
Polarized defects and anomalies in the properties of crystals at phase transitions 
N. I. Lebedev, A. P. Levanyuk, and A. S. Sigov 

Institute of Radio Engineering, Electronics, and Automation, Moscow 
(Submitted 22 March 1983) 
Zh. Eksp. Teor. Fiz. 85, 1423-1436 (October 1983) 

A continuum approach is used to study theoretically the behavior of the thermodynamic quanti- 
ties, order-parameter correlation functions, and certain kinetic coefficients for crystals contain- 
ing defects giving the same sign of the order parameter (polarized defects). It is taken into account 
that real defects consist of both the "random local field" and "random local transition tempera- 
ture" type. For cases in which the field component of the defect is not particularly small, a theory 
is constructed which is valid over an entire temperature interval including the phase transition 
point of the ideal crystal. The temperature dependence of the thermodynamic quantities and of 
certain kinetic coefficients has the same qualitative character as in the defectless crystal if 
allowance is made for the shift of the transition temperature and the presence of an effective field 
conjugate to the order parameter. However, under certain conditions effects due to the random- 
ness of the defect distribution can be appreciable. These effects also determine completely the 
elastic scattering of light and neutrons and the defect contribution to the anomaly in the diffuse x- 
ray scattering. It is shown that the scattering intensity can have a rather nontrivial dependence on 
the temperature and on the defect concentration, owing to the interference of the contributions 
from the different components of the defect. The possibilities of an experimental check of the 
theory are discussed. 

PACS numbers: 64.60.Cn, 6 1.50.Ks, 6 1.70. - r 

The theoretical papers which have been published on 
the influence of defects on the properties of materials near 
phase-transition points can be divided into two groups. One 
(see, e.g., Refs. 1-4 and the literature cited therein) consists 
of studies of rather narrow neighborhood of the transition 
point-the so-called scaling region-which has yet ot be re- 
liably detected for the case of structural phase transitions. 
The other group, smaller in number, consists of studies 
whose results pertain to temperatures which are not too 
close to the transition point and to defect concentrations 
which are not too large (see, e.g., Refs 5-8). In this case the 
defects can be treated as independent, and their contribu- 
tions to the physical quantities can be assumed additive. This 
approach is clearly valid when the order-parameter correla- 
tion length r, , which determines the size of the perturbation 
region around a defect, is smaller than the average distance 
between defects. 

In the present paper we consider a case in which one can 
construct a theory which in fact applies to a whole range of 
temperatures, including the phase transition temperature in 
the ideal crystal. This is the case of so-called "polarized de- 
fects." Let us explain what is meant by this term. 

In describing the defect-caused matrix distortions one 
usually distinguishes between defects of the "random local 
transition temperature" type (T defects) and "random local 
field" type in various state (S, P, etc.  defect^).'.^.^ These are 
discussed in more detail in Sec. 1. A real defect can, of 
course, include both types of contribution and different 
states simultaneously, and we shall therefore refer to the T, 
S, and Pcomponents of a defect. A system of defects is called 
polarized when the signs of the S components of the defects 
are the same. In this paper we shall consider only frozen 

defects whose orientation and distribution do not change 
with temperature. 

Obviously, in a crystal with polarized defects there is no 
phase transition in the true sense of the word, i.e., the corre- 
lation length r, of the order parameter remains finite at all 
temperatures. It is preciesely this circumstance which per- 
mits one ultimately to obtain results which pertain to an 
entire temperature interval including the phase transition 
point of the defectless crystal. 

In constructing the theory we take into account all of 
the interesting components of the defect. We note that even 
in the case when the S component of the defect is small or 
entirely absent, i.e., the concept of polarization of the system 
of defects loses meaning, the results given below are valid for 
a substantially wider region than the results obtained in the 
isolated-defect appro~mation,~ even though one cannot con- 
struct a theory which is valid for the entire range of tempera- 
tures. 

An important feature of the approach developed below 
is the use of the continuum approximation for describing the 
distortions caused in the crystal by the defect. This approach 
is valid if the defect concentration is sufficiently small: 
Nd34 1, where N is the defect concentration and d is the 
dimension of the core of the d e f e ~ t . ~  We note that in consid- 
ering defects in the framework of the microscopic theory, the 
authors of Refs. 9 and 10 used the self-consistent-field ap- 
proximation, for which the applicability condition is that the 
average distance between defects be small compared to the 
effective range of the forces. Since this range is of the same 
order of magnitude as d, the applicability condition for the 
approach of Refs. 9 and 10 is the direct opposite of our condi- 
tion Nd3 4 1. 
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Crystals with polarized defects are of great interest 
from an experimental standpoint. It is defects of the polar- 
ized type that are created through radiation damage of a 
crystals in an asymmetric phase, during growth of a crystal 
below the phase transition point, and also in the processing 
of a sample into a single-domain state. In interpreting the 
experimental data it is customary to take the presence of 
polarized defects into account by introducing an effective 
field conjugate to the order parameter and also a shift of the 
transition temperature. Although such an approach is qual- 
itatively reasonable it does not take into account effects due 
to the randomness of the spatial distribution of the defects 
(fluctuations in the defect concentration). In this paper we 
employ a continuum-theory approach to evaluate the effec- 
tive field and the shift of the transition temperature and to 
calculate the contributions to various quantities from effects 
due to fluctuations in the defect concentration. Under cer- 
tain conditions these fluctuations necessitate appreciable 
corrections to the expressions for the thermodynamic quan- 
tities and for certain kinetic coefficients as evaluated with 
allowance for the effective field and the shift of the transition 
temperature. They also govern the elastic light-scattering 
and neutron-scattering intensity and the intensity of diffuse 
x-ray scattering. 

By considering effects due to the randomness of the de- 
fect distribution, one can understand on the basis of simple 
considerations that the relative role of the various defect 
components changes as the concentration Nchanges. For an 
isolated defect theS component gives the most strongly tem- 
perature dependent contribution to all the physical quanti- 
ties," i.e., the contribution containing the highest power of 
the correlation length r, . This statement, of course, pertains 
to the case of low concentrations of defects. As the concen- 
tration of polarized defects increases, the effective field pro- 
duced by these defects grows. This field eliminates the diver- 
gence of r, and leads to a decrease in the contribution of an 
individual defect to the anomalies. Naturally, this decrease 
is most important for theS-component contributions, which 
contain the highest power of r , .  One can therefore expect 
that at large concentrations N the contribution of the T and 
P components will become predominant. 

The investigation below pertains to the case of struc- 
tural phase transitions which are not proper ferroelectric or 
ferroelastic transitions. In these last two cases it is necessary 
to take into account the long-range forces arising in the pres- 
ence of spatial inhomogeneities of the order parameter. 
These cases must be treated separately. 

1. SPATIAL DISTRIBUTION OF THE ORDER PARAMETER 

Throughout the rest of this paper we consider the sim- 
plest case of a one-component order parameter 7. In this 
case the free energy density of an ideal crystal is of the form 

where h is the generalized field conjugate to the order pa- 
rameter 7. In the region where Landau theory applies we 
have 

A=A, (T-T,)  IT,-A,T, ~=konst .  

Allowance for the presence of defects is made by includ- 
ing in (1) terms of the type 

where x denotes one of the crystallographic directions. 
These terms correspond respectively to the T, S, and P com- 
ponents of the defect. All the remaining terms taking into 
account the defect contribution to the free energy of the crys- 
tal are of no interest in the study of anomalies near phase 
transitions points. In the present paper we consider only po- 
larized point defects, which do not create appreciable elastic 
stresses in their neighborhoods. For such defects 

where V, = (47~/3)d is the volume of the core of the defect 
and ri is the coordinate of the ith defect. 

It will be convenient to separate out in all the expres- 
sions the volume average ij of the order parameter. We recall 
that a feature of the polarized defects under study is that they 
have a nonzero ij at all temperatures. Taking into account 
the contributions (2) of all three defect components, we write 
the expression for the free energy and the corresponding 
equation of state as expansions in powers of (7 - ij) in the 
form 

a g d  cp"' (PI" +-+-(q-q)2 + T ( q - q ) 3 + . . .  ; (5) 
a x  2 

here Vis the volume of the crystal. We note that whereas in 
Ref. 5 the defects assigned the boundary conditions for the 
equation of a continuous medium, here they enter Eq. (5) in 
the form of inhomogeneous terms and a coefficient of 
(7 - ij). The two approaches are equivalent and lead to iden- 
tical results. 

Let us solve Eq. (5) in the approximation linear in 
(q - j j ) ,  determining the average value of the order param- 
eter from the self-consistency condition 

where the angle brackets denote an average over the random 
spatial distribution of the defects. 

Let us first consider the case of S defects, i.e., let us set 
A, = g, = 0. Taking (3) into account, we find for this case 
the solution of (5) in the linear approximation: 
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where 7 ,  = h,  V1 /4rDd  has the meaning of the order param- 
eter at the core of the defect, 

(p ( r )  = (ctlr) exp (--rlr,) , 
while the correlation length rc is given by the expression 

re2=Dlq ( % I ) ) .  (8 )  

Using solution (7) ,  we obtain for the self-consistency condi- 
tion (6) 

( S ( I ) )  =NVihl, (9 )  

i.e., i j , ,  has the meaning of the average value of the order 
parameter in the effective field he, = NVlhl .  

The first nonlinear correction to solution (7 )  is of the 
form 

(10) 

Using (6) and (10) and evaluating the corresponding inte- 
grals, we obtain the correction to the average value: 

- q(11)=-6n ($)2~r,t,I,-4n7~dr.'ln-, qo3 3rc ( 1 1 )  
"'I at d  

where vat = ( D  /Bd ')'" is the atomic value of the order pa- 
rameter (see Ref. 5).  Taking into account the temperature 
dependence of the correlation length (8)  and of the average 
value of the order parameter (9),  one is readily convinced 
that ?r(,,, is small compared to ij,, - 7 ,  , where 7 ,  is the 
average value of the order parameter in the defectless crys- 
tal, i.e., the solution of (9 )  with N = 0 is valid over the entire 
temperature range if 

q01qatKl. (12) 

Calculations show that condition (23) also ensures that the 
next nonlinear correction of the average value ij will be 
small, as will the nonlinear corrections to the other quanti- 
ties of interest. 

Let us discuss the meaning of condition (12). Far from 
the phase transition point solution (7 )  goes over to the addi- 
tive (in the defects) solution obtained previously in Ref. 5. 
Condition (12) coincides with the condition for the linear 
approximation in the case of an isolated d e f e ~ t . ~  Near Tc 
soluton (7)  is not additive in the defects. In this case condi- 
tion (12) can be interpreted as the requirement that fluctu- 
ations of 7 due to the randomness of the defect distribution 
be small compared to the characteristic value of the order 
parameter: 

( ( q - - q ) 2 ) ~ c p r ' / B .  (13) 

Let us turn not to defects of the T type (h,  = 0 ,  g, = 0) .  
In this case the linearized equation (5) is of the form 

DA ( q - q ) = ( q n  +Ad(r ) )  ("'I-q) + ~ ' + q A d ( r ) ,  (14) 

for which we are not able to write an exact solution. Let us 
first replace the coefficient A, ( r )  on the right-hand side of 

equation (14) with its average value 2,. Then we can easily 
write a solution of the equation. Taking into account that 
A, ( r )  is of the form (3) ,  we have 

where 6 = A ,  Vl/4ii-Dd characterizes the "stiffness" of the 
defect, p(r)  has the same form as in solution (7),  and 

r,2=D/ ((pN+NViAi) . 
Self-consistency condition (6)  gives 

It is seen from this equation that in the given approximation 
the effect of T type defects reduces to a renormalization of 
the phase-transition temperature. 

We wish to stress that solution (15) was obtained with- 
out allowance for fluctuations of the random temperature 
A, (r)-zd in the first term on the right-hand side of equation 
(14). One is able to take these fluctuations into account since 
equation (14) is of the same form as the equation describing 
the propagation of waves in media with random inhomo- 
geneities. A diagrammatic method of solving such equations 
is described, for example, in the book by Rytov, Kravtsov, 
and Tatarskii." Using this method, we have carried out a 
partial summation of the diagram series for the averages of 
powers of the function ~ ( r )  and for the correlation functions. 
We shall not give the corresponding calculations here. It  
turns out that the averages and correlation functions of in- 
terest to us coincide with those obtained with the simple 
solution (15), but with A ,  replaced by A , / ( l  + 6 ) .  An esti- 
mate of the diagrams dropped from the summation yields 
the following applicability condition for this approximation: 

It can be shown that condition (17) is simultaneously the 
condition that the nonlinear terms in equation (5 )  are small. 
Therefore, the corrections obtained by allowing for a wider 
class of diagrams in the summation would be smaller than 
the limits of accuracy of the present treatment. Using solu- 
tion (15), one readily sees that condition (17) specifies that 
the order-parameter fluctuations ((7 - i j )*)  are small com- 
pared to the characteristic value (q" + A, ) /B  of the order 
parameter, i.e., condition (17) is analogous in meaning to 
inequality (1 3). 

Solutions (7) and (15) are easily generalized to the case in 
which the defect has all three components: S, P, and T. If we 
neglect A, ( r )  - A, in the first term on the right-hand side of 
(S), as we did in obtaining solution (15), we find that in the 
linear approximation 

i 

where 

gi v, 
qop- - 39 ~p ( r )  = - cos 0, 

4nd2D ' dr 
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and 8 is the angle between vector r and thex axis. As we have 
already mentioned, solution (15) gives the right answers for 
the moments and correlation functions, with correct 
allowance for the fluctuations A, - zd, if we make the re- 
placement 

Analysis shows that h ,  and g, undergo the same renormal- 
ization: 

hi -+h lg=h i / ( l+g ) ,  g i+gi*=g, / ( l+g) .  

We shall assume that this renormalization has been carried 
out in solution (18) and in all the formulas which follow. The 
renormalized quantities vO, vop, and < will also be denoted 
by an asterisk (*). 

The correlation length in (1 8) is given by the expression 

r,Z=D/ ((pN+NV,Ai*) , (19) 

and the equation for the average order parameter incorpo- 
rates both the shift in Tc and the effective field: 

T' ( ~ ( 1 ) )  +NViAi*Tj(I)=NVihi'. (20) 

Analysis shows that when the P component is taken 
into account in the form shown in solution (18), there is an 
auxiliary condition 

which means that the fluctuations of r] due to the P compo- 
nent must be small and also requires qOp/r]at (1. We note 
that for polarized defects even with a comparatively small S 
component conditions (17) and (21) are satisfied over the en- 
tire range of temperatures. This becomes obvious when one 
estimates the left-hand sides of inequalities (17) and (21) for 
the temperature at which the correlation length is maxi- 
mum. In fact, according to (19) and (20) 

- 2  q(~,,,=B-i[nB%NdDq,*]". 

Thus, for r, = r, ,,, conditions (17) and (21) reduce to 

For N =  1018-1019~m-3, d = 10-7-10-8cm-3, qOp/vat 
= 0.1 and < = 1, these conditions yield r],/77,, ) 

lo-'' and qO/qat ,10-3-10-5, respectively. 

2. THERMODYNAMIC QUANTITIES 

We note that since ifr) and rc in this expression are deter- 
mined by equations (20) and (19), respectively, the free ener- 
gy (23) contains terms of any order in the defect concentra- 
tion. To go over the expressions of first order in the 
concentration [see formulas (1. I), (1.1 1) and (5.3) of Ref. 51 it 
is sufficient to replace i(I) by r ] ,  [pl(r],  ) = 0] and r, by [D / 
p " ( r ] ,  )]1'2. The second term in the expression for the energy 
(23) makes allowance for the shift of the phase transition 
temperature, the third takes into account the presence of the 
effective field, and the last two terms are due to randomness 
effects, i.e., to fluctuations of the defect concentration. 

By differentiating the free energy (23) with respect to h 
and r, one can obtain expressions for the thermodyanamic 
quantities. In view of the length of these expressions, we 
shall not write them out completely here. Let us examine the 
two limiting cases in which the randomness effects are due 
predominatly to: 1) the S component of the defects; 2) to the 
T and P components. In the first case we have 

Here AC = Ao2/2BTc is the specific-heat discontinuity giv- 
en by Landau theory for an ideal crystal, 

t=cp"' ( T ( I ) ) ~ ( I )  [q"(Tj(I)) +NViAia1 -', 

and are respectively the anomalous part of the specific 
heat and susceptibility and the average value of the order 
parameter with the shift in the transition temperature and 
the effective field taken into account [see (20)l. 

In the second case 

~ ( 1 + 4 t - t 2 )  AC. (254 
Using solution (18) and discarding the nonlinear terms 

in expression (4), we find the free energy of a crystal contian- Comparing expression (24) and (25) with inequalities (1 I), 

ing defects: (17), and (21), we see that the contribution of concentration - - 
0 NVtAi*- 2 

fluctuations to the thermodynamic quantities [i.e., r] - v ( ~ , ,  
- = ( ~ ( T ( I ) )  + 2q(~) -NVih i 'q (~ )  ,y - ,y , and C - C,)] are proportional to the small param- v - - 

eters of our approximation. The difference r] - vfI, in (24a) 
d 4n d2 

+ 2 n ~ ~ d ( q . * - E * q ( ~ , ) ~ -  + h l v ~ d q ~ :  ( - ~ ; i  - 
was in fact already taken into account in formula (1 1). The 

rc ) ' difference between these formulas is that (1 1) contains a sec- 
(23) ond term which could also be obtained in (24a) by simply 
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considering the nonlinear terms in the free energy (4). This 
term is of no interest, however, since it plays an appreciable 
role only far from the phase transition. On the whole, fluctu- 
ations of the concentration of polarized defects give an ap- 
preciable contribution either for rather strong defects, when 
vo - vat (in this case fluctuations of the S component are 
important) or at a high concentration of defects with a small 
value of vo [see inequalities (17) and (21)J. 

Let us now discuss the conditions which correspond to 
the two limiting cases under consideration. For this purpose 
let us compare the fluctuation contributions corresponding 
to the different defect components at rc = rc ,,, (22), when 
these contributions are a maximum. We easily see as a result 
that the fluctuations corresponding to the Scomponent [for- 
mulas (24)] play the predominant role at low defect concen- 
trations. The corresponding conditions are 

for the contributions to the susceptibility and to the average 
value of theorder parameter. For the contribution to the 
specific heat the second inequality is replaced by 

with increasing defect concentration the fluctuations asso- 
ciated with the T and P components [formulas (25)] begin to 
play the predominant role. 

The "non-field" contribution to C- C(, ,  in formula 
(24c) is shown in Fig. 1. We note that the temperature depen- 
dence of the first fluctuational correction to the specific heat 
(the correction due to the thermal fluctuations of v) has a 
similar form in the presence of a field conjugate to the order 
parameter. The ratio of these corrections at rc = rc ,,, is 

Tat 9' "' =lhva-(Nd3)" (- ) 7 

T c  ll at 

where Tat = D '/Bdk, is of the order of the atomic tempera- 
ture for transitions of the displacive type; Tat - Tc for transi- 
tions of the order-disorder type. For Tc = 100 K ,  N = 10'' 
cmP3, d =  lo-' cm, and vo*/va, =0.1 we obtain 
(C - C(,,)/Cf- lo2 for a displacive phase transition and 
(C - C,,, )/Cf - 1 for an order-disorder transition. We stress 
that on the whole the specific heat (24c) depends montonical- 
ly on the temperature. 

Formulas (25) are, of course, also applicable in the ab- 
sence of an S component of the defects. In this case they 
reduce, to within a renormalization of Tc , to the formulas 
which can be obtained in the approximation of isolated de- 
fects. We stress that the region around Tc in which formulas 
(25) do not apply is substantially smaller than in the case of 
the isolated-defect approximation. 

3. CORRELATION FUNCTIONS 

Fluctuations of the polarized-defect concentration can 
cause significant static scattering of neutrons, light, and x 

FIG. 1. Temperature dependence of the contribution to the specific heat 
from fluctuations in the concentration of S defects. 

rays. We note that in contrast to the thermal-fluctuation 
correlation functions, the correlation functions governing 
the scattering by static fluctuations of the defect concentra- 
tion are not directly related to the corresponding generalized 
susceptibilities. 

Let us first consider the correlation function 

which determines the intensity of the elastic neutron scatter- 
ing and diffuse x-ray scattering. For its Fourier components 
with k< l /d,  i.e., sufficiently close to the Bragg reflection, we 
obtain with the aid of (18) the equation 

The temperature dependence'' of this correlation function in 
the case krc ( 1 is given for different defect concentrations in 
Fig. 2. At low values of N [in the same of inequality (26)] it 
has a peak due to fluctuations of the S component. The size 
of this peak decreases with increasing N, and, simultaneous- 
ly, a second peak, due to fluctuations of the T component, 
appears. We note that if the S component of the defects is 
nonzero, then the peak in the temperature dependence coin- 
cides with the temperature of the maximum of r, only in the 
limiting case of small N. 

FIG. 2. Temperature dependence of the elastic neutron-scattering (diffuse 
x-ray-scattering) intensity for various concentrations of polarized defects: 
1)  N = 10'' ~ m - ~ ,  2) lo", 3) 1 0 ' ~ .  The values of the remaining parameters 
are: d = lo-' cm, D / A ,  = 10-l4 cmZ, q,,/qat = 0.1, g = 1. 
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Let us turn now to the correlation function of the square 
of the order parameter, which determines the elastic-scatter- 
ing intensity for light. Here, as usual, one can set kzO. This 
correlation is of the form 

( (q2(0) -q2) (q2(r)-q2))=( (q (0) (r) -q)') 
+4q( (q (0) -q) (q (r) -q)2)+4q2( (q (0) -q) (q (r) -q) ): (3 1) 

The last correlator in this expression is given by formula (30), 
and for the other two correlators we find, using solution (1 8), 
a t k = O  

( (q (0) -q)2 (q (r) -q) = 4n2Nd4r: (qO'-E'Tj~) 
128n2 +- Nd5r, (qo'/~'q,,,)2qop'2+8n3N2d4r,5 (~o'-E*T(I))~ 

3 

In the last expression we have not written out the terms 
which do not depend on the temperature. 

At a low defect concentration [conditions (26) and (27)] 
the main contribution to the correlation function is that of 
theS component of the defects. In this case we find fork = 0, 
using (31), (32), and (33), 
( (q2(0) -5') (q2 (r) -q2) )=Nq0'2 {2nd2reqo*+8ndr~~(I)}2 

+N2qO*' (2n) V4r,". (34) 

The contribution of thescomponent to the correlation func- 
tion, as given by formula (34), has a temperature peak whose 
size increases with increasing N. 

For sufficiently large N [in the sence of inequality (26)] 
the interference of the contribution of the S and T compo- 
nents causes the growth of the peak with increasing N to give 
way to a fall-off. This stage of the evolution of the tempera- 
ture dependence is illustrated in Fig. 3a. Upon further 
growth in N all of the defect components can contribute to 
the scattering, and the temperature dependence can have a 
rather complex form. An example of a possible temperature 
dependence is given in Fig. 3b. 

At a high defect concentration [i.e., when the inequal- 
ities opposite to (26) and (28) hold], the main contribution to 
(3 1) is from the T and P components of the defects. In this 
case we have for k = 0 

( (q2 (0) -q2) (q2 (r) -q2) ) =64n2~d2rcrE'2q(:) 

Let us discuss this last expression first for the case when the 
defect has no component. The first two terms nonvanishing 
to first order in N evidently give a jump of the scattering 
intensity at the phase transition; when the P component is 
taken into account, the sign of this jump can be positive or 

FIG. 3. Temperature dependence of the elastic light-scatter- 
ing intensity for defects with different "strengths": a) q,,/ 
qat =0.6,b)0.2,~)0.001.Cu~el)N= 10"cm-~,2) 1018,3) 
6.4.101', 4) 1 0 ' ~ .  The values of the remaining parameters: 
d = lo-' cm, D / A ,  = cmZ, qOp/qat = 0.001. 

negative. As the temperature approaches T, and the qua- 
dratic terms in (35) become importnat, the light-scattering 
intensity grows as r-lJ2. In the asymmetric phase this 
growth is due to both the Tand Pcomponents of the defects, 
while in the symmetric phase it is due only to the P compo- 
nent. The presence of the S component causes a smearing of 
these curves. Figure 3c gives the temperatue dependence of 
the scattering intensity at high defect concentrations [see 
(26)] for the case in which the defects have only T and S 
components. 

Let us estimate the defect contribution to the light-scat- 
tering as compared to the noncritical molecular scattering 
I,. By way of estimate we can assume that I,  is governed by 
density fluctuations. Then at k = 0 we find 

where a is the coefficient in the relation E = E~ + a1l2. Taking 
pa&/ap = 1, T, = 100 K, A = 1011-1012 erg/cm3, and 
aqat2 = 10-1-10-3, we obtainId/IM - 10-2-103 for thein- 
tensity corresponding to the peak in Fig. 3a. Thus we see 
that, in principle, defects can make a large contribution to 
the light-scattering even at relatively low concentrations. As 
we have see, a growth of the defect concentration does not by 
any means always lead to an increase in the light-scattering 
intensity. 
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4. KINETIC COEFFICIENTS 

Let us consider the polarized-defect contributions to 
the anomalies in the kinetic coefficients, using as examples 
the acoustic damping and the soft-mode damping constant. 
This topic is of interest inasmuch as defects can give a sub- 
stantial contribution to these quantities, as was shown in 
Ref. 5 in the approximation of independent defects. 

To allow for the connection between the acoustic 
strains and the order parameter, we must add to the free 
energy density ( I )  the following 

where u = u, = - Ap/p, and il is the elastic modulas. For 
the sake of simplicity let us neglect the crystalline anisotropy 
and the nonzero value of the shear modulus. The linearized 
equations of the motion for the strain u in the sound wave 
and the accompanying oscillations in the order parameter 7 
are of the form 

where 7, = 7, (r) denotes the equilibrium value of the order 
parameter in the crystal in the presence of the defects. In 
solving equations (37), we transform to the Fourier compo- 
nents v(k,w) and v(k,w) and retain terms of lowest order in 
the fluctuations ?Ie = 7, (r) - 17, , as was done in Refs. 5 and 
6. 

As in the specific-heat calculation, it is fluctuations of 
the S component tht are important at low defect concentra- 
tions [see (26) and (28)l. In this case we find for the renormal- 
ized modulus 1 (a) 

Recognizing that 

and that i, is given by expression (24a), we have for the case 
of low frequencies w(w, , where w, = (q, " + NVIA ,*)/y is 
the inverse relaxation time of the order parameter, 

Here AA = 3/2B is the discontinuity in the modulusil at the 
phase transition, and the quantity t is the same as in (24). We 
note that for il, I R ~  - il I the anomalous part of the inverse 
modulus is related to the specific heat (24c) by the Pippard 
relation,I4 as, of course, it must be. For the damping of sound 

in the high-frequency limit o(w, we have 

t W R  
Im X = -- Ah+4nNrC3 

3 a ( )  A - t .  (41) 

The first terms in (39), (M), and (41) represent the contribu- 
tion due to the Landau-Khalatnikov relaxation mechanism 
with allowance for the effective field and shift of the transi- 
tion temperature, while the second terms are due to fluctu- 
ations of the defect concentration. As can be seen by compar- 
ing formulas (39), (M), and (41) with expression ( l l ) ,  the 
contributions to 1 (w) due to concentrations fluctuations are 
proportional to the small parameter of our approximation. 
This also pertains to the contributions (written out below) of 
the T  and^ components. They can be appreciable under the 
same conditions that apply for the contributions of concen- 
tration fluctuations to the thermodynamic quantities (Sect. 
2). The corrections to the low-frequency values ~d and 1 d  
have the same qualitiative form as the correction to the spe- 
cific heat (24c) (See Fig. 1). The correction to the Landau- 
Khalatnikov damping in the high-frequency regions is nega- 
tive in the asymmetric phases and positive in the symmetric 
phase, passing through zero at rc = rc ,,, . On the whole, 
however, the quantity I& in the high-frequency region, as 
given by (41), depends monotonically on the temperature.'' 

For the contribution of fluctuations of the P and Tcom- 
ponents to the low-frequency value ofX (w) we find from (38) 
and (18) 

t ~ O P *  

Re x z h  - - A h + b N r c 3  'Ah-2nNd2rc  (r) Ah, 
3 

o 
+2nNd2rc (z) -- Ah. 

OR 

We note that if the defects lack an Scomponent the contribu- 
tions of the T and P components to RJ and I&- have the 
same temperature dependence as do the contributions of 
thermal fluctuations of the order parameter: 7- ' I2 and 
7-312, respectively. Estimates show that these contributions 
are completely comparable in order of magnitude as well. 
There is no substantial contribution to the high-frequency 
value of the acoustic damping from the Tand Pcomponents. 

Let us now discuss the contribution of polarized defects 
to the soft-mode damping constant. Several mechanisms are 
known5,',15 to cause anomalous behavior of this constant 
near the phase transition point in crystals containing defects. 
The temperature dependence corresponding to the different 
contributions is qualitatively the same. Let us consider as an 
example the damping mechanism due to the coupling of the 
soft mode to the heat-conduction mode. The coupling of 
these modes is induced by the defects. The equations of mo- 
tion for the order parameter with allowance for fluctu- 
ations of the temeprature Tare of the form5 
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FIG. 4. Temperature dependence of the polarized-defect contribution to 
the soft-mode damping constant: 1) N = 10'' ~ m - ~ ,  2) 4.1017, 3) 7-10", 4) 
loL8. The values of the remaining parameters: qdqat = 0.3, qop/ 
q,, = 0.05, d = lo-' cm, D / A ,  = 10-l4 cm2, 6 = 1. 

where C, is the specific heat far from the transition point 
and x is the thermal conductivity. 

A calculation in the same approximation as for (a) 
yields the following expression for the defect contribution to 
the soft-mode damping constant: 

In sufficiently close vicinity of the phase transition, the re- 
gion of the greatest experimental interest, the soft-mode fre- 
quency 

ma2= [cpn(q.) +NV,A,*llm 

is substantially greater than the characteristic frequency 
0, = x/C,  of the heat-conduction mode. In this frequen- 
cy region ( o , ~ w , )  we have 

This formula differs from the expression obtained in the iso- 
lated-defect approximation only in that the quantities rc and 
7,1,~, appearing in it are re-evaluated with allowance for the 
shift in Tc and for the effective field. At low defect contribu- 
tions [conditions (26) and (27)] the leading contribution to 
(46) is due to the S components of the defects, and the tem- 
perature dependence has a peak near Tc (Fig. 4). At high 
defect concentrations the monotonically decaying contribu- 
tion of the Tcomponent is dominant. Here there may also be 
an noticeable peak due to the P component. 

CONCLUSION 

Let us at last discuss the question of the relation of our 
theory with experiment. Of greatest interest in this regard 
are the effects due to fluctuations in the defect concentra- 
tion, i.e., to the randomness of the defect distribution. These 
effects are manifested most clearly in the scattering of neu- 
trons, light, and x rays. The essential point is that the very 
nature of the temperature dependence and concentration de- 
pendence of the scattering intensity depend strongly on the 

parameters of the defects. This raises the hope of determin- 
ing the defect parameters from scattering experiments. It  
would then be of interest to use these parameters in calculat- 
ing theoretical curves for the thermodynamic quantities and 
kinetic coefficients and to compare then with the experimen- 
tal observations. In carrying out such a program one would 
encounter a number of serious difficulties in both the experi- 
mental and theoretical procedures. The first of these difficul- 
ties concerns primarily the preparation of samples with uni- 
formly distributed impurities of a given kind and a known, 
sufficiently small (Nd34 1) concentration. In the theory one 
would still have to take into account the role of elastic distor- 
tions around the defect (this is particularly important near a 
tricritical point), the nonuniformity of the defect distribu- 
tion in the sample, the multicomponent nature of the order 
parameter, and so forth. It  should be noted that in doing this, 
one need not consider separately the problem of an incom- 
pletely polarized defect system: The results given above can 
be applied in this case as well; one need only introduce a 
depolarization factor in the expression for the effective field 
in formula (20). 

We wish to thank A. I. Morozov for helpful discussions 
of this study in various stages of its progres, N. A. Makarov 
for doing the computer calculations, and A. A. Sobyanin for 
a discussion of the results. 

"The temperature curves given in Figs. 2-4 were obtained by computer 
calculations of the corresponding formulas. The calculations were done 
by N. A. Makarov. 

''The text of Ref. 6 leaves the impression that owing to the presence of 
defects, the damping coefficient for high-frequency sound will have a 
maximum at the phase-transition point. For the case of random defects 
this conclusion would go beyond the accuracy of the approximation on 
account of the contribution from the Landau-Khalatnikov damping 
mechanism. As to the case of polarized defects, the temperature depen- 
dence of the absorption coefficient, as we mentioned earlier, is monoton- 
ic. 
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