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A two-dimensional (20  ) system of trans-(CH), chains with weak interaction between the chains is 
studied in the presence of donor (acceptor) impurities. The presence of a small number of donor 
electrons leads to formation of solitons on the polyacetylene chains. The weak interaction 
between the chains produces in the system an Ising-type transition from a state in which the 
solitons are paired (low-temperature phase) into a state with free solitons. The effective soliton 
coupling energy near the phase-transition temperature is calculated. The effect of the interaction 
between the solitons and the impurities on the phase-transition temperature is considered. It is 
shown that the phase transition can be observed only if the interaction between the chains is not 
too weak, e.g., J, 2 Esn/ln n-I, where Es is the soliton energy and n is the chain impurity 
density. Otherwise, interaction between solitons and impurities causes vanishing of the phase 
transition. The results are qualitatively extended to include the case of a real three-dimensional 
system. 

PACS numbers: 61.70.Yq, 61.65. + d 

1. INTRODUCTION 

It is known the Peierls instability due to the electron- 
phonon interaction makes the ground state of the trans- 
(CH), chain doubly degenerate (Fig. 1). Systems of this type 
have been under study for quite a while (see, e.g., Ref. 1). In 
the ground state the symmetry between the " + " and " - " 
states (see Fig. 1) is spontaneously broken, and in addition to 
phonons the system admits of formation of excitations such 
as solitons, which are chain deformations that describe a 
smooth transition from the " + " to " - " state and vice 
versa. The properties of such soliton excitations were inves- 
tigated in detai12.4 for isolated polyacetylene chains. 

The energy of a chain with a soliton increases by ap- 
proximately Es = 0.64, where 24 = 1.4 eV is the width of 
the gap in the electron spectrum. One state for each spin 
orientation is produced in the electron spectrum at the cen- 
ter of the forbidden band. Each such state was made up of 
half a state for one valence-band spin and half a state for one 
conduction-band spin. Depending on the number of elec- 
trons localized on the soliton (0, 1, or 2) the soliton can have a 
charge + e, 0, and - e with respective spin zero, 1/2, and 
zero.2 From the condition that the number of electrons and 
the total spin be conserved it follows that solitons can be 

produced only in pairs. Accordingly only an integer number 
of states can leave the valence or conduction band. 

Since Es < A ,  charged solitons are produced on the 
chains when a small number of donor (acceptor) impurities is 
added to the system.' Because of the solitons, the donor elec- 
trons (holes) form a narrow band at the center of the forbid- 
den band, and do not fill the lower part of the conduction 
band (Fig. 2). Thus, the number of solitons on the acetylene 
chain is determined by the number of donor (acceptor) im- 
purities. 

A large number of experiments confirm the existence of 
mobile paramagnetic defects (uncharged spin-processing 
domain walls-solitons) in pure polya~etylene."~ It has also 
been shown that a strong increase of the polyacetylene con- 
ductivity by donor impurities takes place without a corre- 
sponding increase of the spin ~usceptibility,~ and that the 
localized states produced by light doping are nonmagnetic. lo 

This means that the mobile charges produced by light dop- 
ing of trans-(CH), are indeed charged spinless solitons. 

Up to now, the properties of solitons in polyacetylene 
were theoretically analyzed without allowance for the inter- 
action between the chains, although actually even a weak 
interchain interaction can influence strongly the thermody- 
namic properties of a soliton system. In Ref. 11 was ad- 
vanced the simple idea that the thermodynamics of solitons 
in the presence of weak interaction between the chain is de- 
scribed by the Ising anisotropic model (see Sec. 2). In such a 
system, a phase transition takes place from the low-tempera- 

FIG. 1. FIG. 2. 
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ture phase, where all the solitons on the chains are bound 
into pairs and a strong correlation exists at low temperatures 
between the pair positions on different chains (the soliton 
pairs are aligned into long strings), to the high-temperature 
phase, where all the solitons are free. l1 To obtain informa- 
tion on how such a phase transition can manifest itself in the 
observed quantities, the effective energy of the interaction 
between solitons bound into pairs in the low-temperature 
phase is calculated in Sec. 3. 

For simplicity, and in view of the possibility of obtain- 
ing exact results, we consider a two-dimensional system of 
polyacetylene chains. The qualitative conclusions can then 
be easily generalized to include the three-dimensional case. 

For a two-dimensional system one can also examine 
how the interaction of solitons with the impurities (to which 
these solitons owe their existence) influences the tempera- 
ture of the phase transition (Sec. 4). The interaction of soli- 
tons with impurities can be described by introducing impuri- 
ty bonds into the corresponding Ising model. Using the 
methods developed for the two-dimensional Ising model,I2 
one can calculate to first order in the impurity density the 
shift of the transition temperature. This correction yields an 
estimate of the magnitude of the interaction between the 
chains and of the impurity density at which the phase transi- 
tion in the system can vanish, i.e., the solitons become local- 
ized on the impurities and the system is in a "paramagnetic" 
state at all temperatures. It will be shown that the phase 
transition described in Ref. 11 can occur only if the energy of 
the interaction between the chains J, 2 An/ln n-I, where n 
is the impurity density. 

2. THE MODEL 

So long as the polyacetylene chains do not interact, 
there is also practically no interaction between the solitons 
in the chains, inasmuch as the elastic strains fall off exponen- 
tially far from the solitons. Assume now a weak interaction 
between the chains, which manifests itself in the fact that the 
states on the neighboring chains " + + " and " + - " have 
different energy. We consider a planar (two-dimensional) 
system of parallel chains with nearest-neighbor interaction. 
Then, if a soliton and antisoliton on some chain are separat- 
ed by a distance R (Fig. 3), the state of this system will be 
WII + RJ,, where Jll =E, is the soliton energy, and J, is the 
chain-interaction energy per unit length. We shall not take 
into account here the fact that the soliton has a finite size, 
actually about seven lattice periods, since this does not 
change the qualitative picture. We take this size to be the 
minimum linear dimension and regard it as the unit length. 

In the general case, when the segments between solitons 
on neighboring chains overlap (Fig. 4), the energy is 
LII  JII + L, J,, where LII  and L, are the total lengths of the 

FIG. 3. 

FIG. 4. 

vertical and horizontal sections of the contour that sur- 
rounds the region inside the solitons. We see thus that the 
thermodynamics of such soliton excitations is described by 
the anisotropic Ising model with Hamiltonian 

where the variables u, which take on values f 1, are speci- 
fied at the sites of the square lattice, and i and 2 are unit 
orthogonal vectors (the vector i indicates the direction of the 
chains). In our problem, however, there is a supplementary 
condition that fixes the soliton density on the chains. This 
condition can be easily taken into account by introducing 
into the Hamiltonian (1) the chemical potential p :  

and stipulating that 

a ~ / a p = n ,  (3) 

where n is the linear density of the donor impurities and Fis  
the free energy: 

If we disregard the interaction of the solitons with the 
impurities (i.e., assume that JII is independent of the coordi- 
nates), we can calculate in standard fashion (see, e.g., Ref. 13) 
the free energy (4), (5). Solving next the condition (3) with 
respect to (JII + p) or J, and substituting the result in the free 
energy, we can determine the transition temperature. This 
was done in Ref. 11, with the result 

(in first order in n ( 1). This result means that for this analysis 
to be valid it is necessary that the interaction J, between the 
chain be at any rate small compared with nA. 

The phase transition proceeds in the following manner. 
At low temperatures all the solitons on the chains are paired, 
and the positions of the pairs on different chains are so corre- 
lated that the pairs are next to one another and form strings 
of length n exp( - J,/n) across the chains." The reason is 
that the soliton density, or the density of the "excited" Ising 
bonds JII , is fixed and equal to n, whereas the density of the 
excited bonds J, is controlled by the temperature, is equal to 
exp( - J, /n), and determines the number of strings in the 
system. With increasing temperature the strings become 
shorter, vanishing at T * - J,/ln n- ', but the solitons on the 
chains remain paired as before. For soliton pairs to break, 
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the pair dimension must become of the order of n-', hence 
the result (6). 

Notice must be taken here, however, of the following 
circumstance. According to Ref. 2, the soliton has a rather 
small mass, Ms z 6m,. Therefore the classical approach de- 
scribed above is valid only if the temperatures are not too 
low. Since the soliton and antisoliton interact in accord with 
the law 

the classical approach is applicable when the pair energy is 
much larger than the level spacing -W,(2MsE)-''2, i.e., 
E>(#J:/~M,)'". Let 

J ,=k(Ala) ,  (8) 
where A z 1.4 eV, a =  1.22 A is the period of the polyacety- 
lene chain, and k is a small parameter that determines the 
smallness of the distance between the chains. The validity of 
the classical approach is then defined by the condition 

T>>T,=2,7. 102k''3A. (9) 

From the conditions To( Tc - kA /n and Tc 4 we obtain 
conditions on n and k: 

We note in this connection that the strings referred to 
above are certainly in the quantum region (the distance 
between the solitons and the pairs making up a string is of the 
order of the soliton size) so that the extent to which the esti- 
mates of their number and sizes are correct is actually un- 
clear. 

3. EFFECTIVE SOLITON-INTERACTION ENERGY 

Near the phase-transition point, the dimension of the 
soliton pair on a chain becomes large, so that the influence of 
solitons located on neighboring chains becomes important. 
Therefore the effective soliton-antisoliton pair energy, 
which should be equal to (7) far from the transition point, is 
renormalized. To understand how the phase transition takes 
place, we turn first to the general equations (2)-(5). 

The free energy (4), (5) of the Ising system (2) can be 
calculated by the well-known standard methods of the Ising- 
model theory, and there is no need to repeat them here. The 
calculations are given in concise form in the Appendices. 
The reader interested in the details of these calculations can 
find them, e.g., in Refs. 13 and 14. 

The result for the free energy is of the form (Appendix 
A) 

where 

ht=th I3 ( J , , + p ) ,  hz=th(i31,). ( 12) 

A phase transition occurs when the "mass" 

vanishes. Condition (3) can be written in the form 

The solution of (14) together with the equation 

h,+?bz+hihz=l 

determines the phase-transition point: 
h2*(c) =h2(=) nn/2, A : ( e )  - - h i  (o) - - I-nn 

(the solutions are given here in first order in n( 1). 
We note that in the language of the variables a a soliton 

  anti soliton)!^ a connection between two neighboring points, 
x and x + 1, at which the spins are oppositely directed 
(0, ax + i = - l), the condition (3) that the number of soli- 
tons on the chains be constant is equivalent to the condition 

' /2(1-(urux+;))  =n.  

The proximity to the phase-transition point is deter- 
mined by the smallness of the mass m. In the critical region 
at m-r=(T - T c ) / T 4  the correlation radius increases 
like r,(r) - m- '. At distances r>rc the correlation in the sys- 
tem falls off like exp( - r/r,), while power-law asymptotic 
scaling relations are realized inside the correlation radius.I5 
In terms of the variables a ,  ferromagnetic order sets in the 
system below the phase-transition point, i.e., a value (u) # O  
appears. At r(1 (see, e.g., Ref. 16) we have 

(0 )  -%"a. (16) 

Let us see what this means in the language of the soli- 
tons of the initial physical systems. Assume that at T <  Tc we 
have (a) > 0. We introduce the quantity 

The mean value T, (R ) is the probability of the soliton and 
antisoliton moving apart a distance R in a way that no other 
solitons are produced between them, w i t h C ( R  ) and r + ( R  ) 
corresponding respectively to the situation wherein 
u = - 1 or o = + 1 on the chain between the solitons. The 
quantities r , (R ) can be represented in the form 

r,(R)=i/2[<K(R)>f<oaK(R)>], (18) 

Obviously, at T >  T, we have T+ = T- = 1/2(K (R )). At 
T <  Tc the quantity r - ( R  ) is the probability of formation, 
against the general ferromagnetic background (u)  > 0, of a 
"kink" of length R on which u = - 1, i.e., the probability 
that the dimension of the soliton-antisoliton pair is R. In this 
sense, the quantity 

U(R) =-ln I?- ( R )  (20) 
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can be called the energy of the interaction between the soli- 
ton and the antisoliton. 

As the phase-transition point is approached, there are 
two temperature regions: 

It is easily understood that in the first case, when the 
correlation length is much shorter than the average distance 
between the solitons, the behavior of the correlator T-(R ) at 
distances R)rc -m-' is determined only by the mass: 

r- ( R )  =e-mR, (23) 

which corresponds to linear attraction between the soliton 
and the antisoliton in the pair: 

U ( R )  =mR- I T 1 R. (24) 
Thus, at temperatures not too close to the transition point 
(n(r( 1) the average size of the pair is R (T)-r-'. 

In the second case, in the immediate vicinity of the tran- 
sition temperature, we find ourselves in the scaling region (at 
distancesR(r,).Thecorrelators (K (R )) and (uK (R )) canbe 
calculated here by the methods used to calculate the usual 
correlation function (a,u, ) of the Ising model at the transi- 
tion point." If we are interested in distances smaller than the 
average distance n-' between the solitons, the result is (Ap- 
pendix B): 

where c is a constant. At distances larger than n - ', the corre- 
lator T-(R ) begins to decrease exponentially like 
exp( - nR ), this being a natural consequence of the conser- 
vation of the number of solitons on the chain. 

Above the transition point we have 

r- ( R )  = r + ( R )  -R-~ ' I~ .  (26) 

Thus, near the phase transition point (171 (n) the soliton and 
antisoliton interact at distances R(n-' in accord with the 
law 

U ( R )  -"/,, In R i  cl T ] " ~ R ' / ~ ,  T<T,, v7) 

Therefore the energies of a soliton and antisoliton belonging 
to one pair (between which u = - 1) and of a soliton and 
antisoliton from different pairs (between which u = + 1) 
differ by the small quantity - I T ~ ' / ~ R  'I8. In this sense the 
solitons at temperatures I T [  (n are already "quasifree," and 
pairs as such do not exist. 

Above the transition point (T> Tc) in the "paramagnet- 
ic" phase any two neighboring solitons interact in accord 
with (28). 

4. EFFECT OF IMPURITIES 

A very important question is how the phase transition 
described above is affected by interactions between the soli- 
tons and the impurities that give rise to them, since generally 

speaking2 the energy of the interaction between a soliton and 
an impurity atom is of the order of the energy E, of the 
soliton itself. 

Impurity atoms located between polyacetylene chains 
cause, first, the energy of the solitons on the chains, which 
we have designated J l l ,  to become independent on the co- 
ordinates; second, the chain-interaction energy J, changes 
in the vicinity of the impurity atom. We start from the fol- 
lowing model postulate. A soliton has a certain fixed energy 
ylI when located in the vicinity of an impurity atom, and an 
energy Jll outside this vicinity. We shall assume that the 
length of this vicinity is of the order of the soliton dimension, 
i.e., is equal to unity. Therefore, in the language of the Ising 
model, in this situation impurity bonds Ill are randomly dis- 
tributed with low density v in the system (actually, of course, 
y n ) .  Accordingly, the change of the chain interaction en- 
ergy is taken into account analogously, namely by introduc- 
ing into the system impurity bonds of energy I1. 

Using the formalism developed for the Ising 2 0  model 
with impurity bonds,'' we can calculate for the model de- 
scribed above, in first order in Y, the shift of the transition 
temperature as a function of J I I ,  yl, n, and Tc - J,/n. Of 
physical interest, of course, is not the shift itself, since all the 
calculations are valid only so long as it is small, but the direc- 
tion relative to Tc in which the shift takes place, and most 
importantly, under which conditions the shift of the transi- 
tion temperature ceases to be small. We shall see below that 
in first order in Y the interaction of the solitons with the 
impurities always lowers the transition temperature. The re- 
sult permits an estimate of the parameters ylI - Jll , J, , and n 
at which the lowering of the temperature becomes substan- 
tial and the phase transition may vanish. 

To find the transition-temperature shift in first order in 
Y we use the method developed in Ref. 2 for the usual Ising 
model with impurity bonds. Following this reference, we 
must calculate the mass increment (13) linear in v, which 
appeared after averaging over the impurities. The transition 
temperature is determined from the condition 

m ( v )  =o (29) 

and from Eq. (15), which must be averaged over the impuri- 
ties: - 

' I2 (1-  ((J,u,+;) =n. (30) 
The calculations (Appendix C) yield for the transition tem- 
perature 

where Ty) is the transition temperature in the absence of 
impurity bonds. 

The second term in the right-hand side of (31) is due to 
the change, by the impurities, of the bonds between the 
chains J, ; this term is always small. Of greatest interest is the 
third term, which describes the shift of the transition tem- 
perature on account of the interaction of the solitons with 
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the impurities. Although this term is of the order vn2, the 
quantity exp(2(JII - TII) /Tr))  may turn out to be large, 
since JII - JII -A, and the transition temperature T r)- J,/n 
is certainly much less than A.  Thus, Eq. (34) yields an esti- 
mate of the soliton-impurity interaction energy JII - TII at 
which a phase transition can exist: 

(Jll-Js) ~ ~ , ' ~ ' l n  n-'. (32) 

In the opposite case the solitons become simply localized on 
the impurities and, of course, there is no phase transition at 
all. Estimates2 show that (JII .- Tll )-A. Since T p z  J,/n, 
the phase transition described in Ref. 11 and in Sec. 2 can be 
observed only if the impurity density is low enough and the 
interaction between the chains is not too weak: 

CONCLUSION 

We have considered a two-dimensional system of polya- 
cetylene chains with weak coupling between the chains and a 
low density of donor (acceptor) impurities. We have seen 
that under certain conditions a phase transition should take 
place in such a system from a state in which all the solitons 
on the chains are connected in pairs (at low temperatures) 
into a state in which the solitons on the chains are free. To 
find out how this phase transition manifests itself in observa- 
ble quantities, we calculated the temperature dependence of 
the effective interaction energy of solitons in pairs in the low- 
temperature phase near the phase-transition point (24), (27). 
We have also determined when the interaction between the 
solitons and the impurities that generate them is significant 
and can destroy the phase transition. 

The calculations were performed for a 2 0  model sys- 
tem, for it is precisely in this case, by using the formalism of 
the Ising 2 0  model, that certain accurate results can be ob- 
tained and a general picture of the phase transition can be 
obtained. 

Certain qualitative generalizations can be easily made 
to include the case of a real three-dimensional system with 
interaction between the chains. It is clear that in this case a 
similar phase transition, described by the Ising 3 0  model, 
takes place at a temperature Tc - J,/n. In the low tempera- 
ture phase the solitons are bound into pairs. As the phase- 
transition is approached, the size of the soliton pairs on the 
chains increases15 like r, (7) - T - v(vz0.63); in this case 
rC(r)(np1, where rc is the correlation radius of the Ising 3 0  
model. Under these conditions the soliton and the antisoli- 
ton in the pair are bound by an effective potential U(R ) 
-r,- '(T)R. In the immediate vicinity of the transition point, 
where r,(~),n-', an interaction similar to (27) takes place 
and is of the form 

whereBz0.34 and c,, is a certain universal critical index. 
It is much more difficult to take into account the effect 

of the interaction between the solitons and the impurities in 
the three-dimensional case, for to calculate the temperature 
account must be taken of the local lattice degrees of freedom, 
i.e., to find the shift of the transition temperature [an equa- 

tion similar to (3 l)] we need at least an exact solution of the 
Ising 3 0  model. Nonetheless, the estimate (33) for the pa- 
rameters J, and n at which a phase transition is possible 
remains valid also in the three-dimensional case, since this 
estimate is a consequence of simply the fact that any correc- 
tion to the transition temperature Tc - J,/n is of the form 

In light of the latest experiments on weakly doped po- 
lyacetylene, in which an impurity-density phase transition 
from the dielectric state to a metal is observed," it would be 
of very great interest to understand how the low-tempera- 
ture properties and the phase transition in weakly doped po- 
lyacetylene, described in Ref. l l and in this paper, manifest 
themselves in observable quantities such as, say, the conduc- 
tivity. 

In conclusion the author thanks S. A. Brazovskii and 
Tomas Bohr for numerous discussions, as well as V. L. Pok- 
rovskii and L. P. Gor'kov for a helpful discussion of the 
work. 

APPENDIX A 

It is known that the Ising-model partition function 

where 

can be represented in equivalent form in terms of the Grass- 
man variables $:(a = 1,2,3,4), specified at the sites of the 2 0  
lattice, and having, by definition, the properties (see, e.g., 
Ref. 14): 

~ a * x ~ ~ + ~ ~ . p * x a = O ,  
(-4.3) 

d*$=O, d$xa $z~p=6ap6~~.  

In terms of these variables, the partition function (A.2) 
can be written in the formI4 

In the Lagrangian (A.5) we have used the notation 
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In terms of the Lagrange theory (A.4), (A.5) we can define 
the Green function 

GaB (x1x2) = ($x,a$.,B) (A.8) 

and verify that it satisfies the linear equation 
A 

In the Fourier representation 

exp{ i (p .  xi-r , )  (A. 10) 

this equation has a solution 

~ ( ~ ) = [ i - ~ ( ~ j ] - ~ ,  (A. 11) 

where 2 (p) is the so-called random-walk matrix, which in 
our anisotropic case, when the horizontal and vertical cou- 
pling constants are A,  = tanh P(JII + p)  and A, = tanh PJ, , 
takes the form 

1 hleiP1 hzeiPr O - hZe-ipl I 

The matrix (A. 12) can be used to calculate the free ener- 
gy of the system (see, e.g., Ref. 13) 

l n { d e t [ l - i ( p I p 2 )  I). (A. 13) 
-z 

It can be verified by direct calculation that 

Pa + 4h2(l-h?)sin2 y, 
(A. 14) 

mal-hi--h2-hlhz. (A. 15) 

At the phase-transition point m = 0. The smallness of the 
mass m determines the proximity in temperature to the 
phase-transition point: at m(l we have m-r  = ( T  - T,)/ 
Tc, where Tc is the transition temperature. 

It is known that the Ising 2 0  model has the self-duality 
property (the Kramers-Wannier symmetry'9). In terms of 
dual variables specified at the centers of the 2D-lattice wa- 
fers (at the sites of the dual lattice, see, e.g., Ref. 20), the 
partition function of the Ising 2 0  model is given by (A.l) 
with the Hamiltonian (A.2), in which the following substitu- 
tions are made: 

hi=th B( l , ,+p)  -+h,'=e-26J1, 
(A. 16) 

k z ~ t h  j3 JL+hz*=2-2B(J~t+~). 

Following Ref. 17, it can be easily shown that the condition 
(3), written in the form 

' I z  ( I - ( O . ~ + ~ O = > )  =n, (A. 17) 

can be represented as 

11% ( 1  - (exp  {- 2hz*$;+; P ~ ' W ~ ' I ) )  = n, (A. 18) 

where the averaging is with the aid of the Lagrangian (A.5). 
Expanding the exponential in (A. 18) and using (A.9), we easi- 
ly verify that 

( e x p  {- 2h2*$z+; P:'$,B}) = 1 + 2hz* G*~'  ( x ,  x + 2) p i B ,  

= I + 2GoZ2 ( x ,  x) . 
We therefore have in lieu of (A. 17) the equation 

GW2'(x, X) =-n. (A. 19) 

The Green function G *"(x,x) is a sum over all closed 
loops that pass through the point x in the 2 direction, and can 
be calculated from the relation (see Ref. 17) 

(the 1 is subtracted to exclude the "zero size" loop). Direct 
calculation with the aid of (A. 11) and (A. 12) yields 

GWz2 (pi ,  P Z )  = [ ( I - h i s )  m+ih; (I-La') sin P Z  
A (pi ,  P Z )  

APPENDIX B 

We consider the correlator 
.. 

' K  ( R ) )  = (E( + oxox+l)). 
;=,, 2 

This expression corresponds to a partition function with Ha- 
miltonian (A.2), in which the horizontal bonds on the seg- 
ment [0, R ] are infinite-the spins on this segments point in 
only one direction. Accordingly, in the dual representation 
(A.16), the bonds A F that intersect the segment [0, R ] are 
equal to zero. Thus, the correlator (B. 1) can be written in the 
form (AS), in which the bonds A,, which intersect the seg- 
ment [0, R 1, are equal to zero. Therefore 

This expression coincides, apart from the substitution 
( - A  ;)+( - U :)in the argument of the exponential, with 
the expression for the correlator (a,a, ), a detailed calcula- 
tion of which is given in Ref. 17. The result is of the form 

(K ( R )  ) -R-r exp {-Rlr, ( n )  ) , (B.3) 
where 

- - 
and 

yhere the 2 x 2 matrixg(p,) is defined in terms of the matrix 
G (p) (A. 1 1) (see Ref. 17): 
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" ~ P Z  p4'(p,) = J -  G" ( p , ,  p,) e-"~. 
2n 

Using the definition (A. 1 I), (A. 12) as well as Eq. (A. 19) 
it is easy to verify that, in first order in n, 

re-' ( n )  =-Gz2 ( x ,  X )  =n, (B.6) 
as it should be, since n-' is the mean distance between the 
solitons. 

Somewhat more cumbersome is the calculation of the 
correlator (K (R )u(R )), for which we have in place of (B.2) 
[we shall be interested henceforth only in power-law asymp- 
totic forms, i.e., we shall assume that R(n-'1 

Following Ref. 17, we obtain from (B.7) 

where 

is a loop of order n, and 

(B. 10) 

The Green functions in (B.8) are the Green functions 
(A. 11) and (A.12) with zero mass, and the corresponding 
summation over x is cut off at a correlation radius r, -m-'. 
Summing the diagonal (local) Green functions in (B.8) we 
obtain loops ofthe off-diagonal Green functions G 24 and G 42, 

and in place of (B.9) we have a function equal to ( - 2) on the 
segment [0, R ] and to ( - 24 ) (see Eq. (3.12) in Ref. 17) at 
x > r. We can then verify that there are four contributions to 
the correlator (K (R )a(R )). 

The first contribution comes from the integration in the 
loops near the left end of the segment [0, R ] and yields 
R just as in (K(R )). The second contribution stems 
from the integration in the loops over the segment [R, R,) 
near the left end, and yields R ; -7'". One more contri- 
bution comes from integration near the right end of the seg- 
ment [0, R 1, and is equal to R - Finally, the last contri- 
bution comes from the logarithmic integration near the right 
end of the segment [0, R 1, in the loops in which some of the 
points are on the segment [0, R ] and some on the segment 

[R, R, 1. Summing in the loops the contributions from inte- 
grals of the form 

R, 

( - 2A)  Jdx,  . . . dx ,  GZ4  ( x - 2 , )  G4' (x l -x , )  . . . . . G4' ( x , - X I ) ,  
R 

(B. 11) 

where the points x andx' lie on the segment [0, R 1, we obtain 
the function 

Accordingly, the loops made up of these functions, 

X[ (x , -x , ) .  . . (x,-x') I - ' ,  (B. 12) 

make a contribution R 'I8. It is easy to verify that there are no 
other logarithmically diverging loops. We thus obtain 

( K  ( R )  o ( R )  >-R-f+"e 1 z I "s. (B. 13) 

APPENDIX C 

A method for calculating the transition-temperature 
shift in the Ising model with impurity bonds was developed 
in Ref. 12. Our case is made complicated by the condition 
(A.17) or (A. 19), which fixes the number of excited bonds on 
the chain, and this number must now be averaged over the 
configurations of the impurity bonds: 

G*" ( x ,  x) =-n.  (C. 1) 
In addition, the horizontal and vertical bonds J,, and J, fluc- 
tuate differently. Calculation of the shift of the transition 
temperature reduces to calculation of the mass shift in the 
Green function G (p,,p2) averaged over the impurities. 

We consider first the case when only the bond J,, fluc- 
tuates. Consider (C.l) can then be written in the form (see 
Ref. 12) 

where 

We now obtain in place of (C. 1) 

"P ~ ~ " ( p . ,  p,) - I-P,=-n, 

& ( p )  = [ l - S i - i i ( p )  I-'. 

(C.4) 

(C.7) 
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Using (A. 12) and (C.3) we obtain after some calculations 

p ( p 1 p 2 )  = {iZ* (I-hi*') sin p2+% (1-AI') 

Pz 4 - 2 ~ ~ '  (I-hl") sin' 

%=1-52,-A/-hi' (1-52')  -hl*Xz*, (C-9) 
- 
h 2 * = ~ * + v  (g;-hz*) =h2* ( l+va* )  . (C. 10) 

From the condition iii = 0 it follows that 

c= (1-Q2) (I-hi*) ( l+hi*) - l .  (C. 11) 

Substituting (C.ll) in (C.8) and then (C.8) in (C.6), we 
obtain after integration 

1 

(C. 12) 

From this we get 
.(0) hl*=hl +nnQz, 

or 

(C. 13) 

where T r )  is the transition temperature of the model without 
impurities. Owing the condition (C. I), there is no correction 
- vn here. In the presence of fluctuations of J, ,  however, 
this correction appears, simply because the transition tem- 
perature is defined in terms of the quantity 

It is easy to verify that as a result of the fluctuations of J,  the 
main increment to J, /T, is of the form 

'12nvn (1-Jl/lcL). (C. 16) 
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