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Resonance scattering of electrons by atoms in the presence of an external electromagnetic field is 
discussed. For the case of an isolated resonance, both the probability for bound-state (negative 
ion) production and the resonance scattering cross section are calculated. The photon energy of 
the external field appears in the resonance denominators of the resulting equations, and this 
makes it possible to use tunable lasers in order to approach closer to the resonance and to increase 
both the probability for bound-state production and the resonance scattering cross section. The 
width and shift of the resonance depend linearly on the strength of the external field. The reso- 
nance scattering peak is independent of the external field, while the resonance peak for bound 
state production decreases linearly with increasing strength of the external field. The case of two 
levels of which the upper one is an autoionizing state and is in two-photon resonance with the 
lower one is also examined. The elastic and inelastic (in the ionization channel) resonance scatter- 
ing cross sections are calculated using the Fano method. It is shown that, owing to the presence of 
the external electromagnetic field, scattering takes place not only from the upper quasienergy 
level, but also from the lower one. Cases are discussed in which coincidence of poles and overlap- 
ping of resonances are possible. 

PACS numbers: 34.80.Dp 

1. INTRODUCTION 2. THE CASE OF AN ISOLATED LEVEL 

The investigation of the effect of an external electro- 
magnetic field on electron scattering is not only of theoreti- 
cal but also of practical interest. The elastic scattering of 
electrons in an external electromagnetic field, induced 
bremsstrahlung, and absorption have been the subjects of 
many studies (see, e.g., Refs. 1 and 2). The inelastic collision 
of electrons with atoms in the presence of an electromagnetic 
field has also been intensively studied in recent years (see, 
e.g.; Refs. 3 and 4). These studies may open up new possibili- 
ties for obtaining sources of short-wavelength light, for heat- 
ing plasmas, for investigating highly excited and autoioniz- 
ing states of atoms and the breakdown of gases, and so on. 
The capture of neutrons by nuclei and the formation of mesic 
atoms and mesic molecules in the field of a strong electro- 
magnetic wave has been discussed in Refs. 5 and 6. 

In the present work we investigate the resonance scat- 
tering of an electron with the formation of a bound state. In 
the first part of the paper we examine the case of an isolated 
resonance level. The scattering wave function is obtained in 
the adiabatic approximation, and the probability for the pro- 
duction of a bound state and the resonance scattering cross 
section are calculated. A similar result for the resonance 
scattering was obtained in Ref. 7 by perturbation theory, the 
width and shift of the resonance being taken into account 
phenomenologically. In the second part of the paper we con- 
sider the case of two levels that are coupled by resonance 
radiation. The well-known Fano method9 was first general- 
ized to the case of a periodic perturbation in Ref. 8. This 
method was used to calculate the wave functions and to ob- 
tain the cross sections for elastic scattering and for inelastic 
scattering in the ionization channel. The case of overlapping 
resonances is investigated. 

We shall consider the scattering of an electron and a 
photon by an atom when the incident electron can be cap- 
tured, i.e., when the unperturbed system consisting of the 
atom and the electron has bound states that include the ab- 
sorbed particle. lo The presence of such bound states of the 
unperturbed system substantially affects the scattering in 
the perturbed system. As stationary states we choose the 
states 

i p2 
la,p)erp ( -F~G(p) t ) ,  Ea(p)=Ea+-, 

2m (1) 

in which the electron has a definite momentum p and the 
atom is in a definite statea, together with a separate discrete 
set of bound states 

in which the incident particle is bound. We shall assume that 
all these states are independent and orthogonal, although if 
the states (k ) are metastable they will satisfy the orthogona- 
lity relations only approximately. 

In the case of scattering in an external field the electron 
is induced to emit a photon with the frequency of the exter- 
nal field and forms a discrete state, after which it absorbs a 
photon from the external field and is ejected from the atom. 
We shall regard a resonance level as isolated provided 

where r, and A, are the width and shift of the resonance 
level, and AE, is the separation of the resonance from the 
nearest neighbor level. 

The Schrodinger equation for a system consisting of an 
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atom and an electron in an external electromagnetic field has 
the form 
ihag(t) lat= [H,+V(t )+U]  g ( t ) ,  V ( t )  =V+ei"'+V-e-'"', 

(2) 
where H,, is the free Hamiltonian for the atom and the elec- 
tron, V(t ) is the dipole interaction with the electromagnetic 
radiation field, and U is the interaction of the electron with 
the atom. 

We express the solution of Eq. (2) as an expansion in 
unperturbed wave functions: 

On substituting the expansion (3) into the Schrodinger equa- 
tion (2) we obtain a set of equations for the coefficients c,(t ) 
and c, (p,t ) from which, with the aid of the Fourier transfor- 
mations 

ck( t )  =J dhc, (h+Ek+hw) exp - - ( A a t ) *  

we obtain the following set of algebraic equations for the 
functions c ,  (A ) and c, (p, A ): 

(h-Ek-ha) ck (h)  = 

k' 

+ V ; , C ~ ~  (A-bo)  Ukktck, ( A )  ] 

In order to consider the simultaneous interaction of the 
photon and electron with the atom we must iterate Eq. (5) 
and retain only the terms that contain V + or V - and U. It is 
assumed that an isolated resonance state of energy E, is 
formed. In that case we retain only the terms that involve 
resonance with the level k, i.e., terms containing matrix ele- 
ments for the transition kct(a,p). All the other terms ob- 
tained from the iteration, which contain matrix elements of 
the type kctk ' and (ap)ct(a1p'), make only negligible higher- 
order contributions. Then, introducing the reduced matrix 
element 

we obtain the following set of equations: 

If the field is turned on adiabatically at t-+ - a,, the initial 
free state is 

and the solution of Eq. (7b) can be expressed in the form 

where 

On substituting (8) into (7a) we obtain 

Wk,  a i p i  (h) 6 (h  - Eai (pi)) 
ck ('" ' =h - Ek - fiw - A, ( A )  j- irk (h)/2 ' (10) 

where 

1 W ~ , @ P  1 A~(')=PZ h-Ea ( p )  ' 
a ,p  

a , p  

Then the solution (8) of Eq. (7b) takes the form 

ca (p, A) = <P, a 1 pi, ai) 6 (h - Ea (PI) 
W;P,  k (h) Wk,  aiPi (1)  ' h - Ek - ha - A, (h)  + i r k  (h)/2 

On substituting (10) and (12) into (4) we obtain the fol- 
lowing expression for the complete adiabatic wave function 
(3) in the presence of an isolated resonance: 

where W,,,, (A ), A, (A ), and rk (A ) are taken at il = EaZ(pi). 
It is evident that in Eq. (13) for the wave function, the 

first term corresponds to the initial state (ai) of the atom 
together with an incident particle of momentum pi, and the 
second term corresponds to the capture of the incident parti- 
cle with the formation of a discrete state 1 k ) whose width rk 
and shift A, depend substantially on the strength of the ex- 
ternal field [Eqs. (6) and (1 I)]. The third term describes the 
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resonance scattering. 
From Eq. ( 13) we obtain the following expression for the 

probability amplitude for capture of the incident electron 
with the formation of a bound state (negative ion): 

W k ,  nipi 
Ak ( t )  = Eq (pi) - E ,  - fio - A, + i rk /2  

from which we obtain the capture probability 

The probability amplitude in the limit t+ + co for reso- 
nance scattering from the initial state (aipi)  to the final state 
lafpf) will be 

A,, = - 2ni W i j ~ f ,  k W k .  mipi 

E,, (pi) - Ek - fio - A, + i r , /2  

Then for the differential cross section, integrated over the 
energy of the ejected electron, we have 

do m2 pf -- I W k 9  a f ~ f  1' 1 Wk,  nip, l2 
do - 4n2fi'X [ E , ~  (pi)  - -B,  - ~ W - A , ] ~  + rk2/4  . 

(17) 
In the calculations we have limited ourselves to the reso- 
nance approximation. Actually, the scattering amplitude 
(16) should also include the amplitude for potential (nonre- 
sonant) scattering, but this may be neglected in the presence 
of a resonance since 

IA,,/A, I -I ( ~ = , p , , , p , / ~ $ , , k ~ ~ , , , p , )  r f i Ig1 .  

In the present treatment, the formation of a discrete state 
and the resonance scattering are due to the presence of an 
external electromagnetic field. If the external field vanishes, 
the interaction ceases and so both the probability for the 
formation of a bound state and the resonance-scattering 
cross section vanish. The important point here is that the 
resonance denominator in Eqs. (1 5) and (17) also contains the 
photon energy, and this makes it possible to use tuneable 
lasers to approach closer to the resonance and thereby sub- 
stantially to increase both the probability for the formation 
of a bound state and the resonance-scattering cross section. 
It should be noted that according to the formulas obtained, 
the width and shift of the resonance depend on the strength 
8 of the external electromagnetic field as 8'. It is evident 
from Eqs. (1 5) and (1 7) that the resonance peak for scattering 
is independent of the strength 8 of the external field, while 
the resonance peak for the production of a bound state de- 
creases as 8' with increasing 8 .  In treating the formation of 
a negative ion, the photodetachment width is8 

E ( 8 / c r z ,  8, -E,/e(r>. 

In the case of a negative hydrogen ion (r)  -5 a. u. and 

Ea -0.03 a. u. (Ref. 11). If the energy spread of the incident 
electron beam of energy E- 10eV amounts to AE /E- 
for an external field of strength 8 2 (E~AE)"~/(E (r)) 
- lo6 V/cm we have r 2 AE. 

3. THE TWO-LEVEL CASE 

Now let us consider the resonance scattering of an elec- 
tron by an atom in the case of two levels of which one is an 
autoionization level in two-photon resonance with a low- 
lying discrete level (Fig. 1). The calculations will be carried 
through by the Fano method9 as generalized in Ref. 8 to the 
case of a periodic perturbation. On the one hand, the two- 
photon resonance between discrete levels makes it possible 
to investigate the dependence of the dynamics of the levels 
(and in particular, of the coincidence of poles) on the 
strength of the external field, and on the other hand, it allows 
one to take into account one-photon ionization from the up- 
per level alone. In the case of a one-photon resonance, the 
ionization channel can be neglected and the elastic scatter- 
ing cross section is given by Eq. (35a) with E l ,  = El + h 
+ Rlz  and E' replaced by E.  As the basis wave functions for 

the discrete spectrum we choose the quasienergy wave func- 
tions obtained in the two-photon resonance approximation 
with the periodic perturbation 

turned on adiabatically. If the discrete levels are not degen- 
erate, these wave functions have the form 

(at$,tbt$ze-2imt), 

i (19) m2 ( t )  =exp [- -- (hr2ho) t ] (a2$z+b2~,e-zimt), 
h 

where (r) and E , ,  are the wave functions and energies of 
the unperturbed levels, ill = El + 6,, A, = El + 6, + 2 b ,  
and 
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We neglect the effect of the external electromagnetic field on 
the continuous spectrum and choose the unperturbed wave 
functions 

i 
cpt ,2  (4 t )  = v , , ~  ( I )  exp (- a k t )  (21) 

as the basis functions for the continuum. 
The Schrodinger equation for this problem has the form 

8'4 ( t )  ih- = ( H , + V ( t )  + V ' ( t ) + U )  Y ( t ) ,  
at 

(22) 

where H,, is the free Hamiltonian, which has both discrete 
and continuous spectra, V(t )is the interaction ofthe external 
electromagnetic field (18) with the two resonance levels of 
the atom, V1(t) is the interaction with the electromagnetic 
field causing the ionization (at the upper level) which, in par- 
ticular, may be the same as V (t ) as given in Eq. (1 8), and U is 
Fano's9 "configuration" interaction. 

We express the solution of Eq. (22) as an expansion in 
the quasienergy states (19) of the discrete spectrum of the 
atom and in the wave functions of the continuous spectrum 
(neglecting transitions between the states of the continuum): 

On substituting (23) into (22), we obtain a set of equations for 
the coefficients c , , ~  (t ) and h1,2 ( 2  ), which, as a result of the 
Fourier transformations 

c,  ( t )  = 5 dEct (E+hl+2hw) exp - -El  ( 1 )  
i 

C ,  ( t )  = dEc, (E+ h.) exp (- , ~ t )  , 

i 
hi& ( t )  = J d ~ h , *  (E+h) exp (- T ~ t ) ,  

i 
h ,  ( t )  = J a ~ h ,  ( ~ + h + h o ' )  exp (- 

~t ) 
leads to a set of algebraic equations for the Fourier trans- 
forms: 

(E-h-2ho) c ,  ( E )  =b,* 1 dh[Uhhlh ( E )  4- Vhlh , (E)  1, 

(E-h) hir(E) =Ur8[bic, ( E )  +bzca ( E )  I ,  
(E-h+hol)  hzr ( E )  =V~'*[b,ct  ( E )  + b z ~ z  ( E )  1, 

where 
Uhs(gz l  Ul cpir), VA'=($~ I V'+ 19,~). 

Equations (25) have two linearly independent solutions, 
the first being 

P 
h i r ( E )  =bi [- +z ( E )  8 (E-h) ] 

E-h 

+z  ( E )  6 (B-h+ho' )  h ~ h ( ~ )  bl [E-h+ho. I 

and the second, 

ci ( E )  = C Z  ( E )  =O, h*h(E) =f ( E )  6 (E-A),  
(26b) 

hzh ( E )  =-f ( E )  ( u ~ / v ~ + ~ ~ . )  8 ( E - h + h ~ ' l ,  

where c,(E) and f (E) are two arbitrary functions that are de- 
termined by the condition for the normalization of the wave 
function (23). On substituting (26a) and (26b) into (24) we 
obtain the following complete orthonormal set of the qua- 
sienergy wave functions (23): 

Here 

+z ( E )  8 (E-h+hor)  ) 

and 

(28b) 
where 

A ( E )  =A,  ( E )  +A2 ( E )  , ( E )  =rt ( E )  f r z  ( E ) ,  (29) 

rt ( E )  =2nl UEI2, r 2 ( E )  =2nl VE+hor12. . 
As was shown in Ref. 12, the expression for the shift 

A (E ) should also contain a term with the opposite sign for the 
frequency of the external field as well as the contribution 
from the remaining nonresonant levels, which are not taken 
into account in the present theory. In what follows we must 
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regard A as representing the exact expression for the shift in 
order to take these terms correctly into account. 

Now let us consider the scattering process in which the 
incident particle forms a bound state with the scatterer and 
this state subsequently decays, emitting the particle either in 
the initial channel (elastic scattering) or in some other (ioni- 
zation) channel (inelastic scattering). This process is repre- 
sented by the eigenvector Y (1-+1,2), which at large distances 
represents the sum of the incoming wave and two outgoing 
waves. In order to obtain an expression of the required form 
we express the eigenvector Y (1-+1,2) as a superposition of 
the eigenstates (28a) and (28b): 

where the coefficients B, are determined by the normaliza- 
tion condition and the requirement that the second (ioniza- 
tion) channel not be present in the incident wave at asymp- 
totically large distances. Then we obtain the following 
expressions for the coefficients Bit : 

where S is defined by the equation tan 6 = - ?r/z(E ). 
Specifying the asymptotic expressions for the contin- 

uum wave functions (21) at large distances, 

ry, zkmkl? (A) sin[kl , , (h)  r1,,+6:,:) --112nll,21 Y,,,,,,,, ( P ~ , ~ ) ,  

(32) 
we obtain the following expression for the scattering eigen- 
vector (30): 

exp(2i6:") [ I UEI" + (1-e2'" +exp (--2i61'0') -1 
2i l UEl"l VfE+ha, I' 

exp ( - io ' t )  sin 6 
I 

~ e x p [ i ( k ~ ( E ) r ~ - ' ! ~ n l , )  I Y,.m.(O,. ( ~ 1 )  + - k2.,2 (E+ho,)  

From this we obtain the following expressions for the 
elastic- and inelastic-scattering cross sections: 

, . 

o ( 1 4 2 )  = 
n (21+l) rt ( E )  r2 (El  

k2 ( E + f i o J )  r2 ( E )  (33b) 

If we remove the potential-scattering part 

from Eq. (33a) we can express the cross sections (33a) and 
(33b) in the form 

n (21-l-1) rIZ ( E )  - 
o ( l + l ) =  

5 1 1  

k 2 ( E )  152~-52212 

where 

E,,2=E,+ Wl+2fio+Q1,2,  (36) 

Q,,,='/, {E'+A ( E )  -ir ( E )  /2  
=F [ (E'+A ( E )  -ir ( E )  12) 2+I't"/4]'b). (37) 

It is evident from the expressions (35a) and (35b) for the 
cross sections that the scattering takes place not only from 
the upper quasienergy level, but also from the lower one. The 
appearance of two peaks in the resonance scattering cross 
section is associated with splitting of the quasienergy levels 
in the two-level system. This effect is analogous to the 
Autler-Townes effect for resonance scattering of photons. 
Thus, the presence of an external electromagnetic field leads 
to the appearance of a second term that has a pole at E = E,, 
and consequently to the overlapping of the resonances. 
When the external electromagnetic field is turned off the 
second term in each of Eqs. (35a) and (35b) disappears and we 
have the well-known formulas for elastic and inelastic reso- 
nance scattering in the case of an isolated level. 

The values of the poles obtained in (36) and (37) agree 
with the expressions obtained in Ref. 13 in a treatment of the 
decay of a bound state in an external electromagnetic field 
with a two-photon resonance. The limiting cases of narrow 
and broad resonances were treated in Ref. 13. A substantial 
asymmetry depending on the sign of the two-photon detun- 
ing (an effect of self induced adiabatic passage of the reso- 
nance) was found in sufficiently strong external resonance 
fields. There are no analogous effects in the case of resonance 
scattering, as the derived formulas show. This is evidently 
associated with the assumption that the interaction is turned 
on adiabatically. 

The expressions obtained show that the real parts of the 
quasienergies cross when Tf ( E R e  El = Re &. The pat- 
tern of the interaction therefore changes substantially at the 
point rf = r since the branches of the quasienergies always 
cross when rf(T and always anticross when r'>r. The 
resonance poles coincide (El = E2) when rf = r and E' 

+ A = 0. Then we have a resonance with a double pole. 
On the basis of Eq. (35a), (35b), and (37), in order to 

detect the second peak in the resonance scattering cross sec- 
tion it is necessary that I'' 2 r. In the case of a two-photon 
resonance, r-rf -Ry(g/%,)' (Ref. 8), and in an external 
field of strength tY - 5 X lo5 V/cm we have r - ' - r j ' 
- lop8 sec. However, an intermediate real level E, (outside 
the resonance), if present, may increase rf by two or three 
orders of magnitude. In the case of a one-photon resonance 
the quasienergy levels are more widely split and the condi- 
tion Tf > T is satisfied in comparatively weak fields. An- 
other, more serious, difficulty in detecting the resonances is 
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the high degree of monochromaticity required of the elec- 
tron beam: the energy spread of the beam electrons must be 
smaller than the widths of the resonances. 
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