) , ,  

and c is the speed of sound. In the new variables the matrix B 
decomposes into two blocks. The first block B ' for the varia- 
bles 1-5 has the form 

Here modes. The matrix B describes two diffusion modes. Each 

k,"L 
of the matrices B ' and B has one eigenvalue with an imagi- 

kaZ ks k ,  + - i= ( q 3 + q 4 )  + 295 - k4 ' 
nary part much smaller than the imaginary parts of the other 

k- modes. These eigenvalues are 

where 

kS2 
d,=l+a,+ (a3-a,)  - k2 The eigenvectors corresponding to these diffusion modes 

describe oscillations of the director. In the first case the os- 
The second block B for the variables 6-7 has the form cillations are in @,, and in the second case in @,. This is true 

h+l I in the zeroth approximation in the parameter a, = N, p/v: I o+ir,k2 - ksN2k2dz 
2~ z 10-2g1. 

where 

4. CALCULATION OF THE CORRECTIONS 

In order to determine B we must go over from the B 
matrix to the G matrix. The latter can be represented in the 
form 

1 1 ksZ k,2 
= - ( q  + q ) , d2= l+as - 

P k2 
(38) 

bb(w. )&(wc)  (a, b, c - 1 ~ 2 , .  . . ,7). (41) 
w-w 

The matrix B ' has five eigenvalues and five eigenvec- U)c 

tors: a sound mode'(two eigenvalues) and three diffusion where w, are the eigenvalues for the right eigenvector a(w,) 
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and the left eigenvector b(w, ) of the matrix B. The contribu- 
tion of each mode to the self-energy function and thus to the 
dispersion of sound is the larger, the smaller the damping of 
the mode is (this contribution is inversely proportional to 
r 3 I 2 ,  where r is the damping of the mode). Therefore in a 
nematic one must take into account only the modes a, and 
w, (39), which are damped by a factor of about 10' less than 
the other modes. Consequently, taking into account only 
these two weakly damped modes, we can represent the ma- 
trix G in the form 

As already noted, in zeroth order in the parameter a, the 
eigenvectors a, and a, describe the oscillations of the direc- 
tor. Therefore, starting with an analysis of the vertices, we 
also see that in zeroth order in the parameters a, and a, the 
contribution to the corrections to the spectrum of sound os- - - - - 
cillations come only from the vertex types j,q,,q,,, j,q,,q,,, 
andj,g$,; this also means that it is necessary to calculate 
only the matrix element 8,,. In the terminology of Refs. 1-3 
this means that there are fluctuation corrections only to the 
stress tensor. 

It is convenient to express the vertices which make a 
substantial contribution in terms of the variables@, and q,:, 
or, denoting q, = n, and q, ; = n,, we obtain 

k k  koks 
+N,V,n,V,n.) + (NIV,n.Vonp+NzVonaV~) - 

k k 

where 

We can now go over to a calculation of the self-energy 
function according to (22). Leaving out the lengthy calcula- 
tions, we find 

1 i+l T q Y* 
I 

, k - - 2 )  w%k2S dxf (x), 
16n 13 p Na 

-I 
(441 

fs (x) =etal (I-x2) +0z+f33asx2, 

where the notation for the parameters correspond to the ex- 
pressions (31), (35), (37), (38), and (40). The dependence of 
H (w, k ) on the frequency turns out to be the same as for the 
systems which were considered before in Refs. 1-3. 

For sound oscillations the correction to the spectrum 
w = ck - ir, k necessitated by H,, has the form 

6a=-'/,ZsS (ck, k) . (45) 

To estimate the self-energy function we make use of the fol- 
lowing relation 

As can be seen from the final formula (44) the quantity 8,, 
has a complicated dependence on the angles, but this depen- 
dence is smooth, and the order of magnitude of H,, is the 
same in all directions. 

The real part of the sound oscillation spectrum must be 
much larger than its imaginary part, yielding the inequality 
w + ~ ' / ~ , .  Therefore we obtain the following inequality for 
the magnitude of the relative correction to the speed of 
sound 

Making use of the numerical values for MBBA,bne can 
determine S~/c410-~-10-~.  The corrections turn out to be 
negligible. However near the point of transition of the nema- 
tic into an isotropic liquid one can expect the Frank con- 
stants to decrease, on account of their strong temperature 
dependence (since this is a weak first-order transition). This 
may lead to a growth of the fluctuations and since the correc- 
tions are proportional to N -,I2, also to a considerable 
growth of the dispersion of the sound velocity and of the 
sound damping. 
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