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We study the dispersion equation for plasma waves in a one-dimensional and in a three-dimen- 
sional relativistic plasma. We show that apart from the Langmuir oscillations in one-dimensional 
non-isothermal and isothermal plasmas yet another form of plasma oscillations is possible with a 
dispersion law which is similar to that of ion-sound oscillations. 

PACS numbers: 52.35. - g, 52.60. + h 

Recently interest has been shown in theoretical studies 
of high-frequency oscillations in a high-temperature plasma 
with a temperature T of the order of or larger than the elec- 
tron rest mass energy me cZ. This interest is caused, firstly, 
by the problem of the radio-emission by pulsars, since ac- 
cording to present-day ideas the pulsar atmosphere consists 
of a relativistic electron-positron plasma1; secondly, by the 
progress in experimental plasma physics. Among the most 
fundamental papers in this direction we must mention that 
by SilinZ in which the dispersion was found for plasma waves 
with phase velocities larger than the velocity of light, and the 
paper by MikhaYlovskii3 in which the dispersion and damp- 
ing rate of plasma waves was studied in the w/k-c region. 
Using the results by Silin and Mikhailovskii we show in the 
present paper that in a relativistic one-dimensional plasma 
yet another form of plasma oscillations is possible with a 
dispersion law similar to the dispersion of ion-sound oscilla- 
tions in a nonrelativistic p l a ~ m a . ~  

We consider the dispersion equation for longitudinal 
plasma waves propagating along the x axis in a free plasma 
(see, e.g., Ref. 1): 

where k, is the four-dimensional wave vector, u, the veloc- 
ity 4-vector, f, the uperturbed velocity distribution function 
of the plasma particles, and L a Landau contour; the summa- 
tion is over kinds of particle (electrons and ions). 

We shall assume the plasma to be one-dimensional with 
a thermal velocity spread along the x axis. Such a distribu- 
tion is realized when there is a strong external magnetic field 
present; in that case the dispersion equation for longitudinal 
waves propagating along the field will have the form We 
choose the velocity distribution for the plasma particles in 
the form of a relativistic Maxwell distribution so that 

fo=n [exp (-tauo) /2Ki (a)]  6 (4 6 (ur) ,  (2) 
wherea = mc2/T, n the particle number density, and Kl(a) a 
Macdonald function. Substituting (2) in (1) and introducing a 
new integration variable u, we can easily transform (1) into 

aazop2 
2k2c2K, (a)  + 

where a = kc/(k 'cZ - w ~ ) " ~ ,  0 (x) is the Heaviside function, 
and wi = 4rezn/m the plasma frequency. 

Furthermore, using the obvious identity 

we change the order of integration in (3) and taking into 
account the representation for the zeroth order Macdonald 
function: 

OD 

KO ( x )  = J e-=.o (uo2- I )  - Ih  duo, 
i 

we find for the dispersion equation 

a2- I 
2k2c2K, ( a )  

where 

In the ultrarelativistic temperature limit (a g 1) and us- 
ing the expansion of the Macdonald function for small val- 
ues of its argument6: 

KO ( I )  =-ln (112) -C+. . . (6) 
(Cis the Euler constant) we find for (5) 

1 
- - [ E ,  ( a a )  +ln 2a+ 

a 

where El(aa) is an integral exponential function of a com- 
plex a r g ~ m e n t . ~  

The dispersion equation for a plasma with a Maxwel- 
lian particle velocity distribution admits thus in the ultra- 
relativistic temperature limit ( T  > mc2) of a representation 
in terms of the well known special function El(z), while in the 
nonrelativistic temperature limit ( T  g mc2) the dispersion 
equation can be expressed in terms of the probability integral 
of complex argument. - 

x(u,Z-I)-"' du0+in0 (-Im o)B(--Re @+kc) (a2-1)'"e-"" We consider now waves with phase velocities close to 
the velocity of light, for which la > 1. In that case the func- 

=0, (3) tion (7) takes the form 
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1 ( a )  =- [El  ( z )  eZ+ln ( a / 2 )  +C] la, (8) 

where z  = aa.  Substituting (8) into (4) we find in the limits 
a &  l and  la1 > 1 

where 
Y ( z )  =zEi ( - z )  e-'-zEi ( 2 )  ez 

+2+i2n0 (-Im o )  0 ( -Re  o+kc)ze-'.  

(10) 
We can get from Eq. (9) as special limiting cases the 

approximate formulae of Silin and Mikhailovskil for a one- 
dimensional relativistic plasma with la 1 > 1. Indeed, using 
the expansions of the integral exponential function for large 
and small values of its argument6: 

E, (z)=-C-ln z+. . ., I z l e i ,  

we have for the function (10) 

Y ( z )  =l+112inz0(-Re o + k c ) ,  I zl < I ,  (1 1) 
Y (z)=-4/z2+2in0(-Im w)B ( -Re  o+kc)ze-',  1 z1 >I, 

(12) 
and substitution of (1 1)  and (12) into (9) leads to the disper- 
sion formulae for a one-dimensional plasma with w - kc in 
the Silin and Mikhailovskil approximation. 

We now study the question of the existence of plasma 
waves in the region 

kZcz< (op2/a) is  .. (13) 
In that case we get, neglecting unity in (9), the equation 

TtY (z , )  +T,Y (21) =O. ( 14) 

The question of the existence of plasma waves in the region 
(13) reduces thus to the problem of the existence of roots of 
the transcendental equation (14). 

We consider a non-isothermal plasma with an electron 
temperature much higher than the ion temperature: 
T, ) q.. In that case, Eq. (14) takes the form 

+i2n0 (-Im o)  0 (-Re o + k c )  zi exp ( - z i )  =0, (15) 

if I z ,  I & 1 and Izi I > 1, and if we use ( 1  1)  and (12). Introduc- 
ing the notation 

zi=x+iy, (16) 

and make the assumption that ly( 4 1x1 we get the solution 

x=2 (T, /Ti)  Ih, (17) 

The expression within the braces in (18) must, according to 
the assumptions we have made, be much less than unity. 

Using the notation we introduced for zj  = ajkc/  
(k 'c' - we have for the real frequency w' = Re w and 

the damping rate y = Im w of the plasma waves 

y=ai2 x y  kc. 
(x2+ y8)  

Substituting Eqs. (17) and (18) into (19) and (20) we find 

The solution obtained satisfies all assumptions made 
above and exists also in a one-dimensional non-isothermal 
electron-positron plasma. 

An interesting feature of a relativistic one-dimensional 
plasma is the possibility of the existence in it of plasma oscil- 
lations of the form (19) in the region ( 1  3) also for the isother- 
mal case when T, = Ti .7 Indeed, let us consider an electron- 
positron plasma when me = mi.  In that case Eq. (14) 
becomes 

?€' (2 . )  =o. (23) 
Using the tables6 for E,(z) for a numerical analysis of Eq. (10) 
we found that Eq. (23) has at least one complex root 

z,=z+iy=7.467-7,092i. (24) 

Substituting (24) into Eqs. (19) and (20) we have for the fre- 
quency and the damping rate of the plasma waves 

o = k c  (1-0,243- 10-3a.2), (25) 

y=-4.71- 10-3a,2kc. (26) 

The solution (25), (26) will be valid also for an isother- 
mal one-dimensional relativistic electron-ion plasma with 
mi > me.  To check this we note that zi = zemi/me > z,  
and hence that we can neglect in Eq. (14), according to (12), 
the ion terms. The dispersion equation for a relativistic elec- 
tron-ion plasma with heavy ions will thus be the same as (23) 
in the region ( 1  3) and have the solution (25), (26). 

We note that the initial Eq. (1 )  was obtained neglecting 
completely collisions (correlations) between the particles, 
the effect of which will be important for small wave vectors.' 

We consider the propagation of plasma waves in a 
three-dimensional plasma with a Maxwellian particle veloc- 
ity distribution: 

fo=na exp ( - a u o ) / 4 n K ~  (ma). (27) 

Substituting (27) into ( 1 )  and performing the same calcula- 
tions which led to Eq. (4) we get 

According to (28), at la1 5 1 Eq. (28) is the same as Silin's 
dispersion equation which does not contain solutions differ- 

923 Sov. Phys. JETP 58 (5), November 1983 P. A. Polyakov 923 



ent from the Langmuir branch.' For Ja 1 > 1 we find 

where 

g(z) = (I-z+z2/2) E,  (z) ez+ (l+z+zz/2) El (-z) e-'. (30) 

Using the asymptotic formulae for the function E,(z) 
one easily checks that in the region k2c2 ( ~ i a  does not 
have any solutions either when T, ) TI or when T, = Ti ,  
i.e., in an isotropic relativistic plasma there cannot exist in 
the region considered oscillations of the form (19). The vibra- 
tional properties of a relativistic plasma depend thus in an 
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essential way on the anisotropy of the distribution function 
in velocity space. 
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