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A class of multi-parametric potentials is constructed for which the motion problem for a particle 
in a two-dimensional potential well or the behavior of a system of two coupled nonlinear oscilla- 
tors is completely integrable. The integrable models can be used to study the behavior of a system 
in continuous transition from a potential with a single (global) minimum to a potential with 
several minima. It is demonstrated that nonintegrable physical models can be approximated by 
integrable models. It is noted that integrable models provide new methods for the analysis of : 

interphase boundaries and phase transitions in media with two order parameters, as well as 
problems which require determining "trapv-type potentials. 

PACS numbers: 03.20. + i 

1. One trend in the theory of nonlinear phenomena is 
based on the construction of completely integrable models 
that admit of a complete and exact analysis of such essential- 
ly nonlinear structures as solitons or domain (interphase) 
walls. In order to analyze such phenomena as phase transi- 
tions, it is essential that the corresponding integrable models 
be expressed as a function of several structural parameters. 
Using as an example the Landau-Lifshitz equations, it has 
been shown1 that multi-parametric integrable potentials 
may be constructed and cases of which substantial recon- 
struction of domain walls were studied. That a complete 
analysis of the reconstruction of domain walls in magnetical- 
ly ordered media is possible is clear from general expres- 
sions' for the anisotropic energy. These expressions demon- 
strate the integrability of dynamic equations for a single 
order-parameter vector (that is, a single magnetic-moment 
vector). 

In the present article, a previously proposed1 method of 
constructing completely integrable models is extended to the 
motion of a particle in a two-dimensional potential well. The 
need for such an extension is clear, for it makes it possible to 
substantially increase the number of physical and applied 
problems in which an exact analysis of essentially nonlinear 
phenomena can be undertaken through the construction of 
integrable models. For example, we may associate with an 
integrable-motion problem for a particle in a two-dimen- 
sional potential well an interphase-boundary problem in fer- 
roelectric-type media characterized by two order param- 
eters. It is essential that the general class of integrable 
potentials identified below may depend on an arbitrary num- 
ber of structure parameters. Thus, a class of integrable po- 
tentials is found which can be continuously transformed 
from the case of a two-dimensional potential well with a sin- 
gle global minimum to that of a potential well with several 
local minima and maxima by varying one or more structure 
parameters. Note that such a class of essentially two-dimen- 
sional integrable potentials corresponds to the characteristic 
potentials of the Landau theory of phase transitions with 
two order parameters, thereby demonstrating the possibility 
of developing models of phase transitions substantially 

linked with the "soliton" states of a medium characterized 
by two order parameters. 

By interpreting the integrable potentials found below in 
terms of two coupled nonlinear oscillators, new ways are 
found of using integrable models in the analysis of problems 
related to the motion of a star in the gravitational field of the 
galaxy, nonlinear oscillations of atoms in planar triatomic 
molecules, and, finally, the motion of particles in accelera- 
t o r ~ . ~ ~  The typical potential for such problems has the form 

Here wl and w2 are the eigenfrequencies of the oscillators in a 
linear approximation; A and j3 are the basic nonlinear pa- 
rameters; and SU defines the contribution of higher-order 
nonlinearities. Here the main problem is to determine condi- 
tions under which a potential of the form (1.1) leads to stable 
localization of a moving particle in a bounded (in particular, 
a designated) region of the configuration space XI, X,. In 
other words, the potential must be a "trap" for the particles. 
One important feature of integrable trap models is stability 
of the particle motion relative to the initial conditions and 
the possibility of determining explicitly (based on the first 
two integrals) the conditions under which the particle may 
be found in the trap. However, it is necessary to study the 
structure stability of the trap relative to the perturbation SU 
or, in other words, the structure stability of a separatrix 
path. 

The attractive feature of integrable models for two cou- 
pled nonlinear oscillators is the possibility they provide for 
the complete analysis of both the nonresonant case (0: and 
wf are incommensurable) and in the case of exact frequency 
resonance (w: and 0: are commensurable). Moreover, the 
class of multi-parametric integrable potentials we have 
found may be used to study a problem of undoubted impor- 
tance for phase-transition models, the behavior of a system 
as each of the eigenfrequencies passes through zero indepen- 
dently and in turn, and also when two eigenfrequencies si- 
multaneously pass through zero. In the first case, the change 
of the system behavior may be associated with two succes- 
sive one-parameter bifurcations, and in the second, with an 
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essentially two-parameter bifurcation. 
The value of multi-parametric integrable models for ap- 

plications is clear from the fact that in a number of cases 
nonintegrable physical models may be "approximated" to 
some degree through an appropriate selection of the struc- 
ture parameters. For example, a potential of the form (1.1) 
with SU 0 and arbitrary values of the parameters is nonin- 
tegrable. However, if SU=O and B = 1/2, then, as will be 
shown below, we have an integrable case. If it is assumed 
that SU #O is determined by higher-order nonlinearities (by 
comparison with the basic nonlinearity determined by the 
cubic form of the variables XI and X,), the integrable case 
may be found for any value of the parameter /.?. In particu- 
lar, if SU=O and w: = w: = 1, A = 1/3, and PA = - 1, 
the nonintegrable potential (1.1) is the potential of the most 
intensively studied Henon-Hales system233 directly related 
to the above motion problems for a star in the gravitational 
field of the galaxy or the nonlinear oscillations of particles in 
an accelerator under intrinsic resonance conditions. An inte- 
grable model analogous to the potential of the Henon-Hales 
system (to within a fourth-order form) is constructed in the 
present article. Moreover, our discussion of the propagation 
problem for standing waves described by the system of non- 
linear coupled equations 

where U = U(u,v), also leads to problems we shall study be- 
low. Note that methods of approximating nonintegrable 
models by means of integrable potentials may differ depend- 
ing on the nature of the problem. In the case of problems 
involving interphase boundaries in magnetic or ferroelectric 
media, the basic "proximity" or "approximation" criterion 
is one according to which the corresponding separatrix 
paths that determine the feasible types of interphase boun- 
daries coincide. 

Certain special examples of integrable potentials relat- 
ed to the motion of a point in a two-dimensional potential 
well have recently been pre~ented.~ Note that the more gen- 
eral integrable models presented in the current article arise 
naturally if we assume a zero Gaussian curvature for the 
two-dimensional manifold (configuration space) of previous 
studies. '.' 

To say that the classical problem is integrable means 
that a pair of commuting operators can be produced for the 
corresponding quantum problem, and that the Schrodinger 
equation admits a separation of the variables. 

Finally, we will present examples of physical problems 
that demonstrate the need for an analysis of quantum ana- 
logs of integrable models. A study of the rotational spectrum 
of linear molecules linked at one end to the interphase 
boundary leads to the problem of a quantum rotator which is 
immersed in a potential well and whose configuration space 
is contracted, for example, to a hemisphere.' By means of 
singular integrable potentials, a complete classification of 
the eigenvalue spectrum may be given in terms of the eigen- 
values of a pair of commuting operators corresponding to 
classical first integrals of the form (2.1) and (2.2). Here it may 
be proved that the transition from the classical first integrals 
to operators is unique, and that the Schrodinger equation 

admits a separation of variables in a suitable coordinate sys- 
tem. 

The transition-matrix systems with two order param- 
eters leads (in the thermodynamic limit9*") to an eigenvalue 
problem for a Schrodinger-type linear operator. The eigen- 
value spectrum of this type of problem defines in essence 
both the mean values of the obvervables and the behavior of 
the correlation functions. Integrable models that admit an 
exact classification of states relative to two eigenvalues and a 
separation of variables can be used in the study of the proper- 
ties of quasi-one-dimensional systems with two order pa- 
rameters. 

2. Suppose that the motion of a classical particle on a 
plane in a potential U(x,,x2) is defined by a Hamiltonian of 
the form 

We assume that the system is completely integrable and that 
it possesses an additional first integral of the form 

in which a, b, and c are functions of the coordinates x, and 
x,. The conditions under which the Poisson bracke (H,Q ) 
(which is a cubic polynomial in the momenta p, and p,) 
vanishes determines the feasible class of metric coefficients 
of the additional first integral (2.2). Namely, 

Here A, a,, c,, a,, b,, and c, are arbitrary constants. The two 
conjugate potentials U and V are related as 

The integrability conditions for the system (2.4) d2V/  
dxldx, = dZV/dx,dxl reduce to the equation 

dZU dZU dZU db dU ab dU 
b + (c-a)- - b y +  3---3--=0 

8x1 dx,  dx, ax,  dx ,  ax,  dx,  dx,  ' 
(2.5) 

whose unique solutions determine the class of integrable po- 
tentials (whether regular or singular). Note that when 
A = ac - b '#O, by solving the system (2.4) fordU/dx, and 
dU/dx, and using the integrability condition d2U/ 
dx,dx, = d2U/dx,dxl, we arrive at the equation 

(2.6) 
whose solutions completely determine the class of conjugate 
potentials. It can be proved that if U(x,,x,) is a solution of 
(2.5), the function V = AU satisfies (2.6). From this asser- 
tion, we obtain the recursion relations 

dun++ - --c--b- 8 c au- aun+-un, 

X ,  ax,  ax,  ax,  (2.7) 
au,,, -- au, au, da 

- -b-+a-+-U,, 
8x2 dx,  ax,  ax, 
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by means of which it is possible to construct the succeeding 
integrable potential U, + , using the known integrable po- 
tential U,. Once we have applied (2.7), we can construct a 
sequence of integrable potentials which is a generalization of 
a previously obtained sequence6 for the case in which 
i l=a,=b,=c,  and U,,= 1 in (2.3). Here V,+, = U,A 
will be the potential conjugate to U, + , . 

However, an integral representation of the solutions of 
equations (2.5) and (2.6) previously used by us1 is more gen- 
eral and, in particular, makes it possible to define a relation 
between the class of integrable potentials and the metric of 
the coordinate systems that admit a separation of variables 
in the Hamilton-Jacobi equations. Note, too, a number of 
results7 which represent a mathematically more complete 
study (by comparison with Ref. 1) of coordinate systems on 
the sphere and admit a separation of variables for systems 
such as (2.1) and (2.2). 

The solutions of equations (2.5) may be represented in 
the form 

where p(z) is an arbitrary function and the functions a, b, 
and c are defined by (2.3). Suppose that q,(x,,x,) and q2(xl,xz) 
are the roots of the equation 

so that (2.8) may be written in the form 

which is completely analogous to (A. 15), (Appendix to Ref. 
1). If the functions ql(x,,x2) and q,(x,,x,) are independent, 
then, if we make them new generalized coordinates (the case 
in which these functions are not independent will be dis- 
cussed below), we find that they specify a curvilinear orthog- 
onal reference grid on the (x1,x2) plane. Since 

we may write for (2.6) a solution that determines the integra- 
ble potential conjugate to (2. lo), in the form 

Based on the results of the appendix to Ref. 1 (or an 
analysis of (2.10) and (2.1 1) for the case p(z) = z, + , /2?ri, 
where n is a positive or negative integer), we may verify that 
the class of single-valued multi-parametric potentials admits 
of the representation 

n = - m  

Here 

while the C, are arbitrary constants. We associate with the 
case of positive integers n regular integrable potentials, and 
with integers n( - 2, singular integrable potentials. The 

expression for the potential V conjugate to (2.12) is given by 
the relation 

We present explicit expressions for the first two regular inte- 
grable potentials 

U i  ( x i ,  1,) =qlq2=a+c, (2.15) 
U ,  ( x , ,  2 , )  =q12+qiqz+q22= (a+c)  2-ac+b2. 

Note that each of the regular integrable potentials consti- 
tutes a polynomial in the variables q, + q, and qlq2. Also 
worth noting is the simple physical meaning of the potential 
U,. Ifil > 0, it is a two-dimensional harmonic oscillator with 
eigenfrequency il and equilibrium state at the points 
x, = - c,/W andx, = - a , /U .  Ifil = 0, it is the potential 
of a particle in a constant electric field. 

We associate with different values of the arbitrary con- 
stant coefficients in (2.3) different grids of orthogonal curvi- 
linear coordinate systems ql,q,. Thus, if in (2.3) only the coef- 
ficients a ,  and c, are nonzero, we obtain an orthogonal grid 
that corresponds (apart from rotations) to the coordinates of 
a parabolic cylinder, " while if A, a, and c ,  are nonzero, we 
obtain an orthogonal grid that corresponds to the coordi- 
nates of an elliptical cylinder. If only the coefficient il is 
nonzero, the functions q, and q, are no longer independent 
(q, = 9,). Then, if we let q, be one of the independent varia- 
bles and add it to the orthogonal coordinate system, we ob- 
tain a grid corresponding to polar coordinates. 

3. Using the above class of integrable potentials, we con- 
struct a simple integrable model that corresponds to the mo- 
tion of a point in a two-dimensional potential well. As the 
structure parameter is varied, the corresponding potential is 
continuously transformed, changing from a potential well 
with a single global minimum to a well with two minima and 
a single local maximum. For the one-dimensional case, this 
type of model is a source of well-known analogies with the 
phenomenological theory of phase transitions and self-orga- 
nization phenomena.1°.12 

Generalizations of our model (some of which are pre- 
sented below) show, in particular, how to systematically 
identify cases when the important problem of two coupled 
nonlinear oscillators is completely integrable. 

Let us consider the integrable potential 

Here U, and U, are defined in (2.15) and C, and C, are arbi- 
trary constants. As an example, let us consider the case in 
which a, = b, = c, = 0 in (2.3). The shift transformation 

and rotation transformation 

s X , = c , ~  ,+a,Z,, s X 2 = - a , ~  ,+c,z  ,, (3.3) 

where sZ = a: + c: , lead to 
q,+q,=ai-c=2A ( X I 2 +  XZ2)  -s2/%, 

q,q2=ac-- bz=-sZXZZ (3.4) 
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and the potential (3.1) may be written in the form 

U(Xi, (a-27) Xiz+ (a-y)  X z z + ~  (X,z+~:)2. (3.5) 

Here we have introduced the notation 

When a - 2y > 0 and a - y > 0, the potential (3.5) corre- 
sponds to the integrable problem of two coupled oscillators 
with distinct eigenfrequencies and nonlinear isotropic po- 
tential interaction. 

The first integrals (2.1) and (2.2) in this model take the 
form 

Here M = X2p1 -XI p, is the angular momentum of the 
particle, and the potential conjugate to (3.5) has the form 

As s 2 4 ,  the expressions (3.5) reduce to a potential invariant 
to rotations. The additional integral (3.8) degenerates to the 
law of conservation of the angular momentum. 

As the structure parameters a, B, and y vary, both the 
type of equilibrium state and their quantity vary. Let us con- 
sider the case B >  0. In this case, the model has a null equilib- 
rium state (XI = X, = 0) for all values of the structure pa- 
rameters, and when a > 2y, this state is unique and 
corresponds to the global minimum of the potential energy 
U(Xl,X2) defined by (3.5). If a = 2y, two equilibrium states 
split off from this null state: 

and correspond to two distinct (by virtue of symmetry) glo- 
bal minima of the potential energy. Two separatrix loops 
corresponding to solutions with a single degree of freedom 
(X2=O) are created in this case from the null equilibrium 
state. 

Further, as the second critical value a = y passes out of 
the null equilibrium state, two additional saddle-center type 
equilibrium states are split o E  

The equilibrium states (3.11) are related by separatrices 
whose projections on the configuration space XI, X, form the 
ellipse 

In the case when a potential of the form (3.5) corre- 
sponds to a model of an ordered medium with two order 
parameters, such separatrices are the image of interphase 
boundaries associated with a simultaneous variation of both 
order parameters (unlike the degenerate cases, which are re- 
lated to the variation of only one of the two order parameters 
as the interphase boundaries are crossed). 

When a < y, the null equilibrium state corresponds to a 
local maximum of the potential energy; two additional de- 
generate separatrix loops corresponding to one-dimensional 

motion with X1=O are created in this state, and since the 
problem is integrable, a continuous spectrum of closed se- 
paratrix loops is created. 

4. A new class of integrable potentials arises if we set 
A = 0 in the expressions for the metric coefficients (2.3). In 
this case, the shift transformation 

and rotation transformation 

S X , - C ~ Z , + ~ ~ ~ ~ ,  sX,=alZi-ctEz (4.2) 

lead to relations with structure different from that of (3.4), 
that is, 

qt+qz=a+c=2sX,, 
(4.3) 

q,qz=ac-bz=--s2Xx,"+ (21s) [2a,c,Xi+ (at2-c,2)X2] -Bo. 

Here we have set 

The expressions for the first two integrable potentials have 
the form (to within minor constants) 

ui=2sx,, 

U2=sZ(4X?+X2) - (21s) Bo [2a,ciX,+ (atZ-c,2) X,] , 
U3=4s3X, (2XiZ+Xzz) -4BoX, [4aic,Xi+2 (aiz-ci2) X2-sBO] . 

(4.5) 
These expressions show that, for example, the problem for a 
two-dimensional nonlinear oscillator with potential 

is integrable for arbitrary values of the eigenfrequencies w, 
and w, and of the parameter A. 

Note that in this class of integrable potentials (A = O), 
the additional integral (2.2) assumes the form 

The class of integrable potentials of the form (4.6) includes 
potentials corresponding to the intrinsic resonance of the 
frequencies of a two-dimensional oscillator. The interesting 
case of simultaneously vanishing frequencies and the transi- 
tion to the region of purely imaginary eigenvalues can then 
be studied. This transition into the region of purely imagi- 
nary eigenvalues may be accomplished in different ways, de- 
pending on whether or not it occurs when there is a reso- 
nance relation between the frequencies. 

The particular case of the intrinsic resonance w: = 4w: 
for the present class of integrable potentials (A = 0) with the 
additional constraints 

.uo=b0=co=0, c,=O 

was given in Ref. 6. However, a more general potential of the 
form 

u=c,ut+czuz+c3u,+c,u~ (4.7) 

with B,#O must be investigated if we wish to analyze critical 
perturbations" without violating integrability. (Our aim 
here is a proper analysis of the bifurcations associated with 
the simultaneous vanishing of both frequencies.) 
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The class of integrable potentials of the form (4.7) in- 
cludes, in particular, the potential 

U='/zX,Z+1/zX22+i/sX13-X~Xz2+~ (16Xi'++12X,2X,Z+X,'), 
(4.8) 

where E = 7/36, which in a finite region of the plane X,, X2, 
approximates the potential of the Henon-Hales problem2: 

u='/,x,"+/Zx2Z+'13X,s-X1xa2. (4.9) 

Equation (4.8) indicates that when X ,X: ( 1 and for corre- 
spondingly small values of the energy of a system of two 
coupled nonlinear oscillators in the nonintegrable Henon- 
Hales problem (for nonintegrability, see Ref. 13), an integra- 
ble model "similar" to (4.7) may be constructed. Results of 
numerical computations2 convincingly attest to the fact that 
the Henon-Hales system behaves like an integrable system at 
relatively low values of the total energy. 

Thus, the discussed class of multi-parametric integrable 
potentials in the problem of particle motion in a plane, can be 
used to completely investigate integrable models of a host of 
physical problems, and also provides new methods of ap- 
proximating a nonintegrable model by means of integrable 
models. 

We wish to express our deep appreciation to I. Ya. 
Dzyaloshinskii, who pointed out the need for integrable po- 
tentials typical of the theory of phase transitions and inter- 
phase boundaries for use with systems with two order pa- 
rameters. 
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