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The high-frequency impedance of a thin normal-metal layer of thickness d much smaller than the 
mean free path I of the charge carriers but much larger than the skin-layer depth 6 is investigated 
theoretically for the case when the metal is bounded on one side by a superconductor. It  is shown 
that in magnetic fields of strength close to the value H, at which the characteristic radius of the 
charge trajectory is equal to the layer thickness d the appearance of the radio-frequency size-effect 
line is due to a change in the contribution of the current of the quasiparticles that interact with the 
interface (n - s) between the normal metal and the superconductor. In the case of specular reflec- 
tion of the changes from the sample surface, the change of the current is due to the return of the 
charges to the skin layer after each Andreev reflection, with the current decreasing at H > H, and 
decreasing at H < H,,. If the surface scattering is diffuse, the more substantial effect is the cutoff, in 
fields H = H,, of the periodic trajectories of the charges moving along then - s interface. At high 
frequencies (HF), resonant absorption of the energy of the electromagnetic wave takes place at the 
cyclotron-resonance frequencies if r < d < 2r. In addition, a resonance is made possible by the 
electrons that glide along the mirror surface and enter periodically into the H F  field spike pro- 
duced in the layer at r < d < 2r by Andreev reflections of the carriers. An experimental study of the 
HF properties of normal-metal layers in contact with superconductors permits not only observa- 
tion of Andreev reflection but also determination of its probability and temperature dependence. 

PACS numbers: 73.40.Jn, 74.50. + r 

As shown by Andreev,' reflection of charge carriers by 
the normal (n) and superconducting (s) phases is accompa- 
nied by a reversal of the charge, mass, and excitation rate if 
its energy { (p) = ~ ( p )  - E, is less than the gap in the super- 
conductor [ ~ ( p )  is the dispersion law of the quasiparticles, E, 

is the Fermi energy, and p is the quasimomentum]. Many 
experimental results obtained to date confirm the existence 
of Andreev reflection. The most detailed data on the type of 
the interaction of particles with the n - s interface can be 
obtained with effects in which the principal role is played by 
a select group of carriers incident at a definite angle on the 
boundary between the phases. 

Andreev reflection was directly observed using the RF 
size effect,' tarnsverse foc~s ing ,~  and geometric resonance 
and absorption of ultra~ound.~ An analysis of the transverse- 
focusing peaks observed by Tsoi and associates3 agrees with 
theoretical results, while observed singularities in the ab- 
sorption of ultrasound by superconductors in the intermedi- 
ate state4 were explained in Refs. 6 and 7. 

In this paper we investigate theoretically the high-fre- 
quency (HF) impedance of a thin normal metal layer of 
thickness d much less than the carrier mean free path I but 
substantially larger than the skin-layer depth 6, which is 
bounded on one side by vacuum and on the other by the 
superconductor; this corresponds to the geometry used in 
the experiment by Krylov and SharvinZ (Fig. 1). They have 
noted that at d = r (r is the characteristic Larmor radius) the 
carriers returning to the skin layer after one Andreev reflec- 
tion (trajectory b in Fig. 1) contribute to a screening current 
of opposite sign. This is manifest bv an additinnal R F  size- 

effect line in a magnetic field H = H, = cpded (p, is the 
Fermi momentum). 

We have analyzed in detail the effect of a change of the 
surface current on the layer impedance in the RF  range. It 
was found that when the carriers are diffusely reflected by 
the sample boundary the substantial effect is the cutoff of the 
electron orbits with radius r>d ,  due to the change of the 
number of charges that absorb the RF-wave energy. 

A number of effects connected with the specific charac- 
ter of the Andreev reflection are possible in the microwave 
region. If the normal-layer thickness satisfies the condition 
r < d  < 2r, the period of motion of the excitations interacting 
with then - s interface (trajectory a in Fig. 1) coincides with 
the Larmor period T of the electron revolution, so that at 
external-field frequencies w = nf2 (0 = 2n-/T) a resonance 
similar to cyclotron resonance takes place.' It is easily seen 
that the very same carriers produce in the layer a narrow HF 

FIG. 1.  Onset of an HF field spike in a normal-metal layer at a depth Din 
the case of Andreev reflection of carriers by the n - s interface x, = d. 
The electron and hole trajectories are designated by solid and dashed 
curves, respectively. 
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field spike, similar to the spikes produced in the normal skin 
effect in normal-metal plates in a magnetic field parallel to 
the  surface^.^-'^ If the reflection by the external surface 
x, = 0 is close to specular, the electrons gliding along this 
surface can return periodically, at a frequency 0, = 277/T0, 
to the spike (trajectory b in Fig. 1) and their interaction with 
the field in the spike is resonant. In weaker fields H < Ho, 
when the Larmor radius exceeds the layer thickness, r > d. 
The situation depends essentially on the type of interaction 
between the charge and the external boundary. In diffuse 
reflection the cyclotron-lines are cut off in fields HzH,,  and 
in specular reflection the positions of the resonance lines, 
relative to the magnetic field lines, change because of the 
dependence of the period of the motion of the effective 
charges on the layer thickness d. Since the resonance line is 
formed by carriers with external motion periods, an investi- 
gation of the impedance in the microwave region yields de- 
tailed information on the Andreev reflection of quasiparti- 
cles belonging to select sections of the Fermi surface. 

51. STATEMENT OF PROBLEM AND SOLUTION OF KINETIC 
EQUATION 

Although the Andreev reflection is essentially a quan- 
tum effect, the motion of an excitation in an interval between 
two collisions is quasiclassical,' and if the normal phase has 
certain kinetic characteristics one can use the Boltzmann 
equation for the nonequilibrium increment 

to the Fermi distribution function 

fov (E) = ' I , ( ~ + v  th (E/28) ) 

where W(p,pl) is the probability that a charge with momen- 
tum p' and incident on the boundary will have a momentum 
p after scattering. The momenta p and pare connected by the 
specular-reflection conditions: 

n is the inward normal to the sample surface x, = 0. We note 
that relation (2) ensures automatically that the current will 
not flow through the sample surface. 

The condition for Andreev scattering from the n - s 
interface x, = d 

corresponds to free flow of current through the interface.14 
The solution of the kinetic equation 

s (r, P) 

=F (r-r (t) ) e'""'-"+ dt'e'"'('-")v(tf ) E (zf (t') -z (t) ) j 
(4) 

contains an arbitrary function F (r - r(t )) of the characteris- 
tics; this function must be determined with the aid of the 
boundary conditions (2) and (3). Here w* = w + i/to; /Z is the 
instant of the last collision of the carrier with the plane 
x, = 0 or x, = d; t is the time of motion of the charge along 
the trajectory in the magnetic field; 

f 

v(t) = j v(tl)dtr. 

of the electrons (Y = - 1) and of the holes (Y = 1): In a magnetic field parallel to the external boundary 
a9 e a$ and to the interface, the carrier motion in a plane perpendic- (-iw+ t) s(rl p)+v-+- ar c LvxH1 -=evE' dP ular to the vector H is periodic, and the conditions (2) and (3) 

Here p, v = d~ /ap ,  and r are the momentum, velocity, and lead to a system of linear integral equations for the functions 

coordinate of the quasiparticle; w is the frequency of the Fi corresponding to motion along one of the segments of the 

external electromagnetic wave, to is the average time trajectories (Fig. 2) between two successive reflections. 

between two collisions inside the volume, E is the electric For carriers interacting only with the interface (Fig. 2a) 

field strength, t is the time, and 9 is the temperature. we have 

Fi (r-r (t) ) = 
a h c p i - v k  The boundary condition that connects the functions $ , i, k=l, 2; iZk, 
1-uiak ( 5 )  

of the incident and reflected carriers on the external surface 
of the sample can be written in the form where 

(2) 
i t '  

V'" (0, P) =q (P) +'""(o,c;P) +X (P) . pi=J dt' erp[iog (hi1-t') ]v(tf) E (~.+x(t') -1. (h') 1, (6)  
For a slightly rough metal surface, according to Fal'kovs- hi 

ki;'s results,13 the total probability of specular reflection is ai=exp [io* (hi'-hi) 1, (7) 

FIG. 2. Possible types of periodic trajectories of carriers interacting with an n - s boundary. 
The numbers 1-9 indicate which of the functions F, [Eqs. ( 5 ) ,  (S), and (9)] corresponds to a given 
segment of the trajectory between two successive collisions of the charge with the layer boun- 
daries. 
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and A, and A are the instants of two successive collisions of 
the quasiparticle with the boundaries (A f > A, ); x, = 0, d is 
the coordinate of the boundary with which the charge col- 
lides at the instantA f. In the expressions for pi in (5) we must 
set x, equal to d. 

If the charge interacts with two boundaries of the nor- 
mal layer and collides twice with the n - s boundary after 
specular reflection from the face x, = 0 (Fig. 2b), the func- 
tion F, assumes three values: 

If the carriers do not collide twice in succession with the 
same face of the metallic layer (Fig. 2c), F, takes on four 
different values: 

wherep, is the projection of the momentum on the magnet- 
ic-field direction. We shall not present here for the function 
F the well known value corresponding to quasiparticles that 
move periodically along the metal surface (see, e.g., Ref. 15). 
The distribution function of the electrons in the volume can 
be obtained from (4), in which we must put A = - a,. 

We have left out of (8) and (9) the terms due to allowance 
for the integral term in the boundary condition (2). Strictly 
speaking, such an approximation is valid only for carriers 
whose collision angles a with the external boundary is small 
compared with the angle width A of the scattering indicatrix, 
so that the arrival term can be neglected in the surface-colli- 
sion integral. Inasmuch as under anomalous-skin-effect con- 
ditions the carriers interacting effectively with the electro- 
magnetic field are those incident on the face x, = 0 at small 
angles a 5 (S /r)'I2, the condition a < A  for such quasiparti- 
cle is satisfied as a rule in samples actually used in experi- 
ments. In those cases when the surface quality can be signifi- 
cantly improved and A therefore decreased (a > A  ), the 
boundary condition (2) takes the form of a second-order dif- 
ferential equation. The solution of the kinetic problems, as 
shown by ~al 'kovsk6, '~ then become much more complicat- 
ed, but this does not lead to qualitatively new effects. 

We shall consider below a situation in which an HF 
field spike does not come close to the n - s boundary and 
consequently the electromagnetic-wave amplitude at the su- 
perconductor boundary is small. In this case the influence of 
the superconductor on the total impedance of the sample is 
connected mainly with the change of the dynamics of the 
carrier in the screening normal-metal layer, which collide 
with the boundary x, = d and interact with the H F  field in 
the skin layer. Therefore at d - D > S (D is the distance from 
the HF field spike to the plane x, = 0) there is no need to 
solve the microscopic problem of penetration of the electro- 
magnetic field into the superconductor,'' and it suffices to 

take into account the presence of Andreev reflection from 
the plane x, = d. 

52. ASYMPTOTIC DENSITY OF THE HF CURRENT 

Maxwell's equation in the Fourier representation 

kW8, ( k )  +2E,,' ( 0 )  -2kE, ( d )  sin kd-2E,' ( d )  cos kd 

where 

is an integral equation, since the relation between the Four- 
ier components of the current j, (k ) and of the electric field 
8, (k ) is nonlocal: 

The relation between the field E, (d )and its derivative E; (d ) 
is determined from the solution of the boundary-value prob- 
lem at x, = d. However, in the approximation in the anoma- 
ly parameter S /d(l, which will be considered below, the 
impedance terms containing E, (d ) and E; (d ) are small and 
can be omitted. 

Solution of the kinetic equation yields the high-frequen- 
cy conductivity tensor K,,(k,k '), which is the kernel of the 
integral operator that relatesj, (k ) and 8, (k ). In the anoma- 
lous skin effect, when SN(r,d )Nl, the significant values are 
k-S- ' and to determine the surface-impedance tensor Z,, 
it suffices to know the asymptotic expression for K,,(k,k ') at 
large k and k '. We shall assume that the time of flight of the 
carriers through the narrow skin layer is substantially 
shorter than its effective free path time l/lw*l, i.e., that the 
following inequality holds 

1c08/Q1 (6/r)'"<1 

(0 is the frequency of the quasiparticle in the field H). With- 
out dwelling on the standard procedure of calculating the 
asymptotic values of the tensor K,,(k,k '), we present only 
the final results. 

1) The carrier reflection by the metal surface is close to 
specular, i.e., the effective carriers satisfy the relation 

At S(r this condition is not too stringent, since for electrons 
that do not leave the skin layer the angle a of approach to the 
interface between the normal metal and the vacuum is 
smaller than or of the order of (6 /r)'I2. Inasmuch as at small 
a the diffuseness parameter is 1 - q(a) zql(0)a, the forego- 
ing inequality is equivalent to 

q'(0) < 1 o*/Q 1. 
In this case the H F  conductivity tensor can be represented by 
a sum of four terms: 

(1) (2) 
K,,(k, k')=Kn ( k ,  k ' )  +Kns (k, k ' )  +Kns (k, k') f a n  (k, k ' ) .  
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The kernel K, (k,k ') is connected with the carriers that glide 
over the surface of the metal and make the main contribution 
to the formation of the screening HF current: 

( 1 3 )  
Here 

k o  = - 
u,(T/2) u, (T/2) 

1 sin(k-k') (x-x (h) ) s (a, b;  X) j- - J d a y  (A) 
.*I k-le' 

, (15) 

4ne3H urr(t, PJ vY(t, *PA 
p""* (t) = - 

ch3 I uX' (t, pr) uI' (t, f pl) I T h  ' (16) 

and T satisfies the condition 

d-x (r)  +x (0) =O. 

The angle brackets (...) in (13) and (14) denote integra- 
tion along that strip on the Fermi surface on which v, = 0, 
while h is Planck's constant. We assume that on the trajec- 
tory of the carriers that do not interact with the layer bound- 
ary there are only two stationary phase points t = 0 and T /2, 
where u: (0) = v: ( T / 2 )  = 0, while us (0) > 0 and u, (T  /2)  < 0. 

The terms K E(k,k ') and K jfi(k,k ') in the HF electric 
conductivity are due to the carriers that interact with the 
n - s boundary. For quasiparticles whose Larmor trajectory 
radius r( p, ) < d < 2r(p, ) (T > T / 4 )  we have 

K.. (k, kc) =(0 (d-r(p,) )0 (2r(pZ) -a) p d  (0) 

Xeimm'/2 
cos kD-cos k'D 

f n a  kz-kt2 

where 
f  ns (A) = [e-iU'(T-2p)-1 1 -', 

and A ' (A  ) satisfies the equation 

d-x (Tl2--h) +x (h') =O (h'(T/2-T) =0), (20) 

where 8 ( x )  is the Heaviside function and 
(7, pz) =x (7, p,) --I (T/2-T, -pz). 

The electric conductivity of the carriers for which 
r( p, ) > d (T < T / 4 )  can be written in the form 

K:' (k, kt) 

where 

The termzn (k,k ') takes into account the contribution made 
to Kpv(k,k ') by the electrons which do not collide with the 
n - s boundary and whose orbit diameter is 2r(p,) < d. 

2) The reflection of the carriers by the metal surface is 
substantially different from specular, i.e., a considerable 
part of the charges that make the main contribution to the 
high-frequency current satisfy the inequality 

I - q B  I o*/Q 1 (61r) 'la. 

In this case the contribution made to the H F  electric conduc- 
tivity by the subsurface electrons is small, and the tensor 
Kpv(k,k ') is determined mainly by the charges that interact 
with the n - s boundary: 

1 
x Tn* -7, (kk') 

cos kD-cos k'D sin kD+sin k'D-cos (k-k') D 
X[ k-k' 

-+ 
k+ k' 

where y,',, = (1/2)cot(w*T/2). 
To avoid lengthy equations we shall assume hereafter 

that the electric vector of the linearly polarized wave is di- 
rected along one of the axes for which the tensor K,, (k,k ') is 
diagonal, and for simplicity we shall omit the tensor indices. 

53. HIGH-FREQUENCY IMPEDANCE 

To calculate the surface impedance of a plane parallel 
layer of the normal metal bordering on a superconductor 
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it is necessary to find the solution of Maxwell's equation for 
the Fourier components of the electric field 8 ( k  ). Starting 
from thestructure (12), (24) ofthe kernel K (k,k '),it is conven- 
ient to seek the solution of Eq. (10) in the form of the sum 

8 ( k ) = & o ( k ) f 8 I ( k ) + % z ( k ) ,  (26) 

where g , ( k )  is the Fourier component that describes the 
field of the main skin layer, the function 8 ,(k ) is responsible 
for the formation of the HF field spike at the depth D, and 
$,(k ) is a small addition that takes into account the influ- 
ence of the spike on the field in the skin layer. 

1 )  When the carriers are reflected by the interface 
between a nearly specular normal metal and vacuum, a large 
surface current is produced mainly by electrons that do not 
leave the skin layer during the entire free-path time. This 
permits a perturbation-theory solution of the Maxwell equa- 
tion by representing 8 , ( k  ) as the sum 

8 0  ( k )  =%o ( k )  + ~ 8 o  ( k )  , (27) 

where A 8 , ( k  ) is a small increment to @,(k ) due to the carri- 
ers that undergo Andreev reflections and can resonantly ab- 
sorb the energy of the H F  wave. Retaining in (12) only the 
first term, we transform to the dimensionless wave vector 
6 = k /ko and to the dimensionless Fourier component of the 
field Fo(6) = - k i (2E '(0))-' g o ( k  ). The integral equation 
(10) for the function Fog ) can be solved with the aid of the 
Mellin transform?tion 

1 1 
F ,  (E) = - 5 h g z M o  ( I ) ,  -2<o=Re z< - (28) 

2na 
a-im 

2 

by a method proposed by Hartmann and Luttinger.18 The 
explicit form of the Mellin transform Mo(z) we obtained in 
Ref. 19: 

and the layer impedance, in first-order approximation in the 
anomaly parameter, is expressed in terms of the value of 
Mo(z) at the point z = - 1 :  

8io 
ZO= --Mi(-i), 

c'ko 

Using Eq. (28) and expression (19) for the "spike" part of the 
kernel of the integral operator, it is easy to find the function 
8 ,(k ) and hence the distribution of the HF electric field near 
the spike at a depth D. 

We consider first cylindrical dispersion of the carriers, 
with the Fermi-surface-cylinder axis coinciding with the 
magnetic field direction. In this case, which is apparently 
close to the conditions under which Andreev reflection was 
observed in tin with the aid of the RF  size effect,, we have 

Z i E ' ( 0 )  q 3 m  dk 
EI (x) = > 7,- (7') (k /k l ) ' - i  { F ,  ( k )  sin k  ( D - X )  

q3=pp ( 0 )  ei"'T12fn. (z) b,, 

ki3=pp ( 0 )  [fn ( T O )  f fna ( % ) I  b z ,  

b , /h  is the period of the reciprocal lattice in the direction of 
the z axis, and 7, satisfies the equation 

x ( T / 2 )  -x ( T ~ )  -D (T) =O (34) 

and determines the period To = T - 2% of the motion of the 
electrons that return to the spike after specular reflection 
from the surface x, = 0 .  

The amplitude of the spike is a maximum near the cen- 
ter (ID - x J  - Jko(-I) ,  where it is equal to 

If the spike (3 1 )  is far from the surface ( ( k g  1 %I), the 
influence of the carriers that interact with the n - s bound- 
ary is described by the additions A 8, and %,(k ) to the func- 
tion @,(k ), which take into account the terms (18) and (19) in 
the total HF electric conductivity (12). It can be easily shown 
that the corresponding corrections to the impedance Zo (29) 
can be found by perturbation theory if the symmetry of the 
kernel K, (k,k ') is used. Thus, 

OD 

4io AZ 
0 - d k ~ 8 .  ( k )  =c,2 (2 ): 

c2 E' ( 0 )  (36) 
0 

where 

The impedance correction necessitated by the reaction of the 
spike on the main skin layer appears in second-order pertur- 
bation theory. Knowing the distribution of the field 8 ,(k ) in 
the spike we obtain for g , (k  ) the equation 

OD 

k z g 2 ( k )  - i p  5 dk'K. ( k .  k ' ) g ,  (k') 
0 

OD 

= i p  J dk'~!,:) ( k ,  k ' ) g ,  ( k t )  (38) 
0 

with the aid of which, in analogy with (36), we get 

It is easily noted that AZ, is 1 korl ' I 6 )  1 times smaller than 
AZo in the RF region (o(JZ ). 

In a narrow range of magnetic fields in which the spike 
emerges to the metal surface, its effect on the impedance is 
described by the terms ~ , ( k  ), which can no longer be regard- 
ed as rapidly oscillating. In this case we obtain 

+G ( k )  cos k ( D - X )  ) ; (30) AZi=A (koD) Z ( ~ l k , )  3, (40) 
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where where 

k3=$p ( 0 )  Jnebz,  

2 " '  - cos (koDg)  -cos (.k&') - -- J d g J  dgl 
X g 2 - g f 2  

Fo (E)Fo (E') ,  
0 0 

Analysis of Eq. (41) shows that arg A = +T 

+ @[1 + sign(r - T/4)] changes by r a t  H = H,. The abso- 
lute value /A 1 is of the same order as the absolute value of the 
constantC,ifIk$ I -1,andIA )(C,at Ik$ I(lorIk$ )>I .  
It is easily seen that it follows from (41) that A (0) = 0. Conse- 
quently, for a cylindrical dispersion law in magnetic fields 
HzH, satisfying the condition r z d ,  the addition AZ, due 
to the spike emerging from the surface changes by an amount 
of the same order as AZ,. At 0 < r - d z S ,  = Ik,l -' this 
circumstance is a manifestation of the contribution made to 
the current of the carriers that return to the skin layer after 
each collision with the n - s boundary. In fields H weaker 
than H,, when 0 < d  - rzS,, the situation is reversed, and 
the subsurface current is increased by the contribution made 
to it by charges that land in the skin layer after the Andreev 
reflections. The term AZ, in the HF impedance behaves in 
analogy with the current. We note that in the case of specular 
reflection of the excitations from the metal surface the 
change of the impedance at HzH, is small compared with 
the principal term Z,,. 

2) If the surface scattering is diffuse, the current in the 
skin layer is made up of charges that collide with the n - s 
boundary and produce at r < d < 2r(d - r > S,2r  - d>6) an 
HF field spike at a depth D. As the spike approaches the 
surface (DzS)  the surface current decreases just as it does in 
specular reflection from the external boundary x, = 0. At 
q = 0, however, what is more important is that in fields 
H(H, there are no carriers that return to the skin layer after 
Andreev reflections (the cutoff effect). 

Since at kD, k 'D> 1 the second term in expression (14) 
for the kernel K (k,k ') of the integral operator makes a sub- 
stantially smaller contribution to the current (1 1) than the 
first, and [sin(k - k ')D ] / ~ ( k  - k ') can be replaced by the S 
function S (k - k '), Maxwell's equation (10) reduces to the 
integral equation solved in Ref. 16. By a standard calcula- 
tion procedure we find that the equation for the surface im- 
pedance in the case near-diffuse scattering by the surface is 
of the form 

In (42) the cubic-root branch k and k, must be chosen to 
satisfy the condition Re Z > 0. When the Larmor radius be- 
comes equal to the layer thickness r(H,) = d, cutoff takes 
place of the periodic trajectories of the carriers, and in the 
RF  region (w(f2 ) this decreases by a factor 1 /r the imped- 
ance of a conductor with a cylindrical dispersion law. 

If the Fermi surface has no cylindrical sections, the H F  
field spike in the normal-metal layer is formed only by a 
small group of carriers located near the sectionsp, =p,, of 
the equal-energy surface ~ ( p )  = E,, sections that correspond 
to the extrema of D (r,p, ), as functions ofp, . In this case, in 
magnetic fields in which r(p,) - d<S, the contribution to 
the surface current will be compensated for a small fraction 
[-(6 /r)'I2] of all the charges entering the skin layer at small 
angle. Consequently, the change of the impedance will be 
proportional to the small parameter (8 /r)lt2(1 for the same 
reason, the cutoff of the extremal arcs r(pZe ) = d in diffuse 
scattering by the metal surface does not lead to an abrupt 
decrease of the impedance, which receives contributions 
from carriers with all possible values ofp, . 

More information can be obtained in investigations of 
the Andreev reflection of electrons in metals with a compli- 
cated dispersion law from the high-frequency characteristics 
of the layer under resonance conditions. The reason is that 
the resonant singularities in the impedance are produced by 
select groups of carriers with extremal period T ( p, ,) of mo- 
tion in a magnetic field. As follows from (36), (39), and (40), in 
magnetic fields such that the diameter 2r(p, ,) of the effective 
orbit is less than double the thickness of the metal layer in the 
normal state but such that d < 2r(p, ), a number of resonance 
lines is produced, which coincide with the cyclotron-reso- 
nance line in a bulky conductor8: 

At almost-specular reflection of the charges by the met- 
al surface, the resonant increment AZ,,, to the surface impe- 
dances takes at small detunings from the resonance 
wT(p, ,) = 2 m ( l  -A )((A 141) the form 

AZ~~-AZ,"+AZP ; (46) 

AZ:" = z p - ( O )  (-1)"'A (koD) BY ( A ,  T, Y) I P z  -P,,, 

where 
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Besides the "volume" cyclotron resonance, in a thin layer it 
is possible to have a unique resonance due to the motion of 
the electrons that land periodically in the field spike (30) 
after specular reflections from the interface between the nor- 
mal metal and the vacuum. The resonant frequencies are 
given by the relation 

and the increment to the resonance (39), which describes the 
resonance (49) at detunings 1 A 1 4 1 (w To = 2741 - A )), can 
be represented in the form 

x3 
AZ:" =c22 ( J) [pp+ (0) 'Y (A, To, 1 )  1 ~ ' L Z , .  (50) 

Resonant absorption of the energy of the HF field in 
magnetic fields that satisfy (49) recalls cyclotron resonance 
in a thin plate,20 first theoretically investigated by one of us. 

In magnetic fields such that r(p, , )>d the period of mo- 
tion of the carriers colliding with two boundaries depends on 
the layer thickness d, and the positions of the resonance lines 
on the magnetic-field scale differ from the values given by 
the condition (45): 

where T' = A '(T), and the A ' = A '(A ) dependence should be 
obtained with the aid of Eq. (20). The impedance increment 
that describes the resonance (5 1) is of the form 

AZm=Ct2pp+ (0) Y (A, Ti, Y)  I P * = P ~ ~ .  (52) 

If the reflection by the surface of the sample is close to 
diffuse, the resonant dependence of the surface impedance 
on the magnetic field is preserved at r(p, ,) < d < 2r(p, ,) and 
is connected as before with the carriers undergoing Andreev 
reflection. Near the resonant frequencies (45), expression 
(42) for the impedance Z takes the form 

2 
Z = 7 ge-lni3[pp+(0) Y (A, T, y) l p - L p  

Y3 I 11 

At d = r( p, ), cutoff of the lines of the cyclotron resonance 
(45), similar to that occurring in a normal-metal plate with 
diffuse faces, takes place in fields satisfying the condition 
d = 24 P, 1)- 

In the derivation of Eqs. (47), (48), and (53), which de- 
scribe the behavior of the impedance near the resonance (45), 
we have assumed that the probability Q of the Andreev re- 
flection is equal to unity. If, however Q < 1, as is possible for 
example when the normal layer of one metal borders on su- 
perconducting substrate of another metal, the weak diffuse- 
ness (1 - Q '41) of the carrier interaction with the n - s 
boundary can be taken into account by introducing an addi- 
tional broadening of the resonance lines (1 - Q ')/2m, i.e., y 
in (47), (48), and (53) must be replaced by y' = y + (1 - Q ')/ 
2 m .  

CONCLUSION 

Anderson reflection of carriers from an n - s boundary 
leads thus to an entirely different dependence of the surface 
impedance of a thin normal-metal layer on the magnetic 
field compared with the impedance of a thin metallic plate. 
At r < d < 2r, a narrow HF-field spike is produced inside the 
layer at a distance D (H) from its surface. If the electrons are 
specularly reflected from the interface between the normal 
metal and vacuum, the carriers gliding over the boundary, 
landing periodically in the spike, produce the resonance that 
is not observed in either bulky or thin conductors in the nor- 
mal state. In the same magnetic-field range, at any character 
of the scattering from the layer surface, resonance should be 
observed at frequencies corresponding to the cyclotron reso- 
n a n ~ e . ~  In weak field H, at which r>d, the behavior of the 
impedance as a function of the magnetic field depends essen- 
tially on the state of the sample boundary. Thus, in the case 
of specular reflection the resonant dependence of Z on H is 
preserved, whereas for diffuse scattering the cyclotron reso- 
nance vanishes if r>d. 

At radio frequencies in the magnetic field interval 
Ir - d 1 an abrupt change takes place in the contribution 
made to the subsurface layer by the carriers that interact 
with the n - s interface; this manifests itself in the onset of 
an R F  size-effect line at r = d. Such a line is most intense 
when it is due to motion of excitations belonging to cylindri- 
cal parts of the Fermi surface. 

An experimental investigation of the high-frequency 
properties of thin normal-metal layers bordering on super- 
conductors makes it thus possible not only to observe direct- 
ly Andreev reflection of carriers, but also to gauge its prob- 
ability and temperature from the amplitude and width of the 
resonance lines. 

The authors thank M. A. Lur'e for helpful discussions 
of the results. 

' ' ~ t  d = D the electromagnetic field in a superconductor differs notice- 
ably from zero at the Meissner depth, and the effects analyzed by Az- 
bel'" manifest themselves in the impedance. 
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