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The effect of resonance radiation pressure (RRP) in the field of a traveling electromagnetic wave 
on a mixture of resonance and buffer gases is examined. It is shown that RRP can produce a strong 
perturbation of the velocity distribution of impurity particles in a narrow region near the reso- 
nance velocity. The shape of the nonequilibrium structures on the distribution function is found, 
and it is shown that an external nonselective force will enhance the stability of the process respon- 
sible for the evolution of the local (in velocity space) translational disequilibrium relative to the 
effect due to collisions with the buffer-gas particles. 

PACS numbers: 5 1.10. + y 

INTRODUCTION 

There are at present two known selective mechanisms 
whereby resonance radiation affects translational degrees of 
freedom in a tenuous atomic gas. One of them relies on reso- 
nance radiation pressure (RRP)' and the other on the differ- 
ence between the elastic scattering cross sections of excited 
and unexcited atoms that are responsible for light-induced 
diffusion (LID) of gases.' Such processes are interesting, 
above all, because they can be used to influence selectively 
and in a desired manner the translational state of microparti- 
cles, which is valuable in scientific and practical applica- 
tions. 

Monochromatization of atomic velocities in a collision- 
less gas by RRP in the field of a traveling magnetic wave, 
which relies on the highly nonlinear dependence of the RRP 
force on the velocity of the atoms, was predicted in Refs. 4-6. 
(The designation "monochromatization" seems to be more 
apt than the original "phasing" used in Ref. 5.) The theory 
has been extended to the case of atomic beams,' and the first 
direct experimental studies of velocity monochromatization 
induced by a traveling-wave field in a sodium atomic beam 
have been reported.' We also note that the author of Ref. I 
drew attention to the possibility of velocity monochromati- 
zation by the RRP force of the so-called mixed type. 

In a sufficiently dense gas, collisions will scatter active 
particles out of the region of resonance with the electromag- 
netic field and will therefore, clearly, effectively prevent 
RRP-induced velocity monochromatiztion. The difference 
between the elastic-collision frequencies for excited T,, and 
unexcited r ,, atoms will then also produce a translational 
disequilibrium, which will be reflected in the appearance of 
sharp structures on the velocity distribution of the atoms9 
that will be entirely due to collisions. RRP in a traveling 
wave will continue to play a dominant role in stimulating the 
translational disequilibrium if the characteristic time1' for 
velocity monochromatization by RRP, 7, = (fik '/2m)-' is 
comparable with or less than the resonance-particle mean 
free time: 

fik2/2m=oR>r,. (1) 

This condition is readily satisfied for buffer-gas pressures 
p- 1 Torr and sufficiently short-wavelength transitions. For 

example, in magnesium vapor, if we consider the 
3'S0 - 3 'PI transition with A = 2852 b; for a mean free path 
I = 0.2 cm at a vapor temperature T = 649 K, we have 
o, = l/r, - 6.  lo5 s- ', rs = 3.105 s- ', whereas, for the B- 
transition with A = 2348 b;, we have w, -2.5.106 s-' and 
rs ~ 9 . 5 . 1 0 ~  S-'. 

When (1) is satisfied, RRP will induce a strong transla- 
tional disequilibrium in a resonance gas, despite the fact that 
the frictional force muJ, -Ffr may be much greater than 
the RRP force, i.e., fiky/2 = Fr , Fr/Ffr = <( 1 (in LID the- 
ory,' RRP is neglected because < is small). This is connected 
with the local nature of the translational disequilibrium pro- 
duced by RRP, which is reflected in the appreciable distor- 
tion of the velocity distribution function in a velocity inter- 
val of width y/k that is much smaller than the width u, of the 
equilibrium distribution. 

In this paper, we derive and analyze the shape of the 
nonequilibrium structures produced in the field of a travel- 
ing electromagnetic wave on the distribution function of a 
resonance gas when condition (1) is satisfied and spectral- 
line broadening is of the Doppler type. It is shown that a 
nonselective thermal force accelerating the particles (for ex- 
ample, ions) can enhance the stability of the process of veloc- 
ity monochromatization as compared with the broadening 
effect of collisions with the buffer-gas particles. 

1. BASIC MODEL. ASYMPTOTIC SHAPE OF THE 
NONEQUlLlBRlUM COMPONENT OF THE DISTRIBUTION 
FUNCTION 

Consider a mixture of a two-level resonance gas and a 
buffer gas in the field of a traveling electromagnetic wave of 
amplitude E,. Suppose that the gas pressure is low enough so 
that the elastic collision frequencies Tsi between the ground- 
state and excited resonance particles, on the one hand, and 
the buffer-gas particles, on the other, are much smaller than 
the rates of longitudinal and transverse relaxation y, y, ; the 
concentration n of the resonance impurity is much smaller 
than the concentration N of the buffer gas; and the absorp- 
tion line is inhomogeneously broadened: 

~ S I ~ Y L ,  Y ,  (24 
n e N ,  (2b) 

~ l e k u o ,  (24 
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where uo is the most probable velocity of random motion of 
the resonance particles in the absence of external field. 

Let us use the quasiclassical approach to examine the 
equations for the density matrix /j with allowance for colli- 
s i o n ~ , ' ~ - ' ~  the recoil effect,'.1° and the constant external 
force F = Foex. We assume that the conditions given by (2) 
and w, (y, y, are valid, and eliminate the off-diagonal ele- 
ments. In addition, we neglect quantum fluctuations in the 
RRP force. We then obtain, as in Ref. 9, the kinetic equation 
for the resonance-particle distribution function f = Spb: 

0 - ' vd f /d~+o~pd]~  ((us-A') /p) fldux 

+p~,af~a~,=si  {f) =sii (pti) +S^t2 (pz2), 
(3) 

where v is the dimensionless velocity expressed in units of u,, 
vx is the component of the velocity in the direction ex of 
propagation of the radiation, A ' = A /kuo is the dimension- 
less detuning from resonance, k is the wave vector, 

d is the dipole moment matrix element, no = Folk I/mG, m is 
the mass of the resonance particles, R is the dimensionless 
space variable, 8 is the characteristic macroscopic time 
(8 = rdu,, and ro is the characteristic spatial scale), 

h 

St( f J is the linear collision integral which, when the differ- 
ence between the elastic scattering cross sections in the up- 
per and lower levels is taken into account, has the form 

St{f}=-[r,i+I'.ofjL (vX-Aflp) I f  (v) 

+ J {Kt (v, v') +Ka (v, v') PL (v~'-A'IJL))~ (v') h ~ ' ,  (4) 

and Ki are the collision kernels in states i (i = 1,2), given by 

Ko=[Kz (v, v')-Ki (v, v') 1/27 

r.,= J K,(v', V) a3v/. rso= (r2$-ris)/2. 

Ifwe use the order-of-magnitude formula D - (fik /m)2y 
for the diffusion coefficient D in velocity space, and if we 
assume that the characteristic velocity scale Sv of the region 
in which the departure from equilibrium takes place in satu- 
rating fields (477d 1 Eo 1 2/fi2 - yl ') Sv - yl /kt we obtain the 
following condition for fluctuations in the RRP force to be 
negligible in comparison with collisions: 

which, for w, -Tsi, is essentially equivalent to the inequa- 
lity o, (y, which is practically always satisfied for optical 
transitions. We note that the effect of acceleration by the 
constant external force F, on the spectral-line profile was not 
taken into accountlo in the derivation of (3), so that we shall 
restrict it by the inequality 

QoKy, y,. ( 6 )  

We also draw attention to the fact that, when (2a) is satisfied, 

negative light pressure13 is also negligible, and was not taken 
into account in the kinetic equation given by (3). 

Thus, under the above conditions, the original math- 
ematical model represented by the kinetic equation given by 
(3) describes the following three basic processes: spontane- 
ous RRP in the field of the traveling electromagnetic wave, 
particle (ion) acceleration by the constant external force, and 
collisions of resonance particles with buffer-gas particles in 
each of the possible quantum states. 

Collisional processes will be simulated by specifying the 
collision kernels in the phenomenological form of Keilson 
and S t ~ r e r : ' ~ , ' ~ , ' ~  

Ki (v, v') =rSi (n'"Au) -3 exp- ( v - a ~ ' ) ~ / A u ~ ,  

Au= (I-a2)'", a< l .  
(7) 

Moreover, we shall consider the case of sufficiently 
strong collisions for which the kernel width (in units of u,) is 

Au-I, (8) 

which is actually reached, for example, for a <0.86.2' It 
seems quite obvious that such collisions have the greatest 
disturbing effect on the translational equilibrium induced by 
RRP. 

In the most interesting situation, the absorption line is 
inhomogeneously broadened for 477d 2E02/fi2- yl and the 
parameterp, introduced above, is small: p < 1. However, this 
does not allow us, in the first approximation, to neglect the 
terms on the left-hand side of (3) and to write down the distri- 
bution function in the form of the sum of the Maxwellian 
distribution and a small addition to it [when (1) is satisfied], 
since the derivatives with respect to velocity are large ( -  1/ 
p) in the region near resonance because the function 
L ((v, - A )/p) has a singularity in the small parameter. Phy- 
sically, this is connected with the sharp selectivity of the 
RRP force which acts effectively only on a group of atoms 
with a particular velocity projection, which are concentrated 
in a very narrow (as compared with the width of the reso- 
nance distribution) region -p in velocity space. This also 
leads to the well-defined local character of the induced 
translational disequilibrium, which must be taken into ac- 
count in the asymptotic expansion of the solution of the ki- 
netic equation given by (3). In view of the foregoing, we intro- 
duce the "fast" (local) variables = (v, - A ')/p, and seek the 
asymptotic solution of (3) in the form of a composite expan- 
sion, similarly to what is done in the theory of the boundary 
layer in problems with singular  perturbation^:'^ 

Q (v, P) =Qa (v) +pQi (v) + . . . , (11) 

h (v, p) =ho (v) +phi (v) + . . . , (12) 

where j, = ~ - ~ ' ~ e - "  is the Maxwellian distribution. 
Consider, to begin with, the case where we can neglect 

the difference between the collision frequencies in the upper 
and lower states, r,, = rs2 = r , ,  Ki = K, and where the 
medium is spatially homogeneous, so that we can isolate the 
role of RRP in the evolution of the departure from equilibri- 
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um in pure form. We now introduce the function 

1; ( s )  = [oRPL ( s )  + Q o l  (13) 

and substitute (9) in (3), so that, using the principle of de- 
tailed balancing K (v v') f0(v1) = K (v', v) fo(v), we have 

dh 
+pQo - - p .20Rf l (A '+ps)L(s )h  

d v, 

' )  + E 1  ( s )  h (v, p )  +p.2orFL ( s )  

where the integral operators are given by 

~ h =  5 K (v', v) h (v') d3u', 

and v, = (u;, u i )  is the transverse velocity component. 
Let us substitute (10)-(12) in (14) and arrange the func- 

tions Qi (v) so that we can separate the fast and slow distribu- 
tion functions in each of the orders under consideration. We 
then equate terms corresponding to equal powers of p that 
depend separately on s and on v. This successively gives us 

-r,h,+Bh,=O, h ,  (v) =&=const; (16) 

ho  (v) /Qo ( v )  =CJ=const, Qo=fiolC,=const; (17) 

d ( E  ( s )  no ( s )  ) / d ~ + I ' ~ I l o  ( s )  =-E'(s) Ci,  no (*oo) =o; 
(18) 

Q ,  (v) =-hi (v) /C,, - 2 ~ ~ v , ~ , = - r ~ h i + ~ h t + ~ i ~ o  ( s )  Q O ,  
%,no ( s )  = K(V' (v,, A ' ) ,  v )  no(.) asdzvt, (19) 

d ( L  ( s )  I l l  ( s ) ) / d s + r , I I ,  ( s )  = A ' ( ~ o R P L ( ~ ) C J + ~ J T ( ~ )  no ( s ) ) ,  

n, (*w) =o. (20) 

In deriving these expressions, we have used the following 
expansion for the integral term, which has a "smoothing" 
effect on the functions n i ( s )  if the condition given by (8) is 
satisfied: 

p a ,  [ (Qo+pQJ) ( n 0 + p n J  ( s )  I =Gl ( J J o Q o ) + O ( ~ 2 ) -  

When (16)-(20) are satisfied, the original equation is sat- 
isfied to within -p2. Moreover, if the distribution function 
is normalized to unity, we have fi, = 1, and the local transla- 
tional disequilibrium3' (LTD) induced by the RRP is deter- 
mined by the principal part of the asymptotic expansion 

f ( v ) = f o ( v )  [ ~ o ( v x - ~ ' / p ) +  l ] f  . . . , (21) 

whereno(s) = &Q0 and satisfies the ordinary first-order dif- 
ferential equation 

dxo /ds+ (r,+f;' ( s )  ) E-' ( s )  f f o  ( s )  =-E-' ( s )  E' ( s )  Tio, 
no (&a,) =o. (22) 

We note that the local property of the translational disequi- 
librium [equivalent to the validity of the asymptotic behav- 
ior of the form of (21)] is essentially determined by the de- 
crease in L (s) and L '(s) at infinity. On the other hand, because 
of the spreading effect of collisions, the influence of LTD on 
the non-resonance part of the velocity distribution is reflect- 
ed only in the second order in the small parameter p ,  since 
$no(s)ds = 0 and the third term on the right-hand side of (1 9) 
is strictly equal to zero. 

To conclude this section, we shall show how one can 
take into account the inhomogeneity and the difference 
between the elastic collision frequencies. In the weakly inho- 
mogeneous case, the asymptotic expansion must also be 
sought in the form of (9), retaining the derivatives with re- 
spect to the spatial variables and assuming that 1 / 8  is a 
small parameter in (3). This produces a modification of only 
the first-approximation equations, but the zeroth-approxi- 
mation equations remain unaltered. The quantity X, is then 
an unknown function of the spatial variables, which can be 
found from the macroscopic transport equation under the 
corresponding boundary conditions: 

-- CV2)  
i d7io p(E)Eoez -+ = J, div J=O, 

3 r , ( l - a ) 0  dR r8(i-a) 

where we have neglected the higher-order terms and the 
averages are taken over the Maxwellian function. 

The difference between the collision frequencies [when 
the relative difference (T,, - r ,, )/T ,, = Y is not very large] 
is most simply taken into account (although this can also be 
done directly when the asymptotic expansion is constructed) 
by reformulating the original problem. This is done by intro- 
ducing a replacement that is possible for collision kernels of 
the form of (7) and which, in the absence of the nonselective 
force, has the form 

rp=(i+PvL(s)) f ,  p+p,=p(i+Pv)%, 

p-pl=p/ (I+fiv) ". 
(23) 

The problem of finding the shape of the nonequilibrium 
structures is then precisely reduced to that just considered. 
Henceforth, we shall confine our attention to the situation 
where the inhomogeneity is small (i.e., the tube of length L is 
closed): 

- k u ,  muoZ - uo k u ,  
L < - - ,  L e y - .  

7 A ~ Y  r., PVY 

2. RRP-INDUCED LOCAL TRANSLATIONAL 
DISEQUILIBRIUM 

The RRP-induced local departure from translational 
equilibrium is described by the function Bo((u, - A I)/,), 
which differs appreciably from zero only in a narrow inter- 
val of widthp near resonance (v, = A '). It is clear from (22) 
that the source of the LTD is the dependence of the RRP 
force on velocity (L '(s) #O) and that collisions appear as a 
factor that destroys the disequilibrium. In the absence of the 
nonselective external force, Eq. (22) yields 
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t no(.) =2(s2+1)exp( -PY ( s ) ) .  - epY(') dt ,  (24) 
- w 

(t2+ I )  " 

where p = r, /a, 8, !P (s) = s2/3 + s. 
The behavior of the function K ( s )  at infinity is deter- 

mined by the asymptotic behavior of the improper integral in 
(24): 

Figure 1 shows the shape of the nonequilibrium struc- 
ture on the distribution function for three cases correspond- 
ing to different ratios of the mean free time to the monochro- 
matization time ( p = rR /T = r, T~ ). On the right of 
resonance (s > 0) there is a peak, whereas, on the left of reso- 
nance, we have a valley of characteristic width 6s- 1 (in di- 
mensional units, - G /k ). The spreading of the nonequilibri- 
um structure with increasing collision frequency is quite 
clear and is due to the rapid scattering of particles that reso- 
nate with the electromagnetic field. The fact that there is no 
appreciable narrowing of the peak with increasing ratio 
w, B/r,  =p-'  is not trivial. Thus, when the ratio of the 
mean free time to the monochromatization time is of the 
order of five, the width of the peak at the 0.97 level is 6s- 1 
and its center is shifted into the region of positive velocities 
by the amount so-3. Moreover, when p(1, the following 
expression that follows from (24) is valid near the maximum 
of a ( $ ) :  

f iO ( s )  x2,lp'" exp { -3 ,8pz1a(~-so )  2 ) ,  so= ( 2 / p )  '", (25) 

and, consequently, the peak width increases with increasing 
parameter l/p =wR B / r  ( 6 ~ - 0 . 5 1 / ~ ' ~ ~ ) ,  whereas the 
height decreases. The spreading effect of collisions then sup- 
presses monochromatization because the particles are 
pushed into the velocity interval near5 (G /k ) (w, /T, )'I3, in 
which the velocity gradient F'(v, ) of the RRP force, which is 
responsible for the narrowing, is very small and the rate of 

monochromatization is comparable with the rate of scatter- 
ing. 

The difference between the collision frequencies for ex- 
cited and unexcited atoms, on the one hand, and the buffer 
gas, on the other (which can be taken into account in accor- 
dance with the previous section), is found to have a small 
effect on the shape of the RRP-induced nonequilibrium 
structure if the relative frequency difference is small: 
/3 (r,, - r ,, )/r ,, 4 1. Numerical calculations show that, as 
the relative frequency difference increases, the nonequilibri- 
um structure is deformed to a greater extent for larger values 
of the parameterp. At the same time, the depth of the valley 
increases and the height of the peak decreases, since the reso- 
nance region is depleted of particles as a result of the rapid 
scattering of excited atoms.9 When p(1, the difference 
between the collision frequencies has little effect on the 
RRP-induced nonequilibrium structure because the parti- 
cles are expelled by the RRP force from the region of strict 
resonance in the time interval corresponding to the mean 
path, but the direction of qualitative changes remains the 
same as forp > 1. 

The dashed curves in Fig. 1 show the shape of the non- 
equilibrium structures when both destabilizing factors are 
operating, namely, RRP and the difference between the elas- 
tic scattering of resonance particles in the upper and lower 
states. We note that the area under the structure is then al- 
ways $%(s)d~#O, so that the macroscopic particle fluxes are 
also functions of the detuning. 

3. LOCAL TRANSLATIONAL DISEQUILIBRIUM UNDER THE 
COMBINED ACTION OF RRP AND NONSELECTIVE 
EXTERNAL FORCE VELOCITY MONOCHROMATIZATION 

Suppose the nonselective external force acts against the 
RRP force and completely cancels it for resonance velocities 
(see Fig. 3 below), i.e., no = - w, B. The corresponding 
experimental situation can be established, for example, for 
ions in the weakly ionized plasma of a gas discharge. 

The function &(s) can be expressed in terms of improp- 
er integrals, as follows: 

X exp { p Y ,  ( t )  )d t ,  s>O; 

FIG. 1 .  Shape of  the nonequilibrium structure on the distribution func- 
tion of  resonance particles in the field of  a traveling electromagnetic wave 
forp = 0.2, (r,, - r , , p / r , ,  = d = o (1 ) ;p  = 1, d = o (2) ;p  = 3, d = o 
(3); p = 1 ,  d = 0.2 (4); p = 0.2 d = 0.2 (5) 

n(s)=-(~+~/s~)exp{-p~,(s)) J ~ t / ( t 2 + 1 ) z  
O 

x e x p { p Y , ( t ) ) d t ,  sGO, 

where !Pl(s) = (l/s - s). 
The following asymptotic representations o f a ( s )  ensue 

from (26): 

lim no ( s )  = lim fro ( s )  =0,  i i ,  ( s )  -2s lp ,  s+O, 
s*+o s-+-0 

- no ( s )  - 2 1 s 3 ~ ,  j s 1 +OO. (27) 

Figure 2 shows the shape of the nonequilibrium struc- 
ture on the distribution function for resonance ions in the 
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FIG. 2. Shape of the nonequilibrium structure on the distribution func- 
tion of resonance particles subjected to the simultaneous application of 
the RRP and nonselective external force:p = 1 ( l ) ,p  = 0.2 (1). 

case of two different values of the parameter p -r, T, . 
The most remarkable effect as compared with the case 

examined in the last section is the considerable narrowing of 
the peak as the parameterp decreases. In dimensional units, 
the width of the peak for G 2 y, is much smaller than the 
ratio y,/k, and its height for the situation shown in Fig. 2 
( p = 0.2) is 14.9. To the left of the resonance, (s < 0), we have, 
as before, a valley although, in this case, it is less pro- 
nounced. On the right of Fig. 2, we show separately the non- 
equilibrium peak on a larger scale forp = 0.2. It is quite clear 
that the peak is asymmetric: its left-hand wing falls off more 
rapidly than the right-hand wing. In the immediate neigh- 
borhood of the maximum of the function no(s), we have the 
following expression, which ensues from (26) and is valid4' 
forp(1: 

From this, we have the following simple estimate for the 
width 6s and height do of the peak when p( 1: 

6s-p/2 ,  do-0.51/p2, 

from which it is clear that, as p decreases, the number of 

FIG. 3. Resultant force as a function of velocity. Arrow shows the direc- 
tion of the nonselective part of the resultant force. 

particles localized within the peak tends to increase. Thus, in 
this case, we are entitled to speak of velocity monochromati- 
zation of resonance ions. The physical interpretation of the 
increased stability of the monochromatization process un- 
der the action of the nonselective force is as follows. 

In the absence of collisions, the resultant force (its direc- 
tion is shown by the thick arrow in Fig. 3) impels the particle 
into the resonance region. Moreover, since F(A ') 
= 0, FUX ' < 0, for v, >A ', they accumulate in the region im- 

mediately adjacent to the point (v, = A ') on the right, and 
this leads to effective ion-velocity monochromatization. We 
note that practicallly all ions with initial velocity compo- 
nents t ,  -mu,/Wcy (t,-10W4 s for fik/mu, = 
y = 10' s) are localized within the region of the peak after a 
time v, >A '. Collisions should result in the broadening of 
the peak. However, in contrast to the case considered in the 
last section, the resultant force for p( 1 effectively assures 
that the collisions are compensated by the flux of scattered 
particles that enters the resonance region in which the veloc- 
ity gradient of the force is high and velocity monochromati- 
zation takes place. In other words, the point v, -A ' is stable 
with respect to collisions that increase the x component of 
velocity (Fig. 3). On the other hand, in the absence of the 
nonselective force component, the scattered particles practi- 
cally fall out of the region in which the RRP force that is 
selective in velocity operates and, moreover, the RRP force 
itself ejects particles from the resonance region in which the 
rate of monochromatization is a maximum. 

The width of the nonequilibirum peak forp( 1 is sensi- 
tive to the difference between the elastic collision frequencies 
for excited and unexcited ions (which can be taken into ac- 
count by renormalizing the parameters so that = / 
(1 + p ~ ) ' ' ~ ,  f*, p+pl), and increases with increasing rel- 
ative difference between the frequencies in proportion to 

We also note that fluctuations in the RRP force have a 
greater influence when the width of the peak is substantially 
reduced. Estimates of the role of diffusion with allowance for 
the narrowing of the peak lead to the following condition for 
an appreciable effect of fluctuations on the monochromati- 
zation process in the presence of collisions: oR2y/  

2 2  2 G P P ,  > r1 , .  

CONCLUSIONS 

Thus, when (1) is satisfied, RRP may give rise to a con- 
siderable change in the distribution function of the reso- 
nance particles (present in the buffer gas) in a narrow interval 
near the resonance velocity v, = A ' (LTD). When the size of 
this interval is much smaller than the width of the undis- 
turbed velocity distribution (-I), it is possible to establish 
the asymptotic (in the parameterp - yL /ku,( 1 separation of 
the nonequilibrium component of the distribution function, 
which is described by a function of the form n ((v, - A ')/p). 
It is readily seen that this asymptotic procedure is possible 
for any collision kernel of width Au>p, i.e., for any kernel 
describing large-angle scattering. Generally speaking, colli- 
sions broaden the nonequilibrium peak on the distribution 
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function even when the mean free time is very much greater 
than the velocity monochromatization time (7 > rR ), and 
prevents effective monochromatization in velocity space. 
An external nonselective force of particular magnitude and 
direction has a stabilizing effect on velocity monochromati- 
zation, and can be used to obtain a tall narrow peak of width 
&y, / k  on the distribution function. 

We note that the establishment of the LDE in a mixture 
of gases may be of considerable importance in those cases 
where a stationary departure from translational equilibrium 
must be set up. 

' h i s  is the time necessary for resonance particles in a saturating field to 
leave the region of exact resonance rR -(y/k))(fiky/2m)-I = (+ik2/ 
2m)-'. 

2 h e  case of weak collisions was partially analyzed in Ref. 9. 
3'Local in the sense that the distridution f"nctioh is appreciably perturbed 

in a narrow interval of width -u near resonance. 
4'The force given by (28) does noidescribe the wings of the peak. 
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