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The lifetime of a metastable current state of a superconducting junction is determined by classical 
fluctuations at temperatures above a certain temperature To and by quantum fluctuations at 
temperatures below To. We find the temperature and current dependence of the lifetime close to 
To for any viscosity and in the two limiting cases of large and small viscosity for the whole 
temperature range. 

PACS numbers: 74.50. + r, 74.40. + k 

1. INTRODUCTION 2. TRANSITION PROBABILITY AND EFFECTIVE ACTION 

The current state of a Josephson junction corresponds 
to the minimum of the free energy U(q5 ) of the junction as 
function of the phase difference of the two superconductors. 
These minima are separated by a potential barrier. The life- 
time of such a state is finite. At not too low temperatures 
such a state disintegrates due to thermal fluctuations. At 
low temperatures quantum tunnelling becomes important. 
For a sufficiently large capacitance of the junction the tun- 
nelling time is large. In that case the adiabatic approxima- 
tion is applicable for the potential U(p  ) and the transition 
probability can be obtained employing the usual quantum 
mechanical f ~ r m u l a . ~  In a number of  experiment^^.^ junc- 
tions with a small capacitance were used. In such systems, 
quantum-mechanical tunnelling is determined not only by 
the change in a single coordinate (the phase difference p) but 
also by a large number of electron degrees of freedom. Both 
real and virtual transitions are then important. 

In the present paper we show that after averaging over 
the electron degrees of freedom the effective potential turns 
out to be retarded; we find the form of this potential and 
solve the problem of the quantum mechanical tunnelling 
through a retarded potential. 

At zero temperature the problem of the lifetime of the 
metastable state of a tunnelling junction was considered phe- 
nomenologically by Calderia and Leggett6 and microscopi- 
cally in Ref. 7. 

In the present paper we find the decay probability of a 
current state at any temperature. 

Ambegaokar et a1.' gave a microscopic derivation of the 
effective action. In what follows we express the transition 
probability in terms of the effective action. We study the 
various limiting cases for the temperature dependence of 
that probability. We show that for any current below the 
critical one there exists a critical temperature To above 
which the transition probability is determined by the ther- 
mal fluctuations and described by the classical formula. We 
find how To depends on the current through the junction and 
obtain a general expression for the quantum-mechanical de- 
cay probability of the metastable state for currents close to 
the critical one in the limiting cases of small and large values 
of the shunting resistance at arbitrary temperatures. 

For a given current J the energy U(p  ) of a Josephson 
junction equals9 

1 I .  
U(cp) =- - cp- - cos 2ql, e 2e 

where 2p is the phase difference of the order parameters and 
J, the critical current of the junction. For currents J less 
than J,  the energy U (p ) as a function of p has local minima 
separated by a barrier 

At sufficiently high temperatures the lifetime of the metasta- 
ble state is determined by thermal fluctuations and propor- 
tional to exp(SU/T). When the temperature is lowered, 
quantum fluctuations which destroy the coherent state de- 
scribed by the phase p become important. The change in the 
collective variable p is connected with changing a large 
number of single-electron states. The probability for quan- 
tum mechanical tunnelling is therefore exponentially small. 
We shall assume below that this probability is sufficiently 
small so that the system can reach thermal equilibrium as 
long as the collective coordinate p is in the classically acces- 
sible region on one side of the barrier. 

The transition probability W after a time t = tf - ti 
eauals 

where $ f ,  r+V, Ei are the w%e functions and energy of the 
final f and initial i states and H is the total Hamiltonian of the 
system: 

A=A,+BR+B,+Q2/2C+cD2/2L. 
h h 

(4) 
In equation (4) HL and HR are the Hamiltonians of the su- 
perconductors to the left and the right of the junction: 

x$Lc (r) $L-a(r)$~-a(r) 9 ( 5 )  
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FIG. 1. Integration contour C,. 

$=, (r) is the operator annihilating an electron with spin a, 

Cis the capacitance of the junction, L the inductance of the 
circuit, @ = JA-d 1 the toial magnetic flux in the circuit, A 
the vector potential, and H ,  the tunnelling Hamiltonian: 

We can write Eq. (3 )  for the transition probability Was an 
integral over the contour C,  shown in Fig. 1, 

We use a Hubbard-Stratanovich transformation in or- 
der to get rid of the q4 terms in the Hamiltonian. Proceeding 
as in Ref. 8 we get for the S-matrix the expression 

S= J D ~ A ~ ~ A ~ D V F  exp (8) 
c, 
h 

where A,,, are complex functions, T the ordering operator 
on the contour C,,  

The quantity V(t ) in Eq. (9) has the meaning of the po- 
tential in the junction. In zeroth approximation in the trans- 
parency of the barrier the path integral over the modulus of 
A can be evaluated by the steepest-descent method. The mo- 
dulus of A is then replaced by its equilibrium value which is 
independent of coordinates and time. After averaging over 
the electron states there appear in the effective Hamiltonian 
terms proportional to the quantities 

(eV-aq la t )2 ,  ( V q  ( r )  - e A )  ', (10) 

and with coefficients proportional to the volume of the su- 
perconductor. The path integral over Vcan then be evaluat- 
ed by the steepest descent method. In that approximation 

eV ( t )  =aq /a t .  (11)  

Summation over the initial (i) and final ( f )  states in Eqs. (3), 
(7)  means also integration over the magnetic field vector po- 
tential A. This integration can be performed by the steepest- 
descent method, which means the substitution 

eA= Vq ( r )  , em =nN-9, (12) 

FIG. 2. Integration contour C,. 

where N is the number of flux quanta in the circuit at the 
initial time. We shall assume that the junction inductance L 
is sufficiently large and that the magnetic energy is impor- 
tant only when N$- 1. The quantity p changes by n- in the 
transition from one metastable state to another. Apart from 
an unimportant constant the quantity @ ' / 2 L  can thus be 
replaced by - Jp /e, where J i s  the total current in the cir- 
cuit. For large inductances we can assume that the total cur- 
rent J is constant. 

Taking all the foregoing into account we can write the 
transition probability Was a trace over electron states and a 
functional integral over the phase p :  

where the contour C, is given in Fig. 2. 
As we noted in the Introduction and shall prove in what 

follows, the averaging over the electron states leads to the 
arising of a potential barrier for the coordinate p. We shall 
assume that the barrier which occurs is quasi-classical. We 
assume that in the path integral (13) the initial state corre- 
sponding to the end points of the contour C, lies to the left of 
the barrier and that the final state corresponding to the point 
tf on the contour lies to the right of the barrier. In all other 
points of the contour the integral is taken over all values ofp. 
The transition probability was written in Refs. 10, 1 1  as a 
path integral. 

A We change in Eq. (1 1 )  to the interaction representation 
in H,. In second order in the barrier transparency the transi- 
tion probability W takes the form 

where 

Averaging in Eq. (15) over the electron states leads to the 
appearance of the Green functions of the left- and right-hand 
side superconductors for zero transparency of the barrier. 
Their dependence on the potential e V = d p  /at reduces thus 
to a trivial phase factor. Separating these factors, as was 
done in Ref. 12, we get 
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x(Ta , ( t , ) a ,+ ( t ) ) - cos (q ( t )+cp ( t l ) )  

x <'Fa, ( t )  a, ( t , )  ) ( Taw+ ( t i )  a,+ ( t )  )). (16) 
The indexes p and Y number the states in the left- and right- 
hand side superconductors. The averaging in Eq. (16) is per- 
formed without the potential V(t ) for real values of the order 
parameters A , ,  . The Green functions depend only on the 
energy of the states p and Y and have a steep maximum close 
to the Fermi surface. The matrix element IT,, 1' averaged 
over these states can be expressed in terms of the resistance 
of the junction above the transition point. Summation over 
the states p and Y leads to the appearance of the Green func- 
tionsg(t,t ') andl: (t,t ')integrated over the energy variable. As 
a result Eq. (16) becomes 

-cos ( q  ( t )  +q ( t l )  )FL(t, ti)FR(t,, t ) ) .  (17) 
These Green functions can be expressed in terms of retarded 
and advanced Green functions in the same way as was done 
in Ref. 7. Therefore, Eqs. (14) and (16) express the transition 
probability as a path integral over the variable p (t ). 

3. EXTREMAL ACTION 

With exponential accuracy the transition probability is 
determined by the extremum of the action A [p 1. The extre- 
ma1 trajectory corresponding to real t determines with quasi- 
classical accuracy the motion in the classically accessible 
region. The extremum of the action then corresponds to val- 
ues ofp  (t )which are equal on the two sides of the contour." 
Such sections of the contour do not contribute to the action. 
One can thus divide the whole trajectory into three parts: the 
first is the motion in the classically accessible region up to 
the instant t, of tunnelling which we put equal to zero; the 
second is the tunnelling process (motion along imaginary 
time along the vertical axis) and, finally, the third is motion 
in the classically accessible region. We shift the contour of 
integration so that the vertical section goes through t = 0 
(instant of tunnelling). The value of the path integral does 
not change when the contour is moved in this way. Up to 
exponential accuracy the transition probability W equals 

The factor of the exponential in (18) is proportional to 
tf - ti and is determined by the deviation of p from its 
extremal value. In this paper we restrict ourselves to calcu- 
lating the index of the exponent in Eq. (18). 

We find the function pextr from the integral equation 

6A [cp] /69=0. (19) 

One can verify that the Green functions in Eq. (17) have the 
properties 

g( t ,  t i )  =-g(t*,  t i*) ,  F ( t ,  t1) =F( t* ,  t l*) .  (20) 

The solution of Eq. (19) thus satisfies the condition 

It also follows from the properties (20), (21) that we can in 
Eqs. (14), (17) cancel the contributions from the regions 
whenever one of the arguments t or t, lies on the section of 
the contour parallel to the real axis. The contribution to the 
extremal action comes therefore only from the vertical sec- 
tion of the contour. Making the substitution t = - i r  we get 

., .. 

(22) 
whereg(r) and F (7) are Matsubara Green functions. The last 
term in Eq. (22) has been added because a tunnelling junction 
often turns out to be shunted by the normal resistance R,, . 
The contribution to the action arising from this resistance is 
obtained from Eq. (17) in which the Green function g(r) is 
replaced by its value in the normal metal. This substitution is 
justified if the main contribution to the shunt resistance 
arises from a single tunnelling junction inside the normal 
metal. Such a situation occurs, apparently, in Nb junctions. 
In these junctions there are regions of the normal phase near 
the barrier. These regions, in which the gap in the excitation 
spectrum is small, determine the normal current I = V/Rs, 
through the junction at low temperatures. The case is also 
possible when the shunt is a long normal-metal short-circuit. 
We must then replace sin2p/2 in the last term in Eq. (22) by a 
periodic parabola p2/4 (with period 27-4. In most limiting 
cases considered below p is small and this substitution is 
unimportant. The resistance of the junction in the normal 
state R, equals 

R,-'=R,~'+RN-'. (23 

The resistance RN determines the magnitude of the critical 
current through the junction.13 

We can look for the solution of the nonlinear integral 
Eq. (19) with the functional A [ p ]  determined by Eq. (19) in 
the form of a Fourier series - 

p(r) -9.C a. cos ( 2 z T ~ n ) .  (24) 
a-1 

In a number of limiting cases it is possible to find an analyti- 
cal expression for the coefficient a, of the extremal action 
A [p,,,,] and the transition probability W. In the model of 
quantum tunnelling with friction these cases were studied in 
Ref. 14. 

4. HIGH TEMPERATURES 

At sufficiently high temperatures T >  To the unique so- 
lution of Eq. ( 19) is time-independent: 
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In this case A = U (po)/T and U ( p  ) is given by Eq. (1). The 
point p0 corresponds to the maximum of the energy U ( p  ). It 
is convenient in what follows to take for the energy origin the 
point where U ( p  ) is a minimum. For that choice of energy 
origin the partition function Z gives merely a multiplying 
factor to the exponential. With exponential accuracy the 
transition probability equals 

W-exp {-6U/T),  (26) 

where the quantity SU is given by Eq. (2).  This solution cor- 
responds to the classical transition due to thermal fluctu- 
ations. When T >  To this solution is stable. Expanding the 
action A [ p  ] in powers of a, all coefficients of a: are positive. 
The temperature To at which quantum tunnelling becomes 
important is determined by the condition that the coefficient 
of a: vanishes. Close to that temperature 

A [ c p ]  =U (q0) /T+Ba,2+B,ai'+DaIZa2+Ea,2, (27) 

where 
n 

K ( I )  + ( L  (0) +L ( I )  ) cos 2cp.4- y] ; 
Rshe 

n  
+0.5L (2 )  ] - - 

16Rsgg ' 
D=- I/, sin 2q0[L(0)  +2L(1) +L(2)  1 ,  (28) 

4n2CT K(2)  pos 2cpo E= - R +- 
2 

+- 
2 [L(O)+L(2)1+- .  

e2 R~hee 

The quantities K (m) and L (m)  in Eqs. (28) can be expressed in 
terms of the Matsubara Green functions g(w) and F(w) 
through the formulae 

For superconductors without paramagnetic impurities these 
functions are equal to 

(30) 
If the capacitance C is sufficiently large, or the shunt 

resistance is small, or the current density is close to critical, 
the temperature T04Tc.  In that case we have for supercon- 
ductors without paramagnetic impurities 

where F is a hypergeometric function. When the supercon- 
ductors are identical Eqs. (3 1) for K (m) and L (m) become 

The temperature To is determined by the equation B (To) = 0. 
If To(Tc this equation has the form 

(33) 
The quantity C * has the meaning of a renormalized capaci- 
tance. The transition probability is determined by the extre- 
ma1 value of A [ p  ] with respect to p,, a l ,  a, and is equal to 

The coefficients B, B,, D, E in Eq. (34) are determined by 
Eqs. (28) in which we must put 

sin 2cp0=J/J,, cos 2v0=- [ I -  ( J / J , )  ' 1  '". (35) 

Equation (33) is valid for such values of current and tempera- 
ture that the coefficient B < 0 and sufficiently small so that 
the second term in Eq. (33) is small compared to the first one. 
For sufficiently large values of the current or the tempera- 
ture when B > 0 we must retain in Eq. (34) only the first term. 

When To(Tc we find from Eqs. (28), (32), (34) 

where 

In the point To there appears thus a jump in the second 
derivative of the logarithm of the transition probability with 
respect to the temperature (with respect to the magnitude of 
the current). This singularity is smeared out by fluctuations 
near the extremal trajectory. The corresponding calculation 
neglecting dissipation was performed in Ref. 15.  

5. CURRENT CLOSE TO CRITICAL 

For currents close to critical the potential barrier is con- 
centrated in a narrow region near p = ~ / 4 .  We therefore 
look for p ( ~ )  in the form 

cp (T) = i / z  arcsin (J/J,) +@ ( z )  , 1 @ ( z )  1 <I .  (37) 

In this case the temperature To is small compared to Tc . The 
effective tunnelling time TSA - I .  We can thus use for the 
action (22) the adiabatic approximation 
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(38) 

Writing @(T) in the form 

@ ( r )  = 2 b. exp ( i . 2 n T m )  

and substituting this expression into Eq. (38) we get 

Minimizing the functional Ao[p] with respect to the Fourier 
coefficients b, we get a set of equations for these coefficients: 

One can solve Eq. (40) analytically for any temperature in 
two limiting cases: small and large shunting resistance. 

A. Small shunting resistance (2rC*RS, To ( l )  

For sufficiently small values of the shunting resistance 
when the quantity Rsh C * is small compared to the charac- 
teristic tunnelling time we can neglect the first term in Eq. 
(40). The resulting equation has the exact solution: 

b,=B exp ( - b  1 n 1 ) , B=nT/J&,q, 

th b=BIX. (41) 
Up to terms of second order in the capacitance C * we can 
obtain the action A by substituting the solution (41) into Eq. 
(39): 

where To is given by Eq. (33). To first order in the parameter 
277-C *R,, To( 1 the effect of the capacitance has been re- 
duced to a renormalization of the temperature To. 

B. Large capacitance 

For large values of the capacitance or large values of the 
shunting resistance the equation for the phase reduces in the 
main approximation to a differential equation: 

In this approximation the calculation of the lifetime reduces 
to the quantum mechanical problem of the tunnelling prob- 
ability through a quasi-classical barrier. The solution of Eq. 
(43) has the form 

where p, > p2 > p, are the roots of the cubic equation 

X ( P ~ - ~ / ~ C ~ ~ - - E ' = O .  (45) 

The extremal energy E * for which tunnelling occurs is deter- 
mined from the condition of periodicity of the function p(r) 
with period 1/T. From this condition we get 

where K (k ) is a complete elliptical integral. 
Expanding the function @(T) in a Fourier series we get 

for the coefficients b, the equation 
nn2 nnK (k')  

bn+o- ((Pi-(P') 2kZKRk) 

We can obtain the action A up to terms of first order in R,, 
by substituting the solution (44) into Eq. (39): 

1 1  2n 
X ( ( P , - ( P ~ ) ~ F ( - ~ , ~ , ~ ; (  )') +--;x nb.'. 

(Pi+(P2-2~3 Rsh(! n-i 

The temperature dependence of the lifetime was found 
numerically in Ref. 16, neglecting dissipation. At tempera- 
ture T = 0 Eq. (48) is equal to 

where the quantities To and C * are given by Eq. (33). Expres- 
sion (49) is the same as the result of Ref. 7 and differs from 
the phenomenological result of Ref. 6 only by the renormal- 
ization of the capacitance. 

The resistance of the junction at zero temperature was 
denoted above by R,, . If R,, is infinite the main effect at low 
temperatures is the renormalization of the capacitance. One 
needs not take into account the exponentially small correc- 
tions to the resistance. If To is of the order of T, we must use 
for the effective action the general expression [Eq. (22)l. In 
that case the strong dispersion both of the potential barrier 
and of the magnitude of the resistance is important. 

6. CONCLUSION 

The lifetime of the metastable current state of a super- 
conducting junction is determined with exponential accura- 
cy by the effective action A (T,J). At a temperature To given 
by Eq. (33) there occurs a change in regime from classical for 
T >  To to quantum mechanical for T < To. In the point To the 
derivative dA /dT is continuous but there is a jump in the 
second derivatived2A /dT 2. When the temperature is further 
lowered the quantity A ( T )  increases to a finite value at T = 0. 
The temperature dependence of the effective action is deter- 
mined by the magnitude of the parameter 277-T$,, C *. For 
small values of this parameter A ( T )  has a simple form [Eq. 
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(42)l. In that case A (0) = 1.5 A (To). In the opposite limiting 
case (small viscosity) 

Such a behavior was observed e~perimentally.~.~ 
The detailed behavior of the system in the cases of large 

and small viscosity is different. However, qualitatively a 
small shunting resistance has the same effect as a large junc- 
tion capacitance. Increasing the capacitance and lowering 
the shunt resistance lower the temperature To and decrease 
the tunnelling probability at low temperatures. 
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