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A compact expression for the total probability of a process perturbed by a laser field is investigat- 
ed as a function of the field intensity and frequency, or of the parametersx = F/Fo and 6 = eF/  
0(2mI)"~, where Fis  the field intensity, Fo = 21(2rn1)"~/eti is the characteristic intensity deter- 
mined by the decay energy I ,  m is the electron mass, and o is the frequency of the field. In a weak 
field I;y(l), the probability can be represented by a perturbation theory series in e2 or 6 with 
coefficients that depend on I;y /6 ); when g 2 1 it is convenient to transform this series into a series in 
x with coefficients that depend on g 2. For g > l-, = 0.793 (circularly polarized wave) the prob- 
ability contains not only the terms of the perturbation series but also interference terms, which are 
nonanalytic a tx  = 0, oscillate rapidly withx, and have amplitude -X forp decays and -X for 
2y+e+e-. For 6 near unity (16 - 1 I 5 ~ ( 1 ) ,  the oscillations of an appreciable fraction of the 
interference terms cease. For <) 1, the probability contains both perturbation series terms as well 
as simplified interference terms, and it corresponds in the limit 6- co to the process in a constant 
field. For the formation of the perturbation series terms de Broglie lengths are important, whereas 
for the interference terms barrier and larger lengths are important. 

PACS numbers: 23.40. - s, 13.40.K~ 

1. INTRODUCTION 

In Ref. 1 we considered the influence of a laser field on 
nuclearp decays on the basis of the differential distribution 
under the condition that the field intensity F satisfies 
F<Fo = 21 (2mI)1'2/di, where F,, is the characteristic inten- 
sity determined by the decay energy I and the electron mass 
m, and that the field frequency satisfies o 5 I/fi. The decay 
probability, determined by the parameters 

was represented by an asymptotic expansion in powers ofx  
(which can be reproduced by perturbation theory) and small 
terms that are nonanalytic at x = 0 and have coefficients 
which depend on the frequency od6. The effective values of 
the quantum numbers of the final state were also deter- 
mined, and a number of intermediate differential distribu- 
tions was obtained. 

Investigation by this method of the region in which 
6- 1 and effects of absorption from the wave and emission 
into the wave of a small number of photons are important 
proved to be difficult. However, if we are interested only in 
the total probability of the process, it can be obtained in 
accordance with the optical theorem as the imaginary part of 
the elastic scattering amplitude or directly from the square 
of the matrix element integrated over the quantum numbers 
of the final states before integration over the time. For the 
probability of the process one then obtains a comparatively 
simple expression in the form of an integral with respect to 
the time of the propagator of the light charged particle. This 
expression is used in the present paper to study interesting 
interference effects that are due to the field and take place at 
large distances from the region of formation of the process 

unperturbed by the field, at which it might appear that the 
field could no longer influence the total probability. The in- 
terference effects are described by terms nonanalytic at 
x = 0, and we shall see that for a number of processes they 
exceed the perturbation theory terms. 

Restricting ourselves for simplicity to the case of a cir- 
cularly polarized wave and a nonrelativistic situation, when 
the kinetic energy I of the final particles is much less than 
mc2, we obtain the following expression for the total prob- 
ability of the process in unit time (the system of units is such 
that A = c = 1): 

" dv 
WA-r J exp ib ( I - E ~ ) v + ~ ~ -  

-01 
(v-ie)  L { I v 

Here, t2 and t ,  are the times of emission and absorption of an 
electron in the amplitude of forward elastic scattering. The 
coefficient c, is proportional to the probability W,, of the 
process in the absence of the field, and its value can be readily 
recovered when the field is switched off, i.e., for 6 = 0: 

The value of A  depends on the process. Thus, for the 
total probability ofp  decay (for example, T-He3 + e- + 7) 
A =  9/2; but if in the B decay the neutrino energy is fixed (I 
being understood as the previous value without the neutrino 
energy) or the process v + T-+He3 + e- is considered, then 
A = 3/2. The probability of production of a nonrelativistic 
e+e- pair by two y photons in the presence of a circularly 
polarized wave is also given by the expression (2), in which it 
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is necessary to replace the square of the charge e2 by 2eZ and 
assume A = 3/2. We do not take into account the Coulomb 
corrections. 

2. SLOWLY VARYING FIELD OF ARBITRARY INTENSITY 

For arbitrary x and f)1 we can expand sin2v in (2) in 
powers of v: 

-0 

(4) 
The integrals here can be expressed in terms of the Airy 
function and its derivative. Indeed, using the representations 

" dz 
m 

2 ~ ~ ~ ' ( - 2 - ~ 1 a 4  =J e ( z )  -2 J atm ( t2-u) ,  
-u 0 

we substitute (5) with y = t - u in the right-hand side of (6) 
and integrate over t, obtaining 

By differentiating with respect to u and integrating by parts, 
we readily obtain other integrals of this type, connected by 
the recursion relation 

j d ~ z ~ - ~  exp i UZ-  - m a  I (  3 I )I 

Using these relations in (4), we obtain for A = 3/2 

Similarly 

In Eqs. (9) and (lo), 

Note that replacing I in (9) by 1 ( 1  - q),  where 11 is the 
neutrino energy in units of I, and multiplying this expression 
by (1 - 11)1'272dv, we obtain up to a constant factor the dif- 
ferential distribution with respect to the neutrino energy for 
B decay. Integration of this expression with respect to 11 from 
0 to co again gives (10). 

3. WEAK FIELD OF MODERATE OR HIGH FREQUENCY 

If the field is weak, X< 1, and the frequency is not low, 
i.e.,pS 1, then f EX@( 1. This is the simplest case of pertur- 
bation theory. Expanding the exponential in (2) in a series in 
g2  and writing sin2v in exponential form, we arrive at the 
integrals 

t ( t - i v e a = 2 ( + v ) ( - )  + ,  e . c f0 .  (12) 
-OD 

By means of this expression, we obtain from (2) a representa- 
tion of WA as a series in powers of c with coefficients that 
depend on 8: 

w ~ = W o ,  r{l+g2ki, * ( B )  +E4kk , ( B )  + . . . ), (13) 
kl ,  Y, ( p )  =-'/r-'/sB2+'/e.~'1t (B+2) '+'/6p'h (8-2)'Is, (14) 

kt ,  *ll(B) =-'la-'/oB%+'/isp-"'(8+2) '~~+i/up'"~(B-2)'~1. (1 5) 

If 8 < 2 ,  the terms with (P - 2)" in (14) and (15) must be 
omitted, since the contour with respect to t in (12) can in this 
case be readily closed below, where there are no singularities 
within the contour. 

4. WEAK FIELD OF LOW FREQUENCY 

More interesting is the case of a weak field of low fre- 
quency,x(l, P)1. In this case 6 2  1, i.e., this parameter is 
not small. Nevertheless, the contribution to Win (13) made 
by perturbation theory, i.e., by the terms -f2,. . ., is re- 
tained, remains small, and takes the form of an expansion in 
powers ofx ', since forp) 1 the termsg 2n k, (p )can be conve- 
niently represented in the formx2"p2" k, (P) and the func- 
tionsp2" k, (p ), which are finite a t p  - ' = 0, can be expanded 
in powers of the small parameterp -' = x 2/( 2. In this case, 
the coefficients c, (6 ) of the resulting series in x ', 
I f  E2ki ( p )  +E'kr(P) + . . .=1+xZci ( E )  +x'cz(E) + . . . , (16) 

will be polynomials of degree n - 1 in f -2. 

The perturbation theory terms are formed at v -B - ', 
i.e., times and lengths 

which are characteristic for the formation of the process un- 
perturbed by the field, are important for them. 

When f is not small, not only the perturbation terms 
contribute to (2) but also the neighborhoods of the saddle 
points. These contributions are associated with the interfer- 
ence of electron waves traveling along different paths, and 
here it is the barrier distances, much greater than the charac- 
teristic de Broglie wavelength, that are important. Interfer- 
ence terms in decay probabilities were obtained for the first 
time in Ref. 2. 
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g.==g (v.), g."=g"(v.) P O .  

FIG. 1. 

We consider the contribution of the saddle points to the 
integral (2), written in the form 

g(v) = (e-'-1) V+V-' sin2 v, A=i3~=~'IX. 

For the derivatives of g(v), we ha.ve 
sin v 

(19) 
v 

2 sin v 
g"(v)=-[( v cos v---)2-sin2 v v] . 

The saddle points u = v, are roots of the equationgl(u) = 0 or 

f (v) = 1 - p .  (21) 

A graph of the even function f (v) for v > 0 is shown in 
Fig. 1. At the points v = 0,2.04, 3.82, ... this function attains 
an absolute maximum, an absolute minimum, a second max- 
imum, etc., these being equal to 1, - 0.586, + 0.229, etc. 
The right-hand side of Eq. (21) attains the same values at 
g+ = CO, 6-, = 0.794, 5+, == 1.139, etc. Thus, for 
1.139 < 6 < co there is only one pair of real saddle points 
f v,& ), while for 6 < 6-, = 0.794 there are none at all. It is 
readily seen that the complex sacldle points make an expon- 
entially small contribution to the probability, and we shall 
ignore them. 

As 6 approaches unity, the number of saddle points in- 
creases and becomes infinite at 6 := 1. It is now convenient to 
denote the increasing (but finite for 6 # 1) sequence of saddle 
points by v, & ),s = 1,2,3. . . . In the limit 6 = 1, this sequence 
becomes infinite, and 

These are roots of the equations 

tanv=2v, vfO; (23.1) 

sin v=0, vZO, (23.2) 
into which Eq. (21) decouples for 6 = 1. It can be seen from 
(20) that gn(v, ) < 0 at saddle points with odd s 

and gn(v,) > 0 at points with even s. In the simplest case, 
when the domains of influence of the saddle points do not 
overlap, for the total contributioin to the integral (18) from 
the pair of saddle points + us ,us :> 0, we obtain 

The upper and lower signs refer to g:(O, or, respectively, 
even and odds. If the expression (24) vanishes, we can obtain 
deeper expansion terms. 

By summation over v, with allowance for the perturba- 
tion theory terms we obtain 

+ v ~ " ( ~ ) " ~ c o s ( A ~ . ) ] + . . . } .  
(26) 

.=z. t... 

Note that for 6- 1 (but not too near unity) we have 
v, - 1, g: - 1. Therefore, the interference terms (24) in the 
integral (1 8) have the orderA -'I2 -X 'I2 independently ofil. 
But in the probabilities (25) and (26) they are of order x and 
x 4, repectively, because of the strong dependence onp  of the 
coefficient c, . 

For g s l ,  there is only the one pair of saddle points 
+ v,, and 

g" (v,) =- - ( 1 - L +  ...). 
E 3Ea 

In this case, the probabilities (25) and (26) go over into the 
probabilities for a weak, slowly varying field; see (9') and 
(10'). If the frequency corrections are ignored altogether, we 
obtain the probabilities in a weak constant field, which agree 
with the results of Refs. 3 and 2 for the decays ro+e+e- and 
r-woev if the energy release in these decays is assumed to be 
small, i.e., we go to the nonrelativistic limit, and in the 
expression for W,/, the square of the charge eZ is replaced by 
2e2. 

For R 1 and X< 1 the v -6 -' are important for the 
formation of the interference terms, i.e., times and lengths 

which are of the order of the time of motion and distance to 
the barrier and exceed by x -' times the time and length of 
formation of the unperturbed process. 

5. CEASING OF THE OSCILLATIONS OF THE INTERFERENCE 
TERMS FOR SELECTED VALUES OF THE PARAMETER 6 

In accordance with (21), the positions of the saddle 
points are determined solely by the parameter 6. As a rule, 
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the contributions from the saddle points give functions that 
oscillate rapidly with varyingx and 6, since 21 /w = 6 /x> 1. 
However, one can find values of 6 at which not only 
g1(vS) = 0 but also g(vs) = 0. For these selected values of 6, 
the contributions from some saddle points do not oscillate 
with variation ofx. Let us consider how this happens. 

We note first that at a saddle point 

sin v. 
g (u.) =2 sin v. (- - cos u. . 

V s  ) 
Thus, g(v, ) = 0 if v, (5 ) is equal to a nonvanishing root w 

of one of the equations 

tan w=w, 

sin w=O. 

At saddle points us (5) satisfying (30.1) or (30.2), 

To each saddle point v, (5 )satisfying (30.1) there corresponds 
in accordance with (2 1) 

E2=E."=I/sin2 v.=I+cot2v,=I+i/v~, (32) 

i.e., it has a corresponding value 6, always greater than uni- 
ty. The roots of Eq. (30.1) are determined by4 

the smallest root w, = 4.49 corresponding in accordance 
with (32) to the largest 6 : = 1.05. The proximity of this val- 
ue to unity means that with roots w, of Eq. (33) there can 
coincide only the saddle points us g )  having the same odd 
s 2 3, since it is only these that for 6 near unity have values 
near w, [cf. (22.1) with (33)l. 

Thus, for 6 in the interval 1 < 5 1.05 there exists a 
sequence of 6: values for which the first term of the sum 
withs = k 2 3 in the probability W,/, ceases to oscillate a s x  
varies, becoming instead a constant and leading to a linear 
negative function of x exceeding the perturbation theory 
corrections. In the probability W9/,, the corresponding 
terms vanish, since they contain, not cos(Ag, ), but sin(Ag, ), 
and therefore in the orderx there is no such effect. 

The saddle points v, (6 ) can satisfy the second equation 
(30.2) only at 6 = 1, being equal to its roots with the same 
even s: 

Since g"(v,) = 4/77s> 0 at these points, at 6 = 1 the entire 
second sum over the evens in the probability W9/, reduces to 
the number ~ - ~ g  (4) = 1/90, leading to the additional term 
(7 /96)~  4. The terms of the first sum decrease with increasing 
s as sF4, remaining rapidly oscillating functions of X. Both 
sums are formed, as before, at barrier distances by virtue of 
the good convergence of the series ins. 

In the probability W,/, at 6 = 1 the second sum vanish- 
es, and the terms of the first, decreasing ass- ', oscillate with 

varyingx. However, 6 = 1 is a limit point of the sequence of 
values gk ,  k = 3, 5,. . ., for which, as we have shown, the 
term withs = k of the first sum becomes a constant. One can 
show that for large k-fl)  1 the other terms with s- k cease 
to oscillate, but allowance for them by the method of deepest 
descent becomes unsuitable because of the strong overlap- 
ping of the regions of influence of the distant saddle points. It 
is also difficult to sum these weakly decreasing terms. All 
this makes it necessary to use a different method to calculate 
the interference terms in W3,, at 6 = 1. 

We represent the integral (18) in the form of the sum 
Jo + J+ + J- of three integrals over the intervals 
- V< v < V, V< v < a ,  and - oo < v < - V, respectively, 

taking V  large:^ -'I2( V(X -'. Then the contribution Jo to 
W,/, is given by the expression (25) with v, < V, and for 
R =J+ +J- wehaveatg= 1 

" dv sin2 v sin2 v 
R= J [exP ( ip  ) -i exp (-it+)] . (35) 

E 

We represent R as a sum of integrals over intervals of length 
77/2 and introduce in each of them the variable x = 2v - n r  
instead of v: 

Ignoring the corrections of order N - ', we replace nz- + x by 
n r .  Then 

x [lo ( 2 )  sin(z-n/4) + ( -1 )  "E, ( z )  cos (z-nl4) 1 ,  (37) 

z=B/nn, 

where Jo(z) and Eo(z) are Bessel and Weber functions. Impor- 
tant in the sum are n - f l )  1, i..e, Z- 1. Therefore, the sum 
can be replaced by an integral, and the term with Eo(z) can be 
ignored because of the rapid oscillation of ( - 1)". Then 

- dz 
~ l x  [ J I .  ( 2 )  sin ( z  - 2) 

0 

In accordance with formulas 6.731, 1, 2 in Ref. 5 

Using the fact that 

ptb<N=2 v/r~+'/~<p, (40) 

we obtain for the correction integral in the square brackets of 

sin 2B 
j $ ~ . ( ~ ) ~ i ~ ( ~ - ~ )  = 2  B(2n)t . B = - > l .  Nx B 
B (41) 

Thus, for 6 = 1 and X( 1 the probability W,/, is determined 
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by the expression (25), in which the sum over the even s is 
equal to zero, the sum over the odds contains contributions 
of the saddle points v, < V, which oscillate withx, while the 
contribution from J v J  > V leads to the appearance in the 
square brackets in (25) of a negative constant term and a 
small oscillating term: 

It is easy to show that for N satisfying the condition (40) the 
probability does not depend on IV, i.e., the small oscillating 
term in (42) is compensated by the contributions of the sad- 
dle points v, near V. 

F o r c z  1, the most important result is the appearance in 
W3,, in the curly brackets of (25) of a nonoscillating correc- 
tion term, which is equal to - x /'4, exceeds the perturbation 
theory corrections, and is formetf for v-P>l, i.e., at times 

which arex -' times greater than the barrier values and ex- 
ceed by x -' times the formation time of the unperturbed 
process. 

6. CONCLUSIONS 

Thus, interference effects appear in the total probability 
of the process with a neutral particle in the final state (A = 9/ 
2) only in the terms -X 4, whereas they already appear in the 
terms -X in the probability of the process in which the elec- 
tron energy in the absence of the field is fixed (A = 3/2). 
Naturally, when there is no integration over the energy of 
the neutral particle the interference and threshold effects are 
manifested more clearly. The latter are particularly strong 
for 1 - 1 5 1 when the threshold number 
lo-'(c ' - 1) of photons absorbed from the field becomes of 
order f 1 and in the calculation of the corrections it is not 
only the absorption of a large number of photons that is 
important but also the absorption and emission into the 
wave of a small number of them. I'n the latter case, almost the 
entire energy of the process is used to form the effective elec- 
tron mass. Leaving the region of formation of the unper- 

turbed process, the electron oscillates in the field of the 
wave, returning repeatedly to the point of emission and in- 
terfering with an electron wave that leaves this region later. 

A high degree of proximity of { to unity requires for 
fixed field F rather precise specification of the frequency: 

For cz 1, this means that 1 Am 1 5 m2/I, i.e., the effect re- 
quires for its observation times t 2 (Am)-' 2 I~-'-I p '~- '  
[cf. (43)l. 

Summarizing, we can say that the appearance in the 
total probability of interference corrections that oscillate 
 with^ and are formed at barrier distances much greater than 
the de Broglie wavelength was expected; see Ref. 2. It is 
interesting that these terms can be more important than the 
corrections made by perturbation theory. For a constant 
field, an oscillating term of such type was obtained in Ref. 3. 
It is very interesting that some of the oscillating terms cease 
to oscillate withx for special values of{ near unity. It is also 
instructive that the corrections to the probability in a weak 
field calculated perturbatively are formed at distances of the 
order of the de Broglie wavelength of the electron, whereas 
much larger scales, determined by the magnitude of the 
field, are manifested in the formation of the interference cor- 
rections, which cannot be reproduced by perturbation the- 
ory. All these corrections are small to the extent that the 
field is small, i.e., they are determined by some power of the 
parameter x. 
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