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We study the flow of current in a conducting medium whose conductivity is a step function of the 
electric field intensity. In such media the current flow gives rise to regions in which the electric 
field is constant. Under certain conditions, sharply outlined current jets can appear in an initially 
homogeneous medium. Two- and three-dimensional problems that cannot be solved exactly are 
numerically simulated. 

PACS numbers: 72.10.Bg 

In a number of physical objects (weakly ionized gases, 
semiconductors) a situation arises in which the system con- 
ductivity is a rapidly growing function of the electric field. 
This rapid growth can be due to the fact that the electron 
distribution acquires in strong fields an "ionizing tail," as a 
result of which the number of electrons or of electron-hole 
pairs can turn out to be a rapidly growing function of the 
electric field. 

At the same time, the only case that lends itself to theo- 
retical analysis is that of small nonlinearity, where the pic- 
ture does not differ substantially from the linear case. A 
limiting variant of strong nonlinearity is, for example, a step- 
like dependence of the conductivity on the electric field. 

The purpose of the present communication is an exami- 
nation of the features of current flow in a medium with non- 
linear conductivity in this limiting model, as well as confir- 
mation of the validity of the model. 

Let the conductivity as a function of the electric field be 
of the form 

On the face of it, this model is inconsistent. Assume that 
the conductivity as a function of the coordinates takes on 
only two values, a,  and a,. We consider the boundary 
between the highly (I) and poorly (11) conducting regions. 
The conditions satisfied on this boundary are E,, = E,,, and 
o,E,, = a2EII,, i.e. continuity of the tangential fields and of 
the normal currents. It follows then from them and from the 
inequality a, > a,  that E : (E :,. Thus the condition I E, I 
> IE,, I called for by Eq. (1) cannot be satisfied. 

This contradiction can be eliminated by assuming the 
existence, besides of regions I (where IE I > Eo) and I1 (where 
IE I < E,), of a certain region I11 in which IE I = Eo and the 
conductivity has an intermediate range a,~a, , ,  (a,. 

If our model is not inconsistent, this leads to an interest- 
ing physical consequence, namely, the existence of a whole 
region of spaces where the electric field is constant. 

Logically admissable is also a second variant in which 
the model with the jump is physically inconsistent. This 
would mean that the jump "smears out," and the result 
would depend on the character of the smearing. In this case 
and extremely abrupt step would be meaningless, and the 
result would be sensitive to small changes of the function 

1. 

We shall resolve this dilemma by considering a two- 
dimensional problem, when the transition to the hodograph 
plane linearizes the equation. This makes it possible to an- 
swer the question using physical considerations. The afore- 
mentioned dilemma is resolved in favor of the first variant, 
and thus an abrupt steplike dependence of the conductivity 
has a physical meaning and can simulate a real nonlinearity. 

We consider thus the two-dimensional problem. The 
system of equations 

is linearized by introducing, following Ref. 1, a potential 
such that 

d@=xdE,+ ydE,, 

and by transforming to the hodograph plane. In the polar 
variables E and 8, the equation for the potential is 

This equation defines the continuity of a certain current 
in the E plane, with the corresponding conductivity aniso- 
tropic. The conductivity tensor has the components 

(JEE=o ( E )  , ( S B ~ = O  ( E )  +Edo/dE. (4) 
These equations solve right away the initially posed prob- 
lem. Equations (3) and (4) have a simple physical meaning. 
They pertain to the problem of current flow in an isotropical- 
ly conducting plane in which a thin ring of increased conduc- 
tivity is placed. In the limit when a ( E )  is a step, this ring 
becomes infinitely thin and superconducting, but its total 
resistance remains finite. We have thus a purely physical 
corroboration of the limiting transition. 

At IEl = Eo, the superconducting ring C can be re- 
placed by boundary conditions. One of them follows from 
the continuity of the tangential fields. The second is easily 
obtained by integrating (5) with respect to E over an infinite- 
ly small interval from Eo - 0 to Eo + 0. As a result we get 

where ( ... ) denotes a jump of the corresponding quantity on 
going through the ring. 

To obtain a complete solution of the problem we must 
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FIG. 1. Mapping of a point dipole in the E plane. 

take into account, besides the universal boundary conditions 
(5) and (6), also the boundary conditions on the physical elec- 
trodes that are transferred to the E-plane. These boundary 
conditions can be formulated as the condition of a direct 
boundary-value problem only for the simplest electrode ge- 
ometry in physical space, viz., pointlike electrodes and elec- 
trodes in the form of straight-line segments. Boundary-value 
problems of this kind were investigated in the literature by 
the methods of complex-variable theory (see, e.g., Ref. 2). In 
particular, an existence and uniqueness theorem was proved 
for their solution. 

In a number of cases an exact analytic solution can be 
found. One of the simplest is the case of a point dipole. We 
note right away the features that follow from the assumed 
model. 

The geometry of this problem is such that the image in 
the E plane is represented by one electrode-a half-plane. 
The superconducting ring separates near its boundary the 
highly and poorly conducting regions (Fig. 1). 

As E+co the current does not feel the inhomogeneous 
region and is determined only by the dipole moment P, 
therefore at large E we have 

(D=2P1"E'" sin (0/2). 

We seek a solution in the form @ = f (E ) sin(8 /2). The func- 
tion @is harmonic iff contains terms proportional to E * 
For the inner region we should confine ourselves only to the 
term - E  ' I 2 ,  inasmuch as at f-E - ' I 2  the total current di- 

FIG. 3. Level lines of the conductivity u: 1 - 0.01; 2 - 0.2; 3 - 0.4; 
4 - 0.6; 5 - 0.8; 6 - 1,O. 

verges. Finding the constant coefficients from the conditions 
(5) and (6), we get 

where ?c = u2/u1 < 1 .  
Figure 2 shows three characteristic regions of the field 

as x - 4 .  There exists an intermediate region I11 with a con- 
stant field but with variable conductivity that reaches in di- 
rect space its maximum dimensions. It remains bounded and 
does not tend to approach the electrodes. The current is con- 
centrated in the highly conducting region, and the distribu- 

FIG. 2 .  The three field regions at x = 0. FIG. 4. Mapping of flat electrodes with a post in the E plane. 
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FIG. 5. Corner condition for function F,(E,); C, = 1 (E ,  - 1/E,  )'. 

tion of the electric field deviates relatively little from the 
linear case. 

It must be noted that in the intermediate region in the 
physical plane the potential e, satisfies the eikonal equation 

grad2 q=E,2 

and the force lines are straight-line segments. The location 
and shape of this section depend in the general both on the 
poorly and on the highly conducting regions. Given the ge- 
ometry of the physical conductors and the value of the cur- 
rent, the decisive role is assumed by the field values Eo at 
which the conductivity jump takes place. 

Strong-nonlinearity effects appear in the case of an "in- 
finitely" high step: a2(a,. The presence of a small parameter 
simplifies considerably the problem and reduces it to an 
analysis of one of the regions (I or 11). We have then the 
following possibilities: 

1. The entire current flows in the highly conducting 
region I, therefore its boundary is both a line of equal abso- 
lute value of the field and a force line. The region I and the E 
plane impose on the contour C the condition 

Using such an approximation for the analysis of the 
problem of two unlike electrodes at a finite distance from 
each other, we can note that as the field E, on the jump tends 
to a certain critical value the current contracts to the axis 
between the electrodes. 

2. Current flows from I into I1 through the finite region 
111. In this case the region with high conductivity contracts 
to a certain point A, in which the field tends to infinity and 
straight force lines emerge from a single point. 

This approach makes it possible to investigate analyti- 
cally the perturbations of a homogeneous field of a conduct- 
ing plane, due to the inhomogeneity of the dimension h of its 
boundary. We consider in the Appendix an inhomogeneity 
in the form of a thin projection. When the homogeneous field 
in the plane E ,  is close to the critical field Eo, a long narrow 
channel is produced and the current density in it is much 
higher than in the surrounding medium. In contrast to a 
linear medium, its width always remains restricted to a value 
on the order of h, and the current varies slowly over the 
length of the channel. 

In the three-dimensional case the foregoing approach 
does not lead to linearization of the system (2). We solved 
such problems by numerical methods. The numerical algo- 
rithm was based on the use of conservative difference 
schemes4 and of a modified Newton's m e t h ~ d . ~  The algo- 
rithm was tested against the analytic solutions constructed 
above. The obtained numerical solutions agree well with the 
corresponding analytic ones. By way of one example of solv- 
ing three-dimensional problems we present the results of nu- 
merical simulation of the problem of a thin cylindrical post 
on an anode, with anode potential pa = 0.4 and a cathode 

potential p, = 0 distance between electrodes d = 2, post 
length1 = 0.2, post radius R = 0.05,E0 = 0.201, a, = 1 ,  and 
0, = 0.01. 

Figure 3 shows the conductivity level lines obtained in 
the calculation. It can be seen from the figure that the chan- 
nel has a transverse dimension of the order of the length of 
the post. 

The numerical experiments have shown that the con- 
clusions drawn above on the basis of exact solutions for the 
two-dimensional case can be extend to a three-dimensional 
one. 

In conclusion, we wish to thank A. P. Napartovich for 
interest in the work and for helpful discussions. 

APPENDIX 

The theory of functions of complex variable permits 
substantial simplification of the mathematical aspect of the 
problem. Regarding the radius vector and the electric field 
as complex quantities, z = x + iy and E = Ex + iEy, we in- 
troduce in the E plane a complex potential F (&) such that 
@ = Re F ,  Z = d F / d ~ .  

The plane y = 0 with homogeneous field iEm and hav- 
ing a thin post from z = 0 to z = ih is equivalently mapped 
into the E plane (Fig. 4) .  

In the solution with respect to the small parameter x in 
the second variant we have on the contour C 

Im PC=-h Re e .  
Without loss of generality, we put Eo = 1 .  Carrying out the 
conformal transformation E~ = - :(E + I/&)' on the real 
axis of the E ,  plane, we obtain the conditions for the imagi- 
nary and real parts of the function F, = ~FE (see Fig. 5 ) .  

The solution is given by the Keldysh-Sedov formula3 

(z-C,)  '" (-z) " dz .  

- 1  ( z - 1 ) ' ~ ( ~ - & ~ )  
We consider now real values of on the boundary of the 
region, such that C0-gJ~,  141 (as Co+O). The integral can 
then be easily estimated: its imaginary part is equal to 2 to 
o(E,). AS E,+O the real part of z on the boundary has as its 
limit 2h /v. Since the curvature of the boundary does not 
reverse sign, the same quantity determines the half-width of 
the channel. 
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