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We propose a new method for analyzing the dynamics of rays in waveguide media with arbitrary 
transverse cross-section shapes. It is based upon ideas about the existence and destruction of 
invariant tori in Hamiltonian particle mechanics. The main feature of the method is the absence of 
a connection with the coordinate system of separable coordinates. We consider the effect of 
nonlinear resonance between the different degrees of freedom of the ray and the ray stochastiza- 
tion by the interaction of the resonances. We obtain constraints on the transverse dimensions of 
the waveguide channel and on the distance over which the wave front can propagate without 
being appreciably distorted. 

PACS numbers: 42.20.Cc, 42.80.Lt 

1. INTRODUCTION 

The problem of extra long range propagation of waves 
in the ocean' or the ionosphere2 leads to new features in the 
problem of waves in inhomogeneous media. The most char- 
acteristic of these features is the possibility of the build-up of 
small perturbations when the waves propagate over long dis- 
tances even when one can neglect the effect of the random 
inhomogeneities in the medium. 

One may mention as typical examples of inhomogene- 
ities of waveguide media the inhomogeneities along the axis 
of propagation of the wave or inhomogeneities in the trans- 
verse cross section of the waveguide channel. 

The standard form of studying such problems is usually 
connected either with perturbation theory in some form or 
with using adiabatic  method^.^ The central role is then 
played by the ability to separate the variables of the problem 
at least in zeroth approximation. The assumption that the 
problem is close to that with separable variables is very 
strong and limits in an essential way the region of applicabi- 
lity of the theoretical considerations. 

New possibilities for the study of wave propagation in 
inhomogeneous media appear thanks to the application of 
contemporary methods of nonlinear dynamics which do not 
use the separability of the variables. In Ref. 3, in particular, 
it was shown that a phenomenon such as nonlinear "reso- 
nance" between the spatial oscillations of the inhomogeneity 
and the oscillations of the ray trajectory may occur in a me- 
dium with a periodic longitudinal inhomogeneity. This 
phenomenon leads not only to modulated oscillations of the 
speed of the wave propagation, but also to the possibility that 
there occurs a stochastic ray-trajectory instability leading to 
its emission of the ray from the region of the waveguide 
channel. It was shown, in part i~ular ,~ that such a pheno- 
menon can lead to limitations on the extra-long-range com- 
munication in the ionosphere due to the diurnal temperature 
oscillations of the waveguide layer. 

We consider in the present paper another, not less im- 
portant, case of transverse inhomogeneity of the waveguide 
medium, without assuming separability of the variables. 
Methods from nonlinear particle dynamics which are used 

in what follows enable us to obtain new results along the 
following way. Firstly, one can, as in Ref. 3, establish a cor- 
respondence between the oscillations of the ray in the medi- 
um and the particle oscillations in a certain effective two- 
dimensional potential well. Secondly, under well defined 
conditions one can obtain a slow spatial modulation of the 
ray oscillations by nonlinear resonance between various in- 
ternal degrees of freedom of the ray. Finally and thirdly, one 
can indicate such conditions on the shape of the transverse 
cross section of the waveguide channel that if they are satis- 
fied the ray trajectory becomes diffusive even though there 
are no random forces or random inhomogeneities. This case 
turns out to be very important for applications, as its realiza- 
tion is accompanied by a maximally strong defocusing of the 
ray and by loss of its spatial coherence properties. We note 
that the occurrence of chaotic ray dynamics also leads to a 
chaotic deformation of the wave phase front. 

2. INTERNAL NONLINEAR RESONANCE OF RAYS 

Let the waveguide medium in which a ray propagates 
along the z axis be characterized by the refractive index n(r), 
where r = (x,y). To describe the ray trajectory we use a Ha- 
miltonian f~rmal i sm.~  The equation for the ray trajectory 
has the form 

d p -  dH dr aH ---- -=- 
dz ar ' dz a p  ' (2.1) 

where the Hamilton function is equal to 
H=H(r ,  p) =- [ n 2 ( r )  -pZ]'", (2.2) 

while the momentum p is equal to 
p=n (;)*/ ( I  f 2)  'Is, ;=dr/dz. 

The vector (p, ,p,, - H) is directed along the tangent to 
the ray trajectory. We draw attention to the fact that Eq. 
(2.2) does not depend explictly onz (i.e., there is no longitudi- 
nal inhomogeneity), and the entire individuality of the prob- 
lem is determined by the form of the refractive index n in the 
plane perpendicular to the direction of the ray propagation 
(i.e., to the z axis). 

As H does not depend explicitly on the variablez, which 
plays the role of the time for the equivalent dynamics of the 
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system (2. I), we can introduce by standard methods5 the ac- 
tion (11,12) and angle (a1,$,) variables, in terms of which 

where 

while the contours C, are the basic contours of the two- 
dimensional torus in the phase space of the system. In the 
general case there may not be invariant tori and then the 
contours C, do not exist. 

We consider the case when H can be written in the form 

H = H o  (I,, I,) +EV(I,,  12; Bi, @2). (2.4) 
This means that when there is no perturbation ( E  = 0) the ray 
trajectory is characterized by the Hamiltonian H, with two 
independent integrals of motion I,, and I, (either Ho and I, 
or Ho and I,). The variables in the problem can then, in gen- 
eral, not be separated and the only difficulty connected with 
the determination of the quantities I, and I, is of a technical 
nature rather than one of principle. One can thus, notwith- 
standing the lack of variable separation, state that in phase 
space the ray is wound around the two-dimensional torus 
with oscillation frequencies 

Equation (2.5) means that the ray trajectory is doubly 
periodic in the coordinate space of the ray and that it can be 
written as an expansion in a Fourier series: 

(i) = 
(i::::) exp itlimi (I,, I ~ ) Z - I - ~ ~ W ~ ( I ~ ,  1 ~ ~ 1 ,  

1 , , 1 1 = - -  

with oscillation periods 21r/w, and 2n-/a, along the z axis. 
One finds the amplitudes of the expansion (xlB12 ,yll12 ) from 
the formulae connecting the old variables (r,p) with the new 
ones (I,,12;61,62). 

We now turn to a study of the perturbed layer (2.4). As 
the variables I and 6 are canonically conjugate one can write 
the equation of motion for the ray in the form 

We write V as a Fourier series expansion in 6, and 8,: 

1 +- 

v(I,, I,; B,, 6,) = - Vm,,(Zi, 12)expt i(mifh+m,6r) I ,  
2 

m,,nLz=-m 

V-m,,-m2=Vm,ml. (2.8) 
Equation (2.7) now becomes 

i 
I,=- - e mhVm.m, (LIZ) exp [ i (mi.0.i+m2@2) I ,  2 

mg.mz 

It is clear from (2.8) that the strongest effect of the perturba- 
tion occurs in the resonance case, i.e., when 

where I: is the value of the action at exact resonance. We 
study the ray trajectory in the vicinity of the nonlinear reso- 
nance. 

Dropping the nonresonance terms in (2.9) we have 

I k = ~ m k V ~ ~ , ~ ,  sin y, 

a vm,,, 
&=ak(Ii,  I,) +e --- cos Y (k=1,2) ,  (2.11) 

31. 

where m, and m, are a pair of numbers satisfying the reso- 
nance condition (2.10). 

The set (2.11) is integrable and describes the dynamics 
of the ray in the vicinity of the resonance (I y ,  I O,;m ,,m,). We 
note first of all that from (2.1 1) follows the existence of an 
integral of motion: 

which is the analog of the Manley-Rowe relation in the the- 
ory of parametric excitation. 

Differentiating in (2.11) the equation for Y we get the 
so-called phase oscillation equation6 for the ray: 

Y +52' sin Y =0, 

I 
(2.13) 

Q2=e 1 Vmms m 1 , m 1 2 z ~  
1, ,12=i ,2  

with the small-oscillation frequency O. 

3. RAY DYNAMICS IN THE VICINITY OF INTERNAL 
RESONANCE 

We introduce the variable 

which is canonically conjugate to Y. Equation (2.13) then 
corresponds to the universial Hamiltonian function 

(P, Y)  =P2/2-Q2 cos Y. (3.2) 
Each ray trajectory is characterized by the integrals of 

motion W =  n ( P , Y )  and J from (2.12). For values of 
W <  - O ' the ray performs limited oscillations in the vari- 
able Y, i.e., the ray is trapped by the resonance. When 
W >  - O ' the ray trajectory is unbounded in Y. According 
to (3.2) the maximum width of the internal resonance in the 
variable P equals 

We determine the resonance widths AI, ,  AI, from the 
action variables I,, I,. According to Eqs. (2.12), (2.10) the 
variables 

AI,=Z1-110, A12=12-12' 
are related as follows 

On the other hand, according to (2.1 1) and (3.1) the variable 
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Pis  related up to terms of order E to the quantities AI, and 
A12 through the equation 

Finally, using Eqs. (3.3) to (3.5) we get 

One can show similarly that the width of the resonance in 
terms of the frequencies w, and w2 equals 

A ~ k = m a x I ~ k ( I , r  12) -ak(I io l  12') 1 
1  ,oh 1  d o ,  - [ ~ ~ V . , ~ , / B ( I , ~ ,  I,') ) I "  I -- - -- I . (3.7) 

,I, a,  az ,  
We note that approximation with an isolated resonance 

described by Eqs. (2.13) to (3.7) is valid when the distance 
between neighboring resonances of the kind (2.10) in the var- 
iables I, and I, exceeds the width (3.6) of the separate reson- 
ances. 

We discuss now the physical meaning of the nonlinear 
resonance of rays. It is well known that when there is no 
perturbation, rays which satisfy the resonance condition 
(2.10) correspond to trajectories which are on the whole peri- 
odic, i.e., the projection of the ray trajectory on the trans- 
verse (xg) plane is closed. For small perturbations of the 
profile of the cross section of the waveguide channel of the 
medium the rays begin to execute near these trajectories ad- 
ditional (phase) oscillations relative to these closed ray tra- 
jectories of the unperturbed waveguide. Around the unper- 
turbed resonance ray trajectory which satisfies (2.10) there is 
thus formed a distinctive waveguide channel with an effec- 
tive size given in the variables Ik by Eq. (3.6). The trajector- 
ies of the rays in that channel are given by the solutions of 
Eq. (2.13) which are bounded in P: 

Y = 2  arcsin [ d  sn ( Q z  I d )  1 ,  d= [ (Q2-  1 w 1 ) / 2 Q 2 ]  Ib ,  

A Z ~ = Y / I ~ ~ O ~ ~ B ( I ~ ~ ,  1;) ( k = l ,  2 ) ,  (3.8) 
where sn(u (d ) is an elliptical Jacobi function. 

The change of the nature of the ray trajectories which 
enter into resonance leads to a change in the velocity v of the 
signal propagation. We study the features of the change pro- 
duced in the local propagation speed by with resonance rays. 
As the latter is equal to the group velocity of the wave, the 
local velocity of signal propagation satisfies the equation 

where k,, is the wave number in vacuo and c the wave velocity 
in the homogeneous medium. According to a wave analysis 
each mode of the waveguide is characterized by the integers 
s,,s2 which are connected with the actions (quantization 
rules) 

From Eqs. (3.8) and (3.9) it follows that 

where the expression for H is given by Eq. (2.4). 
Differentiating (3.11) with respect to z up to terms of 

order E we get an expression for the longitudinal gradient of 
the reciprocal of the group velocity of the wave: 

I ,  d o ,  I ,  d o ,  
=em,a,Vm,,,  [ a ,  ,I. a,  ,I, 

1 , d o z  I z 8 a 2  +--- --I sin Y (3.12) 
d l l  a2 dIz 

It follows from (3.12) that the group velocity of the wave 
corresponding to resonance rays is modulated along the z 
axis. Notwithstanding the longitudinal modulation of the 
group velocity, the average velocity of signal propagation ;, 
given by the relation 

remains, up to terms of order E, equal to its initial value when 
there is no perturbation. 

In concluding this section we discuss the condition for 
the applicability of the results to the case of an isolated reso- 
nance. As indicated above the isolated resonance approxi- 
mation is valid when the width Aw, of the resonances is 
appreciably less than the distance Sw, between neighboring 
resonances, i.e., 

K =  ( A W ~ / ~ W ~ ) ~ < < I .  (3.13) 

The quantity Sok is determined by the actual geometry of 
the system and can be determined for any given kind of medi- 
um with refractive index n(x,y). We give in Sec. 5 an example 
of the determination of the parameter K for a concrete case. 

4. STOCHASTIZATION OF THE RAYS 

If condition (3.13) is not satisfied and 

K 2 1 ,  (4.1) 
the invariant tori in the phase space of the rays are destroyed 
and there occurs a stochastic dynamics of the An 
example of the occurrence of chaotic motion of rays in a 
waveguide channel with a longitudinal inhomogeneity due 
to the overlap of resonances was considered in Ref. 3. In the 
present case the picture of the stochastization of the rays is 
analogous. The motion of the representative point of the ray 
in a plane perpendicular to the axis of the waveguide is sto- 
chastic. The additional integral of motion J given by Eq. 
(2.12) is destroyed and the only integral of motion remains 
the quantity H, i.e., the z-component (k,lH I )  of the wave 
vector of the wave. Under the conditions of the situation 
envisaged here (K 2 1) one can describe the dynamics of the 
representative point of the ray using the diffusion equation. 
In the next section we give the corresponding results for a 
concrete example. 

5. WAVEGUIDE CHANNEL WITH A "STADIUM" KIND OF 
TRANSVERSE CROSS-SECTION 

In many problems of the propagation of radiowaves in 
the ionosphere2 and of soundwaves in the ocean1 one as- 
sumes that the refractive index n(x,y) of the medium depends 
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mainly on the vertical coordinate (say, on x) and can be as- 
sumed to be homogeneous along the other transverse coordi- 
nate (along y). It  is natural to assume that in real situations 
the waveguide channel has finite dimensions also along they 
axis. The nature of the wave propagation will then depend 
strongly on the shape of the transverse cross section of the 
waveguide channel. The simplest example of allowance for 
the finite dimensions of the channel along they axis leads to a 
"stadium" type shape for its transverse cross section (Fig. 1). 

It is useful to pursue the analogy between our problem 
of ray dynamics and problems of billiard-ball motion of par- 
ticles. In the present case (Fig. 1) there appears a non-scatter- 
ing billiard motion for which the possibility of the stochasti- 
zation of the particle motion was shown by Bunimovich.' 
The study given in what follows will mainly follow Ref. 9. 
We show, however, that apart from the case of total stochas- 
tization of the ray trajectory in phase space there may also 
exist a sub-region of stochastization corresponding to the 
overlap of resonances with large numbers. 

Let the refractive index n(x,y) have a constant value no 
within the waveguide channel and n , (n , < no) outside it. 
The sides AB and CD of the transverse cross section are de- 
formed and described by the function ~f (x). We can write the 
analytical dependence of n(x,y) on the transverse coordinates 
x,y in the form 

n~(y+ef(x)),whenlxl<a; 

nmr when Ixl>a: 
where 

no, when 1 y 1 <b; 
n,, whenlyl>b. 

When E( 1 one can write the refractive index in the form 

n2(x, Y) =no2(x, Y )  +enZ(x, Y),  
(5.2) 

where no(x,y) is the refractive index of the waveguide medi- 
um in the unperturbed case, i.e., 

no, whenIxI<a, IyI<b; 
n,, elsewhere. 

The quantity ~n,(x,y) is the perturbing part of the refractive 
index and has the form 

The Hamiltonian of the system takes the form 

FIG. 1 .  Shape of a "stadium" type transverse cross section. 
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The solution of the unperturbed problem with Hamil- 
tonian Ho(r,p) has the following form: 

Ho (I17 12) =- [noZ- (Il/Iio) '- (12/120) '1 'lat Ik0=2ah/n; 

ak[4 {fik/2x) - I],  when 0< {fik/2n) <'Iz; 
ak [3-4{fiA/2n) 1, when 'Iz< {fih/2n) < i; 

= {, A / k o ,  when O< {Bk/2n) <'12; (5.6) 

-Ik/IkO, when '/z< {.6.k/2n) <I; 
fik=ok (Ilr 12) ~+fikOj ~k (11, 1 2 )  =Ik/ ( 1 H0 1 1kO2) ; 

(xi, x2) = (5, y), (al, a,) = (a, b)  (k=l,  2). 

Here ( p )  denotes the fractional part of the quantity p. For 
waveguide rays the quantities I,,I,, and E take values in the 
ranges 

The Fourier expansion for the momentap, has the form 

m=-m 

(5.8) 
As the perturbing function f (x) we choose 

~f (x) = I  cos (nx/2a) (lea, b; I x 1 <a). (5.9) 

Using Eqs. (5.5) to (5.9) we write the perturbation of the Ha- 
miltonian E V(r,p) with the action and angle as the variables: 

e ~ ( r , p ) = i  Vm(I,,Iz)exp(i[sBl+(2m+I)fi2]), 
2 

m=-m 
s= - l , l  

(5.10) 
Vm(I1, 1 2 )  =- (Ub 1 Ho (Zi, 1 2 )  1 ) (Iz/I20)'. 

The condition for nonlinear resonance has the form 

where the I',") are the resonance values of the actions 
(k = 1,2). 

We show in Fig. 2 the curves of constant Ho(I,,I,) in the 

FIG. 2. Curves of constant values of H,(I,,Z,) (solid) and the resonance 
lines (dash-dot) in the (Z,,I,) action plane. 
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(1,,12) plane and the resonance lines described by Eq. (5.11). 
The points where the curves of constant E = Ho(I,,I,) inter- 
sect with the resonance lines give the resonance values 
I@)  ~ \ m ) .  

1 ,  

One sees from Fig. 2 that the distance between neigh- 
boring resonances decreases with increasing number m. One 
can write this distance in the variables I ,  and I, and in the 
spatial frequencies w ,  and w2 in the form 

Using Eqs. (3.6), (3.7), and (5.6), and (5.10) one can find 
the following expressions for the widths of the separate re- 
sonances: 

From (5.13) it follows that as ( E  (+no 
Ark -- Auk (no-IEl)-'h, - - (no-/El)-" (k=1,2) ,  
IkO 0 k  

i.e., the width of the nonlinear resonances of the rays corre- 
sponding to the lowest modes of the waveguide increases. 

For rays corresponding to higher modes the resonance 
width has finite values: 

A0k/COk~Azk/Ik* [no2Al/b] I" (k=1, 2).  

We note that for a given value of the constant of motion 
E = Ho(I,,12) the actions I ,  and I, are interrelated as follows 

As 1 2 4  the distance between neighboring resonances (5.12j 
decreases faster than the resonance width (5.13). Therefore, 
overlap of resonances sets in for values of I, less than some 
critical value I ', . According to (4. I ) ,  (5.12), (5.13) the condi- 
tion for overlap has the form 

From (5.15) we get the following value for the critical value 
I ; :  

Izc Zb 'h 
-= [---g(n:-~') ] . 
Izo 

For a given value of the constant E = Ho(I,,12), the ray tra- 
jectories with values of the action 

FIG.  3. Region of ray stochastization (hatched region) in the (I,,I,) action 
plane. 

12<Izc (5.17) 

are thus stochastic (Fig. 3). 
Let 8 be the angle between the tangential vector to the 

ray trajectory and the x axis. We then have 

p,= (no2-E"'" cos 0 ,  p,= (n,2-Ez) 'Iz sin 0. (5.18) 

According to (5.6) and (5.18), in the unperturbed case 
the actions are related to the angle 8 through the following 
formula: 

Condition (5.17) then means that all rays propagating at an 
angle 8 < 8, , where 

are stochastic. 
One sees from (5.16) that the size of the region of sto- 

chasticity depends on the waveguide parameters only 
through the combination Ib /a2. The region of stochasticity 
of the ray trajectories corresponding to the lower modes of 
the waveguide ( IE (+no) tends to zero in proportion to 

(noZ-EZ) Ih= (2n,) 'Iz (no- I E I ) '". 

The maximum value of the stochasticity region is reached 
for rays corresponding to the higher modes (lE I+no): 

max (s) = (rs2-n.') ( $) 'I2 

For values of the waveguide parameters for which the 
condition 

lb /a221 (5.22) 

is satisfied all waveguide rays become stochastic. Condition 
(5.22) is the same as the condition for complete stochastiza- 
tion of the motion of particles in a "stadium" shaped poten- 
tial well with elastic wallsS9 

6. DIFFUSION OF RAYS IN THE STOCHASTICITY REGION 

The most adequate description of the rays in the sto- 
chasticity region can be given by means of a kinetic equation. 
One can show (see Ref. 10) that for a system with the Hamil- 
tonian (2.4), (2.8) the kinetic equation has in the region of 
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stochastization of the motion the form 

Here f = f (Il,12;z) is the density of the distribution of rays in 
the (I,, I,) action plane. 

Using (5.10) one can obtain the following estimates for 
the diffusion coefficients Du for the problem considered in 
Sec. 5: 

The diffusion of rays leads to an equilibrium distribu- 
tion of rays (independent of z) in the transverse ( x a )  plane. 
The characteristic distance z, over which such a distribu- 
tion is established is determined by the diffusion coefficients 
Du and is of the order zg)-I : /Dkk ,  SO that 

where the diffusion lengths zg) describes the diffusion of rays 
along the directions k = x,y. 

7. ON THE STRUCTURE OF THE WAVE FRONT 

We study the problem of the wave front of the wave in 
the case where there is a stochastic instability of the rays. To 
do this we turn to the quasi-classical representation of the 
wave field u(r,z) in the waveguide channel. Let in the starting 
plane z = 0 of the transverse waveguide cross section the 
field be given 

uo (r) =Ao (r) exp {ikoSo (r)  1, (7.1) 

with a phase distribution So(r) and an amplitude Ao(r). The 
field u(rp) in the plane z will then have the form1' 

Here Sv (rp) is the action along the ray trajectory 

where dr is an element of the ray on the ray trajectory, rov 
the ray coordinate in the z = 0 plane. The quantity 
7, = 7,, (rp) is the generalized ray dispersion. The phase 
shifts when the v-ray passes through the caustics and the 
focal points are described by the quantity SYv . The summa- 
tion in (7.2) is over all N trajectories passing through the 
observation point rp. 

In the case of stochastic ray instability the number of 
rays contributing to the wave field (7.2) increases exponen- 
tially9 according to 

N-exp (hz), 

where h = uk In K is the instability growth rate. At the same 
time the actions Sv(rp) in (7.2) are random functions of the 
coordinates r and z because of the stochasticity of the ray 
trajectories. The total wave field is thus a complex interfer- 
ence pattern of the sum of a large number of quasi-planar 
waves connected with the separate ray trajectories. The 
wavefront of the field will thus possess a rather complicated 
quasi-random relieP which has a structure analogous to 
speckle structure. l2 

Over sufficiently long distances of the order of the diffu- 
sion length (6.3) one therefore completely loses information 
about the initial phase So(r) and about the distribution of the 
field strength IA,(r)I2 in the z = 0 plane. One can say that 
when transmitting any image over distances z > z, this im- 
age is completely distorted. A more detailed analysis of the 
waveguide field in the case where the rays in waveguides are 
stochastically unstable will be considered separately. 

8. CONCLUSION 

The main principal result of the present paper is con- 
nected with the possibility to study the propagation of rays 
in waveguide media without using the method of separation 
of variables. This possibility arises thanks to the use of meth- 
ods from Hamiltonian nonlinear dynamics of particles with 
action and angle as the variables. Contemporary theory of 
the Kolmogorov-Arnol'd-Moser instability5 enables us to 
draw a clear-cut analogy between the existence of invariant 
tori and the existence, correspondingly, of singular ray chan- 
nels. In that sense the case of internal resonance between 
different degrees of freedom of the ray, which is considered 
in the present paper, is the most effective. The loss of stabil- 
ity of the ray, which in the theory of dynamical systems cor- 
responds to the destruction of the invariant tori, has an im- 
portant practical application. It is connected with the 
definition of the boundary of the diffusive smearing out of a 
transmitted image through the waveguide channel. The im- 
age-smearing effect described by us is connected neither 
with well known aberration effects nor with the existence of 
some strong inhomogeneities of a regular or random kind. 
The cause of the ray stochastic instability described above is 
the slow and very irregular buildup of relatively weak trans- 
verse inhomogeneities, the existence of which is necessary as 
a matter of principle for the possibility to channel the ray. 
We have thus indicated in this paper an effect which in cases 
of a general nature always leads to a restriction on the size 
and the shape of ray propagation. 

The results given above are also directly applicable to 
dielectric waveguides in the optical band. 13.14 The greatest 
difficulty is the study of eigenwaves in waveguides with com- 
plicated cross sections. The calculation of the fields in such 
waveguides reduces to a study of a rather complicated set of 
integral equations which can be solved only numerically. l 5 9 l 6  

The adiabatic approach to the ray approximation proposed 
in Ref. 17 to calculate the characteristic eigenwaves in a 
waveguide with non-separable variables also has a limited 
range of application since, as we showed above, the adiabatic 
invariants I, and I, are not conserved in the case of stochas- 
tic instability and nonlinear resonance of the rays. 
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