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The correlators of the exact electron wave functions are computed for a one-dimensional system 
with disorder. It is shown that besides independent localized states, there exist in the system pairs 
of wave functions whose behavior (in the case of nearly equal energies) is strongly correlated at 
great distances. Frequency conductivity regimes are considered, and a microscopic expression for 
the Austin-Mott law is derived for the case when dissipation is due to transitions between inde- 
pendent localized states. Conversely, the zero-phonon contribution to the absorption and the so- 
called plateau regime are determined by transitions between pairs of strongly correlated states. It 
is shown that in real quasi-one-dimensional conductors, the expressions for the conductivity in all 
the frequency regimes are basically insensitive to interaction processes between the electrons, 
owing to the substantial screening of the Coulomb forces. 

PACS numbers: 72.15.Nj, 7 1.50. + t 

1. INTRODUCTION 

We consider below a one-dimensional (ID ) conductor 
with disorder, examples of which are organic or other linear 
highly conducting compounds, where the tunneling overlap 
integrals of the electron wave functions on the different 
chains are small. It is assumed that the disorder is due to 
defects that do not distort the conducting chain too greatly. 
This condition is satisfied either by isostructural chemical 
defects at low density (henceforth we shall have in mind 
usually linear defect density), or by structural disorder in a 
system of one of the components of the donor-acceptor com- 
plex if conductivity is due to motion along the ID-zone 
formed in the chains of the second component. There is a 
rather large number of examples of such systems. However, 
so as not to complicate the discussion, we will assume that 
there are no structural Peierls transitions in the considered 
ID-metal. The latter condition restricts by the same token 
the substances currently known to TCNQ salts, which were 
first studied in Ref. 1. For what follows, however, we need 
only know that such complexes exist, since we will be at- 
tempting to answer several qualitative questions that arise in 
the studying of ID-localization. 

In the 1D case, we are basically interested in the fact 
that all the electron states are localized here, a result first 
noted by Mott and T w o ~ e . ~  In discussing such phenomena as 
localization and the mobility edge,3 hopping cond~ction,~ 
etc., models of certain centers on which the electrons are 
localized are usually employed. The wave function of such 
electrons drops exponentially far from the center, with a 
definite atomic scale a. The energy levels of the centers have 
a random scatter due to local disorder, and wave functions of 
the centers overlap slightly, since they are distributed ran- 
domly in space at low density.5 

In the 1D case localization also occurs in the quasi-clas- 
sical limit (k, 1 > 1, where k,  is the Fermi momentum and 1 
the mean free path relative to back reflection from static 
defects; at higher dimensionalities such a situation would 
correspond to metallic conduction). The wave functions in 

this case are close to the rapidly oscillating wave functions of 
band electrons, and localization denotes a decrease of the 
envelope of these oscillations over an approximate length 
I ) k ;  '. The density of states in the band is high. In this 
sense, localization is a comparatively weak effect, though it 
leads to a qualitative restructuring of the electron spectrum. 

A rigorous proof of ID-localization was first given by 
BerezinskiC6 who showed that localization is the result of 
quantum interference of waves incident on and scattered by 
the defects, since in all the reflections the electron remains in 
the same chain. The well-known Mott conductivity law 
a(w) oo w2 ln2 w was also deduced in Ref. 6. We recall that in 
Ref. 2 one more energy scale was needed to derive this law, 
the quantum level splitting of two close potential wells. 

At T = 0 we have a,, = Oin the localized states. At low 
temperatures and low frequencies, therefore, phonons make 
the basic contribution to the frequency dependence of the 
conductivity. This contribution is of the nature of "Debye 
losses," ' or relaxation of the populations of levels of nearly 
the same energy (low temperatures) in an alternating electric 
field, due to transitions caused by equilibrium phonons. The 
transitions occur between a pair of nearest-neighbor levels. 
It is physically clear that the pairing mechanism itself must 
be valid not only in the trapping representation, but also in 
general, say in amorphous semicond~ctors ,~~~ since the 
probability that more than two levels of nearly the same en- 
ergy may be found close to each other is quite low (i.e., the 
mean distance between levels lying in the energy range - Tis 
large). In the region of practical interest, such absorption 
may be described by the Austin-Mott formula8 and yields a 
nearly linear law for the conductivity as a function of fre- 
quency and temperature. 

In the one-dimensional problem with weak disorder, 
the "centers" of the localized functions are determined (as 
noted above) accurate to 1. It  is natural to expect that when- 
ever the distances between the centers is great by comparison 
with I, the pattern just described will be duplicated in the 
present case. On the other hand, at zero temperature there 
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remains only the zero-phonon contribution to the conduc- 
tivity which, in phenomenological representations, is due to 
transitions caused by tunneling splitting of two nearly iden- 
tical potential wells. Such a formulation is not possible in the 
one-dimensional localization problem in a conductor with 
scatterers, where the localized eigenfunctions at a specified 
realization are the exact solutions of the Schrodinger equa- 
tion. 

The present article has three goals. On the one hand, by 
making an exact computation of certain mean wave func- 
tions and a number of other quantities, we are able to estab- 
lish the range of applicability of the phenomenological re- 
presentations. In this light, we then discuss the frequency 
conductivity modes at low temperatures and, in particular, 
derive the Austin-Mott formula in a 1D conductor with dis- 
order. Finally, under particular very simple assumptions, we 
study the role of electron-electron interactions and their in- 
fluence on the conductivity. This influence turns out to be 
comparatively minor, unlike in semicondu~tors.~*'~ 

2. CORRELATION PROPERTIES AND STRUCTURE OF WAVE 
FUNCTIONS 

As we have remarked, localization qualitatively alters 
the nature of the wave functions. The Schrodinger equation 

under an appropriate choice of the boundary conditions, for 
example, 

$ , ( -L /2 )  =$,(L/2)  --0, (1') 

has, in the language of mathematics, a point spectrum (see 
Ref. 11 and the bibliography therein). Here L is the total 
length of the chain and U(x) is the potential created by the 
defects in a specified realization of the disorder. The quanti- 
ties E,, and $, ( x )  are the eigenenergies and wavefunctions, 
respectively, and we put 

$, , (x)  =R,(x) sin cpr(x). (2) 

The amplitude R, (x) describes the behavior of the envelope 
of the localized wave function, and the phase p, ( x )  is related 
directly to the density of states, which in the quasi-classical 
interval depends weakly on the energy. Assertions that all 
the functions are localized must be understood, of course in a 
probabilistic sense. That is, the functions are localized with 
unity probability as L - co .I2 In computing the different 
physical quantities, it is far more convenient to use their 
representation in a basis of localized functions. l 3  

In this way, the expression for the mean conductivity 
(when T = 0) in an alternating field may be represented in 
the form 

(We write out the specific conductivity at once. Therefore, 
n, = d ,  in (3) is equal to the number of chains per unit 
cross-sectional area.) In (3), 

exhv=e J dx$,,(x) 9. ( x )  x (3') 

is over all eigenfunctions of the boundary-value problem ( 1  ), 
(1') for fixed positins of the defects. 

The result for the conductivity is, of course, 
k n ~ w n . ~ . ' ~ * ' ~  It is, however, of some interest that the conduc- 
tivity ~ ( m )  in (3) can be expressed in terms of the correlator 

F?' (z) 

=( 8 (EF-%) 6 (E.+w-8.1 $ , ( x ) $ ~  ( x )  $ P ( x l )  $ ~ ( 5 ' )  ) 
PV 

(4) 
where z = Ix - x' I .  (In the quasi-classical limit, the result of 
the averaging depends only on the difference in energies.) 

Another important quantity that provides information 
about the behavior of the localized wave functions is the 
correlator of the densities of states at different points: 

F. (z) = (Ed (&-e,,) 6 ( ~ ~ + e - e . )  a z , ( x )  $2 (2') ). ( 5 )  
irv 

Recall that the density of states per unit length of a chain and 
per unit energy interval is (disregarding spin): 

The correlations between the true localized wave functions 
$,, (x) and $,(xl) are strongest for nearly equal energies: 

where r = 1 /vF is mean free time. Therefore, the behavior of 
the correlators F!'(z) and F, (2) is of most interest precisely 
in the range of energies (7). 

A detailed study of the correlator Fm (2) has been carried 
out in a preceding work of ours.16 A calculation of the func- 
tionF!'(z) using the same method is given in the Appendix to 
the present article. For the sake of convenience in making 
comparisons, the results for the functions F, (z) and F!)(z) 
are represented in the Fig. 1 by solid and dashed lines, re- 
spectively. Note, first, that a new characteristic scale 

z, ( a )  =211n (8/oa) (8) 
appears when condition (7) holds; this scale is much greater 
than the localization length I. At sufficiently short distances 
z ( zo(w), the correlators F, (z) and F!)(z) are indistinguish- 
able to within terms (wr)'. At the point z = 0, we have 

is the matrix element of the dipole element. Summation in (3) FIG. 1. 
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which corresponds to the complete absence of any correla- 
tion. Further, at the atomic scale z- l/k,, there occurs a 
sharp decrease in the correlators down to a value 

In the region I d: z d: zo(w) we can use the asymptotic repre- 
sentation 

which differs only by a coefficient from a previously derived 
correlator a~ymptp te~ , ' ~  that describes the spatial behavior 
of one eigenfunction 

C 

v (Ep) n'" =-- - 
l 32 ( : ) y ' e x p ( - $ ) '  

The last relation is usually considered as a proof that all the 
wave functions for some energy E are localized. 

At distances z-z,(w), the correlators F, (z) and F(:)(z) 
finally begin to diverge markedly, the former becoming posi- 
tive and assuming the shape of a step function: 

with width 
z-zo ( 0 )  -Azo ( a )  = [1zo ( a ) ]  '' (13) 

small in terms of the scale z,(o). The correlator F, (z) in (12) 
varies from low values -(~T)"~?(E,) when 
z <z,(w) - Azo(w) to the value 2 ( E , )  which corresponds to 
the absence of any correlation when z >z,(w) + Az,(w). 
When z>z, + Az,, thus, the states are always statistically 
independent. 

The second correlator F(:'(z) is negative in this range of 
values and has the Gaussian form 

1 
F:" ( z )  =-V' (Ep) ( - ) 'exp ( - - 

4nZo (I4) 

its width coincides with the width of the step Az,(o). Note 
one other property of Ft)(z): 

OI I ~ Z F ?  ( z )  -0, (15) 
0 

which follows from the definition (4) and from the fact that 
the wave functions $; (x) and $,(x) are orthogonal. 

As we noted earlier, expression (3) for the conductivity 
a(@) may be represented in terms of the correlator F!)(z) in 
the form 

00 

0 (0)  =-2ne2nLw2 J' dz Z'FP ( z )  , (3') 
0 

where the integral corresponds to the characteristic value of 
the square of the dipole moment. Substituting the value for 
the peak (14) in this integral yields a well-known r e s ~ l t ~ . ' ~ . ' ~  
for the conductivity in a low-frequency alternating field 
(T = 0): 

a (0 )  = ( 8 / n )  eZn,l (oz )  1n2 ( 0 z ) .  (16) 

Thus, according to Fig. 1, the form of the correlators 
F, (z) and F:)(z) indicates that the two localized states cease 
to be statistically independent if the distances between the 
"centers" approach zo(w) (to within the interval Azo(w) > I ). 
At these distances, a level "repulsion" effect sets in. 

It has been shown" that in a very long chain of length 
L +co the distribution of the levels is random and obeys a 
Poisson law. However, as we have already remarked,16 the 
distribution is no longer random if the length L is finite and 
comparable with z,. We will now supplement certain results 
of Ref. 16 to explain the assertion just made regarding level 
repulsion. In fact, the density of states is known and equal to 
v(EF). Suppose we are interested in the probability w,(L,o) 
that N levels exist within the energy interval w for a finite 
segment of a chain of length L d: l/wv(E,). If there were no 
correlations, this probability would be 

W N  ( L ,  O )  =(v (E,) o L )  N I N ! .  (17) 

We define 8 (x) = q) ,> + , (x) - q) (x) as the difference 
between the phases of the two solutions of the Schrodinger 
equation with energies E and E + w, a difference that grows 
from left to right from the value 0, = 0 at x = 0. The prob- 
ability 

W ,  (0 ,  X )  =(6 (0-0,'(x)) > 
is an auxiliary quantity in terms of which we can easily ex- 
press the of which probability of interest to us, 

( N + i ) n  

w N ( L ,  0 )  = I dew, (0, L)  =O ( ( N + l ) n )  -O ( N n ) ,  
N n  

where according to Eq. (52) of Ref. 16 
+ I -  

O (Nn)  = J (2nix)  -* dx [ I-cibN ( x )  ] exp iu L 
-f m 

and the coefficient c,(x) is given by Eqs. (29) and (30) of Ref. 
16 [see also the Appendix, Eqs. (A.20) and (A.21)]. Since we 
are interested in lengths L < v,/w, by expanding cl(x) and 
using the approximation x is the dimensionless variable of 
the Laplace representation with respect to coordinate in 
units of I ), we find [see (A.24)] 

c, ( x )  = ( ~ X I W Z )  exp [ ( x -u2 )  2 1n ( 8 / o z ) ] .  (18) 
Substituting (18) in the preceding formulas, we obtain in 
place of ( 17) 

If the width of the transition region is neglected (here it is 
(Nl~~(w))"~) ,  we arrive at the expression 

The latter contains already the effect the correlation of N 
levels. It is at once clear that ternary and higher correlations 
are missing in this approximation. The quantity z, serves in 
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(19) as a rigid dimension related to an individual level, and 
Nz, is the total interval excluded thereby from the accessible 
part of a segment of length L. 

That F, (z) and F$(z) coincide in the region z-I at low 
values of w from (7) and that Eqs. (1 1) and (1 1') are equivalent 
(disregarding the numerical coefficient), where the latter 
equation describes the behavior of one of the localized func- 
tions when z > I, becomes clear if we study the passage to the 
limit as w -+ 0 in Eqs. (9) of Ref. 16 and in (A.6). On the one 
hand, these equations determine the spatial dependence of 
the phase difference of two states. On the other, the bound- 
ary condition [for example, for the correlator Ft'(z)] con- 
tains, for the corresponding function g, (z), a stationary dis- 
tribution function w(8 ) [ g(9 lz = 0) = w(8 )cos 9 1, which 
corresponds to w(8 ) = 6(8 ) in the limit as w -+ 0, as in the 
derivation of (19). The equations themselves turn into an 
equation for f = 8 /a,  which coincides exactly with Eq. (50) 
of Ref. 13, which describes the evolution of the mean square 
modulus of the eigenfunction itself. Therefore, in the region 
z-1, the two wave functions behave the same as long as 
or 4 1, e.g., the major contribution to the mean values (4) 
and (5) is made by those realizations of the potential for 
which the phase difference of the two states is zero (more 
precisely, a multiple of r) near z- 1 and amounts to precisely 
r a t  distanceszzz,. The probability of having three or more 
states in the interval o is low to long as w is small [in (19), 
wv(E,)L is small, as was assumed in the derivation]. There- 
fore, the surges of the correlator (5), which correspond to a 
phase shift [8 ] = N r  for N > 1, are small. Such surges, which 
generalize the structure of the correlation F t'(z) of the two 
functions in Fig. 1, would be visible for correlators of func- 
tions of three or more states at Nz,. 

The cited phase difference 8, (z) attains a value of r at 
great distances z, > 1 owing to numerous scattering acts. 
Therefore the exponential form (14) of the correlator Flf'(z) 
[cf. (12)J and the width of the distribution Az, from (13) 
should be interpreted in terms of the Gaussian fluctuations 
of the position of the next zero of 1C;, (eP > E,).  The pair of 
strongly correlated states in Fig. 1 is the analog of the two 
coherent functions that appear in a model of centers2 in 
quantum tunnel splitting of levels of two almost identical 
potential wells. 

In fact, suppose that the wave function of the center 
behaves in the phenomenological picture at great distances 
as 

$ ( I )  e-xla. (20) 

The quantum splitting of the levels of two wells separated by 
a distance z is, according to Ref. 2, 

where I, is the tunneling integral. Hence 

z,=a In ( I , / w )  . 
Identifying z, with z,, we find 

Equations (22) can answer the question posed in Ref. 10, that 
of determining the quantitative relation between model re- 

presentations2,4~8 and rigorous results in ID-systems with 
d i s ~ r d e r . ~  

3. FREQUENCY MODES OF THE CONDUCTIVITY 

At zero temperature, the frequency dependence of the 
conductivity at w~ ( 1 is described by (16). At finite tem- 
peratures, a phonon mechanism is turned on. If T ( 1/r, the 
mean distance between the levels participating in the con- 
duction is 

R,=IIv ( E x )  T= ( n l / T ~ )  > I ,  (23) 
i.e., it is very high. Below we will not be concerned with the 
dc conductivity, but will limit the discussion to the frequen- 
cy mode to which the so-called pair approximation is appli- 
cable. In this approximation, electron hops are limited to 
transitions between two nearest centers only. The absorption 
mechanism is due here to a lag in the changes of the popula- 
tions of the two levels relative to the alternating external 
field7 (Debye losses). Relaxation of the populations is due to 
thermal phonons. Let us write out an expression for the con- 
ductivity a(w) in this case1': 

where ex and ex, are the matrix elements of the dipole 
?P 

moment in the two states, AE = ~p - E, is the energy differ- 
ence between the states, and l/rPV is the corresponding in- 
verse phonon-relaxation time. the triple integral denotes 
that averaging over the defects for statistically independent 
states is equivalent to averaging over the energies of both 
states and their relative distance z. The function w has the 
form 

w ( E , , ,  E V ,  2) =2v2(EF) { n ( e , )  [ I - n  (&,)I + n ( r v )  [ I -n(&, )  I ) .  
(25) 

We choose electron-phonon Hamiltonian in the form19 

Here d l  is the deformation-potential constant. The normal- 
ized factor in parentheses, where Vis the volume of the crys- 
tal, is present because the electron interacts only with a de- 
formation gradient of the form duj /dx in the direction of the 
chain. The matrix element 

enters in the definition of the transition probability fromp to 
Y and back. The sum of the two inverse relaxation times [cf. 
Ref. 181 

1 -- d3k 1 eikr\:.,ti (rre.-(,Ik). - ndiZ Jm o ( k )  cos2 8, cth-  
~ P V  2 T 

The time r,, occurs in (24). The main task in the calculation 
of the losses (24) is to determine the relation between 1/rPV 
and the distance z between the centers. In accordance with 
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(20), it is usually assumed that8 

where v,, is determined by the intensity of electron-phonon 
interactions. Integration over z in (24) separates the pairs 

which are most effective in this loss mechanism. Thus, the 
problem involves estimating the matrix element (27) for two 
independent centers, which may be accomplished in the 
same way as in Ref. 19. In the domain of localization of the 
function $, (x), a wave function, say $@ (x), behaves accord- 
ing to (20) and (22) as 

$,(x) mexp [- (.&Ax) ;21] sin cp,(x) 

when x = z + Ax. Just like phase p, (x), the phase pF (x) con- 
tains rapid variations mainly in the form k, x. By averaging 
the product $p (x)$, (x) in (27) over the rapid oscillations, we 
are left with functions which vary about the point of localiza- 
tion of $, (x) at distances on the order of I. On the other hand, 
from (24) and (28) it follows that k- T/s, wheres is the char- 
acteristic speed of sounr. If TT ( 1, but TTV,/S ) 1, we have 
in (27) kl ) 1. Therefore, local averaging of the square of the 
matrix element in (28) yields a result which may be estimated 
as 

I e i k r  1 r V 2 ~  ( k l )  -2e-z/1, (31) 
as is confirmed also by computation. We may also introduce 
for the electrons a dimensionless electron-phonon interac- 
tion constant 

in place of the deformation-potential constant. Using (3 1) 
and (32), l/rp, from (28) is conveniently written in the form 

1 d L Z v F  ( T F ) ~ A E  AE - a g p h 2 - - - -  -- cth - exp[- z-zi(T) 1, 
TILV l z  s F T ,T 

(33) 
where the competition between the large and small quanti- 
ties occurring in the pre-exponential factor has been written 
out in a convenient form. Here a is a numerical coefficient. 
In deriving (33) from (28), we have assumed that the phonons 
are three-dimensional. The relaxation (33) is determined by 
acoustic phonons. The numerical coefficient a depends, of 
course, on the choice of the acoustic mode with which the 
electrons interact. In the Hamiltonian (26), this mode has 
not been specified and, in particular, the polarization vectors 
of the phonon modes have been omitted from its expression. 
Unlike (29), expression (33) is already in a form which expli- 
citly takes into account the presence of a correlation radius 
zo for repulsion of the levels. It has the sense of a relaxation 
time of two independent states only when z > zo. 

To prevent any misunderstanding, note that the de- 
crease of the relaxation time with distance between the 
centers of a pair is characterized by the scale I, whereas the 
decrease in the correlator of the square of the wave function 
at two points obeys the law (1 l'), which contains the charac- 
teristic dimension 41. This seeming paradox may be ex- 
plained by the fact that (1 1') bust as (4) and (5)] comprises the 
mean values of products of wave functions which, obviously, 
are not self-averaged quantities. At the same time, (28) and 

(33) contain, strictly speaking, the wave functions rC; (x) and 
$,(x) at a given realization of the random potential. The 
relevant quantity is the so-called (after Lyapunov) growth 
factor of the amplitude of thw ave function 

which in fact determines whether in the wave function is 
decreasing or increasing. Since the quantity in the logarithm 
increases linearly with z (at large z), the growth factor is no 
longer a self-averaged quantity (see also Ref. 11, Sec. 13). 
The first derivation of a = 21 from (34) was done in Ref. 10. 
An example of how strongly the mean statistical products of 
the wave functions differ from the statistical properties of 
the functions themselves is provided in fact by our computed 
values of the correlators Fa (z) F;'(z). 

Let us now define the quantity 

which has the sense of the mean total number of all transi- 
tions in the system, per unit time, between the states belong- 
ing to the energy band &. The average over the random field 
of the defects in the integrand is expressed in terms of the 
correlator F;'(z), and is of the order of 

, d l Z  VP A E 
-gph -- AE cth - v2 (EF) Llr 

l2 S T 

as can be easily verified either by an estimate similar to that 
used in determining (31) or by an exact computation by 
means of (A.6) and (A.8) under the condition kl % 1. Then 
(35) yields 

Dividing the latter by the total number &v(E,)L, of states in 
the energy band of the entire system, we obtain the mean 
inverse lifetime of a single state at E - T: 

Thus, the mean inverse lifetime of a single state is deter- - 
mined by strongly correlated pairs of states; the interaction 
between these states does not obey an exponential law. The 
quantity from (37) always exceeds the rate of relaxation 
between the states of an independent pair. 

Let us now compute the conductivity. Substituting (33) 
in (24), using (25) for the probability distribution, and inte- 
grating, we obtain a one-dimensional variant of the Austin- 
Mott law8 which, however, already contains the microscopic 
parameters, namely, 

where the logarithmic factor is the result of estimating the 
dipole moment ez from (30) using the explicity expression 
(33) for I/%,, and the value of z,(T) determined from (8). 
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Moreover, it is necessary that z - z, exceed the width Az,. 
Therefore (38) is applicable in the frequency range 

On the other hand, the condition that the phonon dissipation 
mechanism dominate the contribution of the zero-phonon 
mechanism may be found by comparing (38) and (16): 

o<T. (40) 

Condition (40) introduces real constraints only at very low 
temperatures. 

It is clear even from (40) that at high enough frequencies 
the conductivity has a plateau mode in which it is indepen- 
dent of frequency.18 Note the distinctive feature of (24), 
which in this frequency range naturally is by way of an inter- 
polation only. When the frequency increases and inequality 
(39) no longer holds, the basic role in the energy dissipation is 
played by correlated pairs, whose characteristic inverse time 
is large, according to (37). In other words, when T, ( 1, 
there exists a range of frequencies higher than the right side 
of (39) and comparable with (37), where the pair approxima- 
tion relates to relaxation between the coherent states in Fig. 
1. From (24) it is, however, clear that the conductivity can 
not continue to grow with increasing frequency, since in this 
region the quantity (x,, - x,,)' drops sharply. 

The plateau mode for the conductivity has been ob- 
tained microscopically 19v2' : 

It is clear that though 

is the condition under which (41) is applicable [the right side 
of (42) was again obtained by comparing (41) with (16)], the 
Austin-Mott formula may be matched to (41) even at fre- 
quencies on the order of the right side of (39). In light of the 
above, it is clear that there is a frequency range 

which is rather wide when Tr  4 1 and in which the conduc- 
tivity varies comparatively slowly, remaining always of the 
same order of magnitude as in (41). In concluding this sec- 
tion, let us note that the frequency range (42) which describes 
the plateau region exists if 

4. ROLE OF ELECTRON-ELECTRON INTERACTIONS 

It has been s h o ~ n ~ . ' ~  that the corresponding expres- 
sions for zero-phonon conductivity (3), the Austin-Mott for- 
mula, and the plateau mode8.'' substantially change in semi- 
conductors due to effects of long-range Coulomb 
interaction. Consider, for example, expression (3). That the 
square of the frequency occurs in it may be attributed to two 

factors. One of them (h) is simply an energy quantum bor- 
rowed from the external field in the electron transition from 
E, into E ~ .  The second factor describes the fraction of elec- 
tron states below the Fermi level capable of participating in 
the transition. If there is Coulomb repulsion e2/&r, (where 
r, is the distance to the resonance pair) between the elec- 
trons, the fraction of states capable of participating in ab- 
sorption is increased. In fact, the states E~ and E, remain 
singly occupied if 

E ~ + E ~ + ~ ~ / E ~ , > O  

and the Fermi factors in the expression for the transition 
probability limit the electron energy from below solely by 
the condition 

The same physical factors expand the energy range of the 
electrons capable of absorbing a thermal phonon, say, in the 
Austin-Mott formula. As a result, the expression for the 
zero-plonon contribution would be obtained by multiplying 
Mott's result a(@) cc w2 ln2 w by the fctor e2/xr, w, and, in 
the case of phonon contributins to the conductivity, by the 
factor e2/xrm T. At low temperatures, the absorption would 
be proportional to the first power of the frequency, whereas 
in the Austin-Mott formula there would remain only a slow 
(logarithmic) temperature dependence. 

The conductivity properties in a system of one-dimen- 
sional electrons are less sensitive to electron-electron (Cou- 
lomb) interactions, since these interactions are markedly 
screened if the system of conducting "chains" constitutes a 
three-dimensional crystal. At short distances (z ( 1) the 
screening is metallic in nature. That is, a charge located on 
one thread is shielded by the displacement of charges on 
neighboring threads (except, of course, in the transverse di- 
rection). The corresponding expressions for the Fourier 
components of the screened potentialz2 (see also Ref. 23) lead 
to an expression for the inverse Thomas-Fermi screening 
radius 

where E is the dielectric constant of the effective medium 
produced by the strong polarizability of the large planar 
molecules. It follows from (45) that metallic screening has a 
characteristic radius on the order of k ,'-dl ( I .  On the 
other hand, with respect to electrical properties, a system of 
localized electrons is a dielectric, and therefore at great dis- 
tances (greater than the mean free path) we get a Coulomb 
interaction but with a very high value of the (longitudinal) 
dielectric constant6." 

Substituting (46) in (44), we obtain for the Coulomb energy 

To get an idea of the numbers involved here, we use a typical 
v a l t ~ e ' ~ * ~ ~  for 1/r- 100 K (i.e., 1- cm) and d, - 10 A. 
We obtain for (47) an estimate no greater than several tens of 
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degrees. The influence of the long-range Coulomb contribu- 
tion could therefore affect the zero-phonon contribution to 
the conductivity (the frequency f = o / 2 r  = 10" Hz corre- 
sponds to about 1 K), but according to (40) the phonon mech- 
anism is dominant at temperatures which are not too low. 

Accordingly, we assume that the electron-electron in- 
teraction potential u(x - n') is short-range and rather weak. 
As has been previously shown,24 under these conditions the 
basic new factor that alters the systematics of the levels is the 
interaction of two electrons that occupy the same localized 
state&, . The energy of this interaction, which we will assume 
to be repulsion, in is 

In the model of a short-range S-function interaction, the lat- 
ter expression may be rewritten, after averaging (48) over the 
fast (atomic) oscillations, in the form 

ZVa 1 
A V  = - g41 j RV4 ( x )  ax;  gef,=g2 + - g,, 4 2 (48') 

whereg, and g, are the dimensionless electron-electron scat- 
tering amplitudes introduced in Refs. 25 and 26, with high 
(-2kF) and low momentum transfer, respectively. The as- 
sumption that the interaction u(x - x') is weak means that 
g,, g,, and g,, are small. The order of magnitude of these 
constants is obviously e2/8vFi. Therefore, there is no special 
reason why this assumption should readily hold in real sub- 
stances.' Model-based arguments that the interaction is 
weak, however, are useful for understanding the physical 
picture as a whole. 

Owing to the repulsion (48) or (48') between electrons at 
the same localized level, the structure of the occupation 
numbers of the localized states near the Fermi level changes 
at low temperatures. Near the old Fermi level, only singly 
occupied electron states remain. These states possess free 
spin and, consequently, paramagnetic centers can appear in 
the system.24 Next, at distances relative to the energies E, on 
the order of 

A=ng , f f l z  (49) 

below the Fermi level, there appears a smeared distribution 
which, turns into ordinary doubly occupied states when 
I E ,  I ) A. The linear density of the paramagnetic centers, 
which can be determined from the contribution to the mag- 
netic susceptibility, a contribution that takes at T ( A the 
form of the Curie lawx cc T -', is equal to24 

n,='l,v (Ep)  A=geff/31. (50) 

The mean distances R between the centers are large: 

W=31/g,,,>>l (51) 

in the case of a weak enough interaction. 
Let us turn to the frequency dependence of the conduc- 

tivity of the ID-electrons. The zero-phonon contribution 
(16) as well as the expression (41) for the conductivity in the 
plateau mode are determined, as we have shown, by transi- 
tions between coherent states, whereas the Austin-Mott- 
type formula (38) is associated with relaxation between pairs 
of uncorrelated states. 

Let us begin with the latter case. If both states&, and E, 

lie sufficiently close to the Fermi level of non-interacting 
electrons, they will be not more than singly occupied at 
T g A .  These transitions would obviously make precisely 
the same contribution to the frequency-dependent conduc- 
tivity as (38), the only difference being the factor 1/2, which 
takes into account the single occupation of these states. 

Let us consider again two localized states characterized 
by energies E, and E, in the absence of interaction. When 
there is interaction, the new energy levels depend on the oc- 
cupation. That is, the energy remains the same for single 
occupation of the levels, whereas for a doubly occupied state 
(say, the state E , )  the total energy is already i, = 24, + A,. 
Such a classification is naturally valid only for pairs of inde- 
pendent levels. The interaction energy between the levels E, 

and E,, contains direct and exchange interaction terms 

which are exponentially small in terms of the distance z 
between the localized states: 

JwV-AGv-g ( l I z )  exp (--2zla).  (53) 

These interactions are too weak and are not capable of creat- 
ing the situation described by (44), in which a pair of close 
energy states, E, and E,, are singly occupied in a finite sec- 
tion of phase space. It  remains for us to verify the terms of a 
doubly occupied coherent pair, since in this case the interac- 
tions (52) are according to (14) again of order A. Splitting of 
the levels of the coherent pair in the course of interaction will 
occur for the system of both levels simultaneously. Without 
presenting the calculations, it is easy to see what the result 
reduces to if I&,, - E, 1 ( A. The single occupied pair has, of 
course, the previous energy E, or E, . In the case of a double 
occupation, it can be easily verified that interaction leads to 
two types of states. One of them corresponds so to speak to 
molecular terms, with each electron is concentrated in the 
right or left side of Fig. 1, respectively, i.e., in the states 
$, (x) = 2-1'2[$,, (x) + $, (x)] localized on the right and left 
at a distance z, from each other. If I&,, - E, I ( A,  the levels 
of this term are E,, + E,, while the wave functions ocrre- 
spond to the singlet and triplet spin states of the two elec- 
trons. The second type of state constitutes atomic terms in 
which a pair of electrons is concentrated at the right center 
and a pair at the left "center." Again, at the close values 
E,, CE ,  = E, the levels are equal to 2E + A "*", where A ('p2' is 
the interaction energy of two electrons concentrated either 
both on the left or both on the right. The classification of the 
terms and their energies for the triply or quadraply occupied 
pairs may be qnalogously analyzed. To these terms we 
should add the exchange interactions, which are already ex- 
ponentially small. Thus, the short-range forces do not hinder 
double occupation of the molecular terms of the coherent 
pair. 

Let us, however, again consider the initial expression (3) 
for the zero-phonon contributin to the conductivity. The lat- 
ter contains the matrix element of a dipole transition, gener- 
ally speaking, between two arbitrary functions. If the func- 
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tions correspond to independent states, the square of the 
matrix element contains the exponential factor exp( - 2z/a), 
which upon averaging over the distances would indicate that 
the correlated states with ZZZ, make the dominant contri- 
bution. Interactions alter the structure of the occupation 
numbers. Therefore, we have the following possibilities for 
transitions with low energy transfer: 

(a) Transition from a singly occupied state E, to an emp- 
ty state&, near the Fermi level. Such a transition will every- 
where yield the earlier results, except for a factor 1/2 that 
takes into account the spin. 

(b) Transition from one singly occupied state to another 
(E, ,E,) -+ ( 2 ~ ,  + A, ,O). Such a transition requires an energy 

which may be low (on the order of w or T, depending on the 
problem) if E, and E, +A are both small (E, lies near the 
edge of single occupation, and E, near the edge of double 
occupation). 

(c) The condition for transition from a doubly occupied 
level ( 2 ~ ,  + A, ) to an empty level E, has a similar form: 

(d) A transition from a doubly occupied level (2&, + A , )  
to a singly occupied level cp calls for an energy 

e,i-A,,-~~-Av, 

which again is possible at the double-occupation boundary. 
If in each of these conditions of type (54) the two levels 

belong to an independent pair, the conditions may hold since 
each of the quantities A, and A, is a statistical variable inde- 
pendent of E, and E, (see Ref. 24, where the distribution 
function w(A ) was found). The distribution function w(A ) is 
concentrated at A -A. The use of condition (54) would for- 
mally yield 

E~-E~-A, 

i.e., the independent pairs would at first glance seem to re- 
semble each other at a distance of about z, = 21 ln(8/Ar). 
This apparent paradox, which could have a major impact on 
the range of applicability of the Austin-Mott formula (see 
expressions (29) and (33) for l/rPV, particularly in the pla- 
teau mode, can be resolved if we bear in mind the following 
simple considerations. If the quantity (54) is small, this will 
mean that the two-level systems ( 2 ~ ,  + AP ,0) and ( E ~  ,E,) are 
degenerate. This energy degeneracy is eliminated by the tun- 
neling splitting caused by nondiagonal matrix elements of 
the form 

the order of magnitude of which is, however, larger than (53), 
namely, 

A 1 
z,i,-21ln-=211ng-= T Tz z,. (55) 

At lesser distances, the wave function of one of the electrons 
turns into a quantum superposition of the form 
a+, (x)  + b+, (x) ,  in which the electron participates in both 
the state p and in the state Y,  since in the latter state it is 
repelled by the second electron already there. The dipole- 
moment matrix element is determined by (55). This is fully 
identical to the previous  representation^.^ Thus, apart from 
numerical coefficients and the corrections to the leading 
logarithmic dependences, the zero-phonon contribution to 
the conductivity and the plateau mode are described by the 
previously obtained expressions (16) and (41). 

In the relaxation mode described by the Austin-Mott 
formula, greater distances are essential, according to (30). 
The contributions due to the above processes may be com- 
puted (with allowance for interactions at the localized levels) 
entirely analogously to (24). In the averaging process, how- 
ever, there is an additional average over the distribution of 
A, and A, with independent functions w(A ) for each of these 
quantities. Moreover, Eq. (25) must be replaced by more 
complicated combinatorial factors that describe the transi- 
tion probability as a function of the occupation of the states. 
The occupation state of each level is independently defined, 
as before, with the sole difference that repulsion of electrons 
at each level is taken into account. When T 4 A, the averag- 
ing over A, and A, actually vanishes. In this case, integra- 
tion alters the coefficient in (38): 

(All possible processes are taken into account in the answer.) 
 here are several temperature regions in the model with 

weak interaction. The first such region, to which, in particu- 
lar, our results relate, correspond to T 4 A, in which the 
paramagnetic centers are still free and in which paramagne- 
tism is manifest. At the temperature To, the interaction (52") 
essentially couples the paramagnetic centers at the mean dis- 
tances (51). According to (53), 

T o = A  exp (-3/g,,,). (56) 

Since the relation between To and g,, is exponential, even if 
g,, is not very small expression (56) defines a noticeable tem- 
perature interval within which our formulas are applicable. 
Below the value of To from (56), the spins are "frozen," form- 
ing a special type of spin-glass phase. At low temperatures 
and low frequencies, electronic states in a very narrow ener- 
gy band of order T or w ,  respectively, are essential for the 
conductivity. As has been previously demon~trated,~' these 
states gradually combine into large clu~ters,~'  so that the 
effective number of paramagnetic centers falls according to 
the law1' 

n p  ( T / A )  geff13. 
The condition under which I (z) attains values on the order of 
the temperature determines the distances to which the pro- Using previous data1 for Qn(TCNQ),, we find that 
cesses (54) are effective for independent pairs (a = 21 ): g,, ~ 0 . 8 .  If the localized state is included in a cluster, its 
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participation in absorption will be hindered. It would seem 
that the same type of effects that lead to exponential tem- 
perature dependences of the susceptibility xaT-('-"' 
could also appear in the frequency dependence of the con- 
ductivity at very low temperatures. As yet, no experiments 
in this temperature range have been carried out, and we are 
unable to delve into this question to any depth. 

APPENDIX 

Below we will briefly describe the process of computing 
the density-density correlation function 

F:) (x-x') 

The computation is entirely analogous to the computation of 
the correlator of the density of states in (16) and is carried out 
by the same method. we introduce the phase q, and ampli- 
tude R of the wave function tC;, (x) = R, (x)sin pp (x) and 
average in (A. 1) over the rapid oscillation sof the wave func- 
tion, retaining only slow dependences with respect to the 
phase difference 

O,=cpp-9,. ( A 4  

Then (A. 1) is transformed to 

The sum over the energy eigenvalues in (A.3) is written as 
usualI3 in terms of the condition for matching the phases 
q,' (x) and q,' (n) obtained by solving the Schrodinger equa- 
tions, from the left and right, respectively, for designated 
boundary conditions on the ends of the chain. We have 

oc (x I XI) = R  (z) /K (z') 

We have taken the matching point at x' >x. Because this is a 
Markov process, we can now average independently to the 
right and to the left of the point x ,  respectively. Therefore, 
we have 

n 
5 7 .  

P. (I) = 7j g (z, 0) w (n-0) cos 0 dB, 
us- 

(A.4) 
0 

where 

g (z, 0) ~ ( 6  (o2(X) -8) UE (X  I x') a,+, ( X  I x') COS 0, (1) ), 
(A.5) 

and w(6 ) is the stationary distributin function of the phase 
difference. A derivation using the matrix of scattering by the 

defectI3 yields the equation 

Here and below, z = (x = xl)/l and v = wr, where 1 and T are 
the range and lifetime relative to back scattering. From 
(A.5), follows a boundary conditin at z = 0: 

g(0, 8)=w(0)cos 8. (A.6') 

Taking the Laplace transform with respect to z: 

6-3- 

we find from (A.6) and (A.6') that 

The definition (A.5) leads to the conditions for the aperiodi- 
city of g(x,6 ) at the end points of the interval [O,n-1: 

Equation (A.8) cannot be solved in general form. In the case 
of two nearly equal energies (v ) I), which is of greatest in- 
terest to us, we can find a solutin of (A.8) near the boundaries 
of the interval (i.e., when 6 ( 1, n- - 6 < I), and then match 
these solutions together through the phase region 6- 1. In 
fact, when 6 4 1, we have 

(A. 10) 

and analogously when n- - 6 ( 1. The solutions of (A.lO) 
may be expressed in terms of the modified Bessel functions 

Et'exp(-E) {&(E), I , , ( g ) } ,  (A. 10') 
where 

p= (xf l/r)'lz, g=v/20. 

In the region 6- 1, we may discard the term v W 6 :  

The solutions of (A. 11) may be expressed in terms of asso- 
ciated Legendre functions: 

(sin 0) - ' "{~f  11, (cos 0), P-c, (cos 0) ) . (A. 11') 

The asymptotes (A. 11') and (A. 10') coincidez9 in the region 
v ( 6 ( l  

0-'h+rr, 0-'k-q (A. 12) 

The condition under which both terms may be distinguished 
from higher-order corrections to the solutions (A. 10) and 
(A. 1 1) yields 

Re pel. (A. 13) 

Since the Laplace transformation (A.7) will be required to 
determine the correlator (A. I), it is best to first represent the 
solution of (A.8) in a form that possesses the desired analytic 
properties in the complex plane of the variable x and only 
then undertake the indicated matching. For this purpose, we 
introduce the variable u = cot 6 and the new function 

g (x, 0) =e-"""%p (u) . 
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The function $(u) satisfies a sort of Schrodinger equation 
with right side 

(A. 14) 

The solutions of the homogeneous equation (A. 14) are select- 
ed in such a way as to ensure that one of themg,(x,8 ) will be 
finite when 8 = P. The second linearly independent solution 
is 

g2 (x, 0) =e-" Ctg 'g,(x, n-0). (A. 15) 

Therefore, the choice of the pair of independent solutions in 
(A. 14) $,(x,u) and $,(x,u) depends on the condition under 
which $,(u) decreases exponentially as u -+ - UJ : 

9, ( x ,  u) =evuf2 (u+-"), 
(A. 16) 

9, (x, U) =c, ( ~ ) e ~ ~ / ~ ~ + c ~ ( x ) e - ' ~ ' ~  (u++ 00). 

From (A. 14), it follows that $,(u) = - u). The constant 
in (A. 16) is selected so thatg,(x,.rr) = 1 and the Wronskian of 
the selected pair of solutions is 

$ilp~'-7))1 '$2=-~~1 (x) . (A. 17) 

By means of the pair of independent functions thus deter- 
mined, the we can write for the inhomogeneous equation 
(A. 14) a solution for whichg(x,8 ) is finite at the end points of 
the interval and for which (A.9) holds, in the form 

- m - m 

(A. 18) 

The function $,(u) in different regions of the variable u can 
be determined by matching the corresponding asymptotes 
under the condition (A. 13). We will require below only the 
asymptotesnear8=O(u= + ~ ) a n d O = . n ( u =  - w).In 
the region with u % 1 (u' = vu/2), we have 

Tw-7-, x--- ctg pnK,(ul) 
2 

(A. 19a) 

In the region with u < O(lu I > 1, u' = - vu/2) we have 

rl,, (u) = (2~'/n)'~K,, (u'), (A. 19b) 

with 
cr (x) =- [ (y,+y-,) cos yn-2112 sin2 pn, (A.20) 

where we have introduced 

Substituting (A. 18) in (A.4), carrying out simple algebra, and 
omitting all terms analytic in the left half-plane of the vari- 
able x, we obtain 

The angles 8, which are nearly equal to 0 or P, play the major 
role in the integral (A.22). In the principal approximation, 
the integral may be written as a sum of the corresponding 
contributions J"' and J'"'. 

In (A.22), we retain initially only the term (J'0')2 

I= ( l / b - p Z ) / ~ ~ ~  pn=l/n. (A.23) 

The expression for J ' O '  is the result of integrating w(8 ) from 
Ref. 13 using (A.19b). In the derivation we have used equa- 
tion 6.621(3) of Ref. 30. In the denominator of (A.22), the 
entire expression must be expanded in terms of the small 
values of x needed determine the Ftl'(z) dependence when 
z ) 1. Here 

p=1/2+x-x2, cos prim-nx, "I=-- (114%) ( 8 / ~ ) ~ " ,  (A.24') 

and as a result we have 

c, (x)  + 1= (n/8) (8;~)". (A.24") 

This contribution to F;'(x) is 

F:' (x) = - - exp 

which after substituting in (A.7) yields (14): 

where zo = 2 ln(8/v) and the width Dz-[ln(8/~)]"~. The 
asymptotic behavior of F;)(z) in the region 1 g z ( zo is de- 
termined by the term w'O)J'*) in (A.22). The corresponding 
formulas coincide with the computation of the analygous 
asymptote in Ref. 16. 
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