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The approach used by Abrikosov and Fal'kovskii [Sov. Phys. JETP 16,769 (1963)l is supplement- 
ed by premises [Sov. Phys. JETP 48,687 (1968)l concerning the genesis of bands of atomicp-states 
and is used to calculate the electron spectrum of IV-VI semiconductors in multicomponent solid 
solutions on their basis. The tight-binding approximation is used to establish a correspondence 
between the parameters of the band structure and the atomic characteristics, and the number of 
independent parameters of the theory is reduced to a minimum. 
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1. INTRODUCTION 

Investigations of IV-VI semiconductors have been go- 
ing on for many years. Their band structure, at least in the 
case of lead salts PB(S, Se, Te) is regarded as established.' At 
the same time, the information accumulated on the structure 
of energy bands could not be used to explain the structure 
instabilities, the generation of free carriers by intrinsic de- 
fects, and other fundamental properties of the compounds. 
What was needed was a sufficiently simple explanation of 
the origin of the energy spectrum, connecting the band and 
the atomic parameters. Such a model, based on the tight- 
binding approximation in a basis of atomic p orbitals, was 
proposed by us in Ref. 2. This model made it possible to 
understand the nature of the structural phase transitions in 
(Sn, Ge)Te (Ref. 2), the energy spectrum and the doping cac- 
tion of va~ancies,~ as well as the anomalies of the dielectric 
constant4 in IV-VI compounds. It was found that the ap- 
proach of Ref. 2 describes the band structure not only qual- 
itatively but also quantitatively, as was demonstrated5 by 
numerical interpolation of the PbTe spectrum. 

Besides IV-VI compounds, the model of Ref. 2 is appli- 
cable to semimetals (Bi, Sb, As) and chalcogenide semicon- 
ductors (Te, Se). The similarity of the electron spectra of all 
these substances is due to the dominant role of the atomicp 
states in the formation of the valence bonds. Numerical cal- 
culations'' have shown that near the Fermi filling boundary 
the energy bands are grouped into triplets that do not over- 
lap with other bands. This means that the splitting of the 
atomicp levels by the crystal field is less than the distance to 
bands of other symmetry and the bands closest to the Fermi 
boundary are made up mainly ofp-states. 

The bismuth and tellurium crystal lattices are obtained 
by slight distortions of a simple cubic (sc) structure. This 
circumstance was used by Abrikosov and Fal'kovskip to de- 
velop a deformation theory of the bismuth energy spectrum. 
According to them, the spectrum of a semimetal is the result 
of partial dielectrization of the metallic "parent phase" with 
sc structure as a consequence of the doubling of the period 
and of the acoustic deformation of the lattice. 

The IV-VI semiconductor group includes compounds 
with cubic NaC1-type structure (lead chalcogenides, SnTe 
and GeTe in the paraelectric phase), as well as with rhombo- 
hedral and orthorhombic  structure^.^) We confine ourselves 

below to cubic IV-VI compounds. Their electron spectrum 
can likewise be easily constructed by starting with a parent 
phase having a sc lattice2 into which the rock-salt lattice is 
transformed if the neighboring atoms are regarded as equi- 
valent. The difference between the IV and VI atoms is char- 
acterized by the ionicity potential A (r) (Refs. 2, lo), which 
has the fcc lattice ~yrnmetry.~) Ionicity plays in IV-VI com- 
pounds the same role as the potential A,, (r) due to the shift 
of the sublattices in bismuth. 

In this paper we have applied to IV-VI semiconductors 
the method of Abrikosov and Fal'ko~skii,~ supplemented by 
premises concerning the genesis of bands from thep orbitals 
of the IV and VI atoms. This has enabled us to determine the 
symmetry of the parent-phase terms at points L of the Bril- 
louin zone (the extremum points of the bands in IV-VI) and 
avoid the difficulties raised by the Luttinger theorem in the 
theory for bismuth.12 

Within the framework of such a model, the dispersion 
of the six bands near the L point (two p triplets, one above 
and the other below the Fermi level) is characterized by four 
matrix elements of the momentum operator. Yet Dim- 
mock's six-band k*p schemet3 based on the binary group D ,, 
contains thirteen independent momentum matrix elements, 
and the model of Mitchell and Wallis,14 which starts from 
the representations of the simple group, has five elements. 

The theory becomes further simplified if the tight-bind- 
ing model is used. In this case only two independent momen- 
tum matrix elements appear in the first coordination group, 
and the remaining two are connected with more remote co- 
ordination spheres, starting with the third, and can be ne- 
glected because of the rapid decrease of the overlap integrals. 

Just as in the Dimmock k*p scheme,13 in our model 
there are five other independent parameters that determine 
the energy gap at the L point. The tight-binding approxima- 
tion, however, permits three of them (the spin-orbit con- 
stantsA + and the ionicity matrix element A ) to be connected 
with the atomic characteristics. 

Thus, whereas in Dimmock's model the spectrum at the 
L point is characterized by 13 + 5 = 18 independent 
numbers (or by 11, as in Ref. 14), in our scheme only four 
parameters remain to be determined from experiment. It 
turns out that two of them, c,, and f ,  (see Table I below) are 
practically the same for all IV-VI compounds. 
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TABLE I. Values of the model parameters (in eV) for IV-VI compounds. The positions of the 
L levels corresponding to the listed parameters are given. 

Since all the parameters have the meaning of intra- 
center and intercenter overlap integrals, they can be interpo- 
lated as functions of the chemical composition or of the lat- 
tice periods. This enabled us to calculate the energy spectra 
of multicomponent solid solutions. In this paper we present 
the results for ternary alloys. We obtain also the form of the 
energy spectrum of PbPo. 

2. DlELECTRlZATlON OF THE SPECTRUM. ENERGY LEVELS 
AT THE L POINT 

PbS 
PbSe 
PbTe 
SnTe 

Just as bismuth, IV-VI compounds have on the average 
three valence p electrons per atom. Therefore the initial sc 
corresponds to the same metallic parent phase. To determine 
the form of the bare spectrum in the entire Brillouin zone we 
use the tight-binding approximation in a basis of localizedp 
functions. The information on the symmetry of the initial 
terms at the singular points is then obviously not connected 
with this approximation and remains exact. 

The threep bands l,, (k) (the band indices n = x,  y,z cor- 
respond to the cubic coordinate axes) are made up of local- 
ized functions f, (r - R) that are centered in sites R of the sc 
lattice and transform in accord with the vector representa- 
tion of the cube group. If the index n were to remain a 
"good" quantum number in the crystal, the Fermi surface 
would consist of three pairs of corrugated planes perpendic- 
ular to the cubic  axe^^,^ (Fig. 1). The band extrema in IV-VI 
semiconductors are located precisely at the intersection 
points of these planes (the L points), at which the degeneracy 
of the initial spectrum is a maximum. Eight L points have 
coordinates qi/2, where the vectors qi are obtained by the 
cube-group operations from the vector q = (?r/a) (1 1 l), 
where a is the period of the sc lattice. 

The functions 

eV 

PbS 0.11 -2.44 -2.5 -8.7 0.069 0.075*0.01 
PbSe 0.065 -1.76 -2.06 -9.2 
PbTe -0.17 -0.89 -1.57 -8.1 
SnTe 0.39 -0.57 -1.24 8.7 

m~ U m n ~  I t y r  exp [I] 1 theor exp ill ) theor exp 1 1  - 
PbS 0,103 0.11*0.02 0,087 0,08*0.01 0,106 0,105*0.015 1.09 
PbSe 0,083 0.068*0.015 0.037 0.04*0.008 0.088 0.07*0.015 0.88 
PbTe 0.32 0.24*0.08 0.021 0.028~k0.002 0.28 0,24*0,08 0.41 
SnTe 0.58 - - - - - 0.59 

h+ 

0.032 
0.140 
0.28 
0.28 

0.424 
0.424 
0.424 
0.158 
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taken at k = q/2 (N is the number of sites of the sc lattice) 
generate a three-dimensional representation r of the small 
group C3,, of the L point. The mixing of the states (1) with 
different n (hybridization of the bands) lifts the accidental 
degeneracy 4': 

-0.46 
-0.315 
-0.09 
-0.075 

The bare Fermi surface (Fig. 1) splits then into two closed 
surfaces and one open one. At the L point one of the closed 
surfaces is tangent to the open one (Fig. 2). 

Inclusion of the ionicity (or of A,, in the case of bis- 
muth) changes the translational periodicity of the crystal. 
The volume of the Brillouin zone is decreased by one-half. 
For the model spectrum2.' (the lattice constant in the expres- 
sion ka will be omitted here and elsewhere): 

E,(k) = E o  cos k,+E, (cos kg+ cos k,)  (3) 

g , ,  are obtained by cyclic permutation of the subscripts); it 
is easy to verify that the arithmetic mean of the volumes of 
the closed Fermi surfaces 1 and 2 (Fig. 2) is equal to the 
volume of the new Brillouin zone, just as the volume of the 

FIG. 1. Bare Fermi surface of cubic parent phase. 
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-0.9 
-0.9 
-0.9 
-0.9 

- 

3.76 
3,65 
3.41 
3.5 

0.86 
0.65 
0.29 
0.38 

1.6 
1.25 
0.876 
0.47 

-- 

0.39 
0.23 
0.014 
0.13 

2.49 
1,99 
1.39 
0.7 

1.93 
1.54 
1.22 
0.58 



FIG. 2. Scheme of Fermi surface of the parent phase in the vicinity of the L 
point. 

filled states for the open Fermi surface 3. Therefore the die- 
lectrization of the spectrum is due to the superposition of the 
closed surfaces on each other upon translation by the vector 
q. The open surface is self-congruent in this case. 

Abrikosov and Fal'kovski?' started with one represen- 
tation of E, assuming congruence of the Fermi surfaces that 
are dexenerate at the L point. This assumption, however, led 
to a contradiction with the rule for the filling of the Brillouin 
zones when the spectrum is dielectrized (the Luttinger 
theorem). To get around this difficulty, Abrikosov12 intro- 
duced one more Fermi surface (level A ,  at the L point), which 
became dielectrized by itself with doubling of the period. 
The position of the level A ,  was chosen such that it did not 
influence the form of the spectrum at the band edges. 

In fact, as can be seen from Figs. 1 and 2, the doublet 
term E is produced by the intersection of an open Fermi 
surface with the closed one that cannot vanish when the peri- 
od is doubled. The third surface corresponding to the level A  
can likewise not become dielectrized by itself, but turns out 
to be congruent with the closed surface that is degenerate at 
the L point. Thus, an essential role in the formation of the 
dielectric spectrum is played by all three Fermi surfaces and, 
according to (2), the basis set of functions should contain the 
terms A ,  and E. 

In an NaC1-type structure, L points separated by a vec- 
tor q are equivalent. Accordingly there appears to the small 
group an inversion operation that transforms it into the 
group D ,, . This group has six irreducible representations 
A  :, A  ;, E * (the superscript labels respectively the even 
and odd representations). In the parent phase the eigenfunc- 
tions !Pi>, at the L point are transformed in accord with the 
irreducible representations of the group C, ,  . Combining the 
functions IV, ,,, belonging to equivalent points, we obtain 
reducible representations of a new small group D ,, , which 
break up into irreducible ones: 

8A,=Al++A,-+L,V-L26', (4) 

S,=E++E-+L:~+L,~+L~'+L' ,I '  . ( 5 )  

The arrows indicate transitions to representations of a bina- 
ry group in the notation adopted for the L point.' The doub- 
let terms E * are split by the spin-orbit (SO) interaction and 
a set of six levels is produced. 

It will be shown below that in IV-VI semiconductors 
the splitting due to the ionicity exceeds the hybridization 

FIG. 3. Genesis of electron spectrum at the L point following successive 
turning-on of ionicity, hybridization, and spin-orbit interaction. 

and the SO  interaction^.^' It is therefore convenient to 
change the sequence of turning on the interactions and start 
with the ionicity, which splits the reducible representation 
2, made up by triplets of equivalent L points into even and 
odd parts: 

The hybridization %splits next the triplets 

I'+=Al++E+, (7) 
I'-=A2-+E- (8) 

and the SO interaction 2 lifts the degeneracy of the E* 
levels in analogy with (5) (Fig. 3). 

Taking (6) into account, it is convenient to change from 
the basis ( I )  to the functions 

- 
OZk= (T~n,t+q/r=FOn,k-r~*) 1129 (9) 

which have a definite parity at the L point (this is now the 
point k = 0, since (9) includes a shift of the origin in k-space). 
We denote the functions that are even and odd at k = 0 by 
p ,f and p ,- (when symmetrizing in (9) it must be borne in 
mind that thep orbitals f, (r) are odd). 

A 

We construct an equivalent Hamiltonian 2Y, (for 
even and odd states) whose matrix elements in the basis 
p t , l  cokcide with the matrix elements of the crystal Ha- 
miltonian H + /i ( t  and 1 are spin functions). 

By virtue of the symmetry, all the off-diagonal elements 
H,,! are 3 u a l  to one another. Therefore the hybridiz%tion 
operator W can be expressed in terms of the operator C, of 
rotation about a threefold axis: 

W,=W, (C3+C3-i) =2 W ,  cos (Vl,nLn), 

where L is the angular-momentum operator and 
n = (1,1,1)fi. The operator of the SO interaction 

^ ~ = - i ( t z l 2 m c ) ~ ( [ ~ ~ ( r ) ,  V]U) ,  (10) 

(where a = (a,, a,, , a, ), a, are Pauli matrices, and V (r) is the 
crystal potential) is equivalent in the p,+ t , l  basis to 
A + - (Lao). As a result we obtain 

% * = 2 ~ ,  GOS (,/gcLn) +A* (h) FA.  (11) 

This expression coincides with the Hamiltonian that de- 
scribes the anomalous Zeeman effect, except that the inter- 
action with the "magnetic field" (Lon) is under the cosine 
sign (this preserves the Kramers degeneracy). Using the 
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known equations for thep-level splitting in a magnetic field, 
we obtain the spectrum 

for odd states all the quantities have a minus subscript and 
we must make the substitution. 

In the six-band k-p scheme, which is constructed in the 
basis of the symmetry functions ( A  :, E + )  and 
(A ; , E - j, there are two different SO parameters A ,f, 
(Ref. 14). In our model they coincide and are equal to A + , 
because the terms stem from the r triplet. The point is that 
the basis functions constructed in accord with (6)-(8) are not 
basis functions of general form for the irreducible represen- 
tations of the group D ,, . For matrix elements between func- 
tions of like parity this leads to the equality 
A : = A : = A,  . Of importance for interband matrix ele- 
ment of the momentum operator is the connection between 
e,: andpn-: 

(pnf (r+r) =ei'fr/$,,' (r) , (13) 

where T = a(ll1).  Because of this relation, four independent 
elements remain in place of five.I4 It must be emphasized 
that these restrictions are dictated only by symmetry, and 
forgoing them within the framework of the six-band model is 
an exaggeration of the accuracy. More stringent require- 
ments on the basis functions and correspondingly a more 
substantial decrease of the number of parameters occur 
when relations (4) and (5) between the representations of the 
initial and resultant small groups are not in one-to-one cor- 
respondence. This situation obtains when the period of the 
parent phase is tripled in tellurium. 

3. ELECTRON SPECTRUM AT BAND EDGES. EFFECTIVE 
MASSES 

The energy spectrum of a crystal consists as a rule of a 
group of bands that can be characterized by a definite sym- 
metry. The symmetry of the band as a whole is determined 
by the symmetry of the local functions in the sum (1). The 
aggregate of the orbitals In, R=fn (r - R) realizes an infi- 
nite-dimensional representation of a space group. Such re- 
presentations, which are irreducible in the basis of local orbi- 
tals, are known as "band" representations.15 In IV-VI 
semiconductors six bands closest to the Fermi boundary cor- 
respond to a band representation generated by a vector re- 
presentation of the cube group. Accordingly, the basis func- 
tions of this representations serve as a convenient set for 
determining the spectrum. 

If the functions f, (r) are taken to mean atomic orbitals, 
the representation (1) is equivalent to the tight-binding ap- 
proximation. It is more consistent, however, to render con- 
crete only the symmetry f, (r) and use a definition wherein 
the basis In,R > is oph~normalized.'~ We define the parent- 
phase Hamiltonian h (r) and the ionicity potentiald (r) by the 
relations 

i ( r )  ='/,[H(r) +H (r+r) ] = 2 / 2 r n + ~ ( r ) ,  (14) 
A (r) ='I, [H (r) -H ( r + ~ )  I. (15) 

The overlap integrals 
hnn. (R) =<n, Rl hln', O), Ann, (R) =<n, RIA In', 0) 

must be regarded as parameters determined by interpolation 
of the spectrum over the experimental data. Such a proce- 
dure5 shows that they decrease rapidly with increasing IRI, 
so that two coordinate spheres (CS) suffice. 

In the representation (9), the Hamiltonian 2 + takes 
the form 

where is a unit matrix in spin space and 

h, (R) =hnn, (R) * A  (R) 

0 0, -Uu 

- u= 

The sequence of the basis function in (16) and (18) is: e, ; t, 
e, ; &, e, ; t ,..., q, ,+ t, q, ,' 1 q, ,+ t ,..., where the spinors are 
defined relative to the cubic axis z. 

The exponential in (16) can be expanded in the vicinity 
of the L point in a series. The diagonal blocks take the form 

and the off-diagonal the form 

El= - i@ (kR) sin (qW2) h, (R) . 
R 

The sum contains contributions of the zeroth (R, = O), sec- 
ond [R, = a(1 lo)], and succeeding even CS. Contributing to 
(20) are the first [R, = a(100)], third [R, = a(100)], and suc- 
ceeding odd CS. This due to the structure of the functions: 

- 

~ n *  (r) = 1% z{ cos sin(qw2) (qR/Z) ) jn 6-R) .  V1) 

Since sin (q.R/2)#0, the basis function e, ,+ is made up only 
of IV orbitals and e,; of IV orbitals only when R runs 
through the VI sublattice and cos (q.R/2) # 0 on the IV sub- 
lattice (the origin is centered in the IV metal). Confining 
ourselves in (19) and (20) to two CS (R,,,,,), we obtain 

In this approximation the off-diagonal blocks in (16) are 

(El) nn,~knn,=En8nn.@Li, 

E z = S O k % + E ,  (kV+k,). 
(23) 
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The quantities % ,  and 5,. are obtained from vx and cx by 
cyclic permutation of the indices. All the introduced param- 
eters are expressed in terms of the intra- and intercenter inte- 
grals: 

The operator 2 ,  in (25) is defined by Eq. (lo) in which V(r) 
must be replaced by Y(r )  f A (r) [see (14) and ( 15)]. 

A The unitary transformation that diagonalizes 
R, = H * (k = 0), is more conveniently carried out in two 
stages. We first transform to the basis X':' 
=(X(*l * i ~ ( * l ) / a , ~ ( * ] :  

where p=2.rri/3. The functions X (  - ) , Y( - ) , Z (  - are trans- 
formed in the D ,, group as polar-vector components defined 
in a coordinate frame with axes along the directions ( - 1, 
- 1.2),(1. - l.O)and(lll).ThefunctionsX(+', Y'+ ' ,Z '+ '  

transform in exactly the same way, apart from the inversion 
operation, with respect to which they are even. The transfor- 
mation (29) diagonalizes the spin-independent part of the 
Hamiltonian. 

In the second stage, account is taken of the SO interac- 
tion [the spin quantization axis is directed along ( 1, 1,l) after 
the transformation (29)l; 

A 

where A (8 ) is the two-dimensional-rotation matrix: 

/qe),(c0se s ine ) .  
-sin0 cos 0 

The parameters 8, are defined by the relations 

~inO,=a,/(I+a,~)", cos 8,=I/(I+a,2)'h, (32) 

a,=(3~,+h,+[9~,~+6~,h,+9h,~]'~)/2~2h,. (33) 

The functions in the right-hand column of (30) are the eigen- 
functions of the Hamiltonian R, (1 1). To each egenvalue 
(12) corresponds a Kramers-conjugate pair (K is the 
Kramers operator). 

The k-dependent terms in (22) lead to increments qua- 
dratic in k to the eigenvalues (13): 

AZkl,' * fi2k12 
8rr (k) =E" * 

2 (i) 2ML7(i) ' 

where k = k-n and k, = k, + ik, are the components of k 
in the XYZ coordinate frame. Either the upper or the lower 
sign is taken in (34). 

The masses M (i) are determined by the overlap integrals 
in the second CS: 

' 2W* 
(ML* (0) - I =  (+) ( -j- - X * )  . 

where K * = (7: + 217: )/3; the upper and lower signs of 1/ 
3 correspond to the bands 3* a%d e:, relpectively. 

The obvious property A (a)A ( P ) = A (a + P ) of the ro- 
tation matrices (3 1) facilitates the transformation of the off- 
diagonal block (20) to the basis (30). As a result we get 

(37) 
Here 6 = 8- - 8, and PI, = pll  k , P, = p, k, . The matrix 
elementspl,, , are expressed in terms of the bare spectrum (3) 

pr= (go+2g,)/1'3, p,=(go-g,)l)/6T (38) 

The matrix (37) is in essence the k*p Hamiltonian in the 
representation of the L-point eigenfunctions. Comparing it 
with the analogous expressions in Refs. 13 and 14, we can 
relate the phenomenological constants of the k-p theory with 
our parameters. 

In all the considered compounds, the forbidden band is 
made up of the levels E; and E: (Fig. 3): 

E ~ = E ~ - - E ~ + .  (39) 

By perturbation theory we obtain from (37) the effective 
masses mil, lc and mil,, . on the bottom of the conduction 
band and on the top of the valence band, respectively: 
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In the six-band k*p theory,', Eqs. (40)-(43) contain in place 
of the correction masses M Ifl (i) the free-electron mass m,. 
Yet, as seen from (35) and (36), these masses can be even 
negative and in no way connected with m,. This means that 
allowance for the contribution l/m, is within the framework 
of the finite-band k*p method an exaggeration of the accura- 
cy, since the unaccounted-for remote bands make a contri- 
bution of the same order. The published statements17 that 
the term l/m is significant are therefore invalid. 

If all L-levels except E; and E,+ are taken into account 
by perturbation theory, the dispersion near E, is described by 
the equation',13 

The correction masses my, are determined by Eqs. (40)-(43) 
from which the contribution of the closest terms (the first 
term in the square brackets) must be omitted. The matrix 
elements 9 I,, , differ from pll,, (38) in accordance with the 
SO mixing: 

911=~11 sin 6 ,  9,=pl cos 6. (45) 

In our approximation, 9 and PI depend only on the dif- 
ference 8- - 8+=S, but not on 8, themselves. In the k-p 
scheme this is in general not the case,', owing to the larger 
number of unknown momentum matrix elements. 

4. PHYSICAL MEANING AND NUMERICAL VALUES OF THE 
PARAMETERS 

The ionization energy I,, of the metal is lower than that 
of the chalcogenide I,, . Therefore A (r) > 0 on the IV sites 
and A (r) < 0 on the VI sites. Consequently, A > 0 (24) (the 
origin is on the metal) and the states r - lie lower t h a n r  + (if 
the origin is transferred to the VI site, the sign of A and the 
parities of the functions are reversed). As a result the odd 
states made up of the metal (IV) orbitals [see (21)] pertain to 
the conduction band while the even ones (from the chalcogen 
(VI) orbitals) to the valence bands. 

Since 
A A 

h (r) H )  , h+ (r) =H (r+z), 
the quantities W+ and W- in (26) are determined respective- 
ly by the oyerlap integrals of the functions from the VI or IV 
sublattices. For the same reason A + and A - (25) should be 
close to the SO parameters of the chalcogen and metal 
atoms. 

Since A , > 0, the relative placement of the L levels (12) 
depends only on the sign of W ,  . Therefore the inversion of 
the terms E; (L z') and E; (L :5 ' )  with increasing A_, pro- 
posed in Ref. 18, is irnpo~sible.~' 

Inserting in (12) the term positions calculated by var- 
ious numerical (a review of the band calcula- 
tions is contained in Ref. 22) we can determine the param- 
eters A, W ,  , and A , (see Table I). 

/ 
SeTe / SnTe PbPo PbTe PbSe PbS 

I / $  1 1 1 1 1  I 1  I  l l l  1 I I  

0 0.2 1.n 2.0 
"at, eV 

FIG. 4. Dependence of ionicity parameter on the half-difference of the 
energies of the atomicp triplets (without allowance for their spin-orbit and 
electrostatic splittings); t v a l u e s  assumed by us, 0-values of A calcu- 
lated from the data of Ref. 6, A-from the data of Ref. 20, A-Ref. 21. 

We note that the restriction 

(Ei -&2) / (&,-&i)  >fi+*, 
which follows from (12),7' makes certain data of Ref. 22 inva- 
lid, thus indicating that the corresponding calculations were 
not accurate enough. Within the limits of the scatter due to 
the difference between the data of Refs. 6, 20, and 21, the 
constants A , turned out to be equal to the atomic SO pa- 
rameters. Table I lists therefore the values of2  , calculated 
for neutral atoms by Herman and Skillman.23 

The atomic analog of ionicity is half the difference of the 
p-term energies I :, and I;, without allowance for the spin- 
orbit and electrostatic splittings. They can be determined 
from the relation 

where E y  are the energies of the optical terms for the 
electron configurationsp, andp,; gyV' are their degeneracy 
multiplicities. The ionicity calculated from (12) is found to 
be somewhat less than A,,, = (I ;, - I :,)/2 (Fig. 4). This is 
due to the redistribution of the electron density among the 
atoms in the crystal.24 

The intercenter integrals W ,  , naturally, have no atom- 
ic analog. If the crystal potential in (26) is represented as a 
sum over the unit cells and the three-center integrals are 
neglected, as is customary, Eq. (26) will contain orbitals and 
potentials centered only on the VI and IV sublattices. One 
can therefore expect the change of W- in the sequence Pb(S, 
Se, Te) or of W+ for (Ge, Sn, Pb)Te to be due to the change of 
the lattice period. This is illustrated by Fig. 5, where the W ,  
from Table I are plotted as functions of a, = 2a (a, is the 
period of a lattice of the NaCl type). 

Having determined from Fig. 5 the slopes of the straight 
lines a W ,  /aa, it is easy to calculate the baric coefficients 
aE,/dp. The theoretical values in Table I agree well with 
experiment." The calculation of the strain potentials is per- 
fectly analogous. 

The parameters go and (, were determined from the 
experimental values of the effective masses with the aid of 
relations (38) and (40)-(43). The contribution of the correc- 
tion masses M (i) turns out to be small (for PbTe, x + z 0.1 eV 
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FIG. 5. Dependence of the hybridization parameters on the lattice period: 
+values assumed by us, C-values of W ,  calculated from the data of 
Ref. 6, A-from the data of Ref. 7, A-Ref. 21. 

(Ref. 5) and M, -4mo), and that x * cannot be reliably de- 
termined. It is interesting that quantities lo ,  g,, and 
( W+ + W-)/2 pertaining to the parent phase are practically 
the same for all IV-VI compounds. 

From the set of parameters obtained for binary com- 
pounds we can calculate the band structures of multicom- 
ponent solid solutions. In the virtual-crystal approxima- 
t i ~ n ~ ~  the matrix elements (24)-(28) for an alloy A, B, - , C 
are expressed in terms of the values for the corresponding 
binary solutions: 

Figures 6 and 7 show the calculated g(x) and effective-mass 
anisotropy coefficient K = mll /ml . 

Attention is called to the strongly nonlinear relations in 
the alloys A'" By-, C,V'; these relations agree well with the 
experimental data for PbSe, -,Te, .18,19 It must be empha- 
sized that this nonlinearity occurs for a linear variation of 
the parameters (47) and is not accompanied by inversion of 
the terms L ; and L ; . The linearity of the E, (x) dependences 
in the alloys Pb, -, Sn,Te(Se) is also confirmed by experi- 
ment (Refs. 26, 27)." 

With increasing x in the Pb, - , Sn, Te alloys, the terms 
L 6' and L 6, which form the forbidden band, are inverted (Fig. 
6), and this leads to a nonmonotonic change of mil, In a 
definite composition region, the interaction with the remote 

FIG. 6. Dependence of the forbidden-band gap on the composition in 
ternary solid solution. Experimental data of: A-Ref. 18, &Ref. 26, 
A-Ref. 27. 

FIG. 7. Variation of the anisotropy coefficient K = m,, /m, for electrons 
(n) and holes (p) in solid solutions. Experimental data: %Ref. 19, A(n  
type)-Refs. 28 and 29. 

terms L 45' and L 6' cancel out the direct interaction ofL and 
L 6', after which mll and subsequently m, become infinite. 
As mil the anisotropy coefficient K-+w (Fig. 7). The 
spectrum is determined by the terms co k4 and Eq. (44) is 
incorrect. The first to become infinite in Pb, -, Sn, Se is m, 
and consequently K 4 ,  as is confirmed by experiment (a 
structural transition into the orthorhombic phase takes 
place in Pb, - , Sn, Se at x > 0.40). 

From the regularities established we can determine the 
band structure of PbPo, a compound whose energy spectrum 
was not investigated in experiment. It is known that PbPo 
has an NaCl lattice with a period a, = 6.59 The value of 
I& (Fig. 4) can be determined by linear interpolation of the 
plot of I$,(I,,) for the chalconide series (S, Se, Te, Po). 
Owing to the large lattice period, the hydridization is ex- 
tremely small (Fig. 5), and the SO interaction, to the con- 
trary, is large: A + = 0.7 eV. Therefore the order of the terms 
at the L point is unusual (Fig. 8). The band extrema lie on the 
intersection lines of the corrugated Fermi surfaces (Fig. 1). 
The electronic minima (their number is 24) are strongly dis- 
placed from the L points, and the hole maxima are located 

FIG. 8. Energy spectrum of PbPo. The dispersion is shown only for the 
lower conduction band and the upper valence band. On the right is shown 
the arrangement of the levels at the L points. 
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near the points of intersection of the indicated lines with the 
2? (1 10) axes (Fig. 8). A similar picture of the band structure 
of PbPo was obtained by the augmented-plane-wave meth- 
~ d , ~ '  but there the electron extremum was related to the L 
point. The 2 extremum of the valence band, which is the 
principal one in PbPo, appears as a secondary in PbTe." 
Calculation shows that its position in SnTe is practically 
equal to that of the L extremum of the valence band. 

5. CONCLUSION 

The first (symmetry) stage of the approach expounded 
here is based on using a triply degeneratep state as the bare 
level at the L point. This raising of the point symmetry is 
similar to the translational-symmetry raising on which the 
Abrikosov-Fal'kovskii method9 is based. This decreases the 
number of independent momentum matrix elements in the 
k*p system to four, owing the equality of the radii (r,, , r,, ) of 
the wave functions in the parent phase. The fact that these 
radii are in fact different (r,, /r,, z (I,, /I,, ) ' I2 z 1 + A / 
I =  1.1) reduces, in the calculation of the IV-VI spectrum 
from the parent phase, to allowance for the contribution 
from the remote bands. 

The second (model) stage of our approach is connected 
with the use of the tight-binding approximation. This has 
greatly decreased the number of the parameters of the theory 
and made it possible to determine their connection with the 
atomic characteristics. It was found that the available ex- 
perimental data are well described by the theory if account is 
taken of overlap integrals with two nearest coordination 
spheres. The integral of the first sphere is related to that of 
the second like W/go-0. 1 (see Table I). This suggests that 
the overlap integrals of the third coordination sphere intro- 
duce corrections not larger than 1% into the IV-VI spec- 
trum. If only two coordination spheres are taken into ac- 
count the difference between the atomic radii of the IV and 
VI elements does not enter at all in the determination of the 
parameters of the theory, and the number of independent 
momentum matrix elements in the k-p theory is reduced to 
two. 

 or example, calculations by the pseudopotential method for PbTe (Ref. 
6), Bi (Ref. 7), and Te (Ref. 8). 

2 ' ~ n  analogy with Bi and Te, noncubic lattices of IV-VI compounds are 
obtained by distortions of a structure of the NaCl type.' 

,'A similar approach, which connects the spectra of diamond-like semi- 
conductors and of compounds with zincblende structure, is known as the 
Herman perturbation method.' ' In this case, however. A Irl has the trans- 
lational symmetry of the "parent phase" and differs frbm'it only in that it 
is not invariant to inversion. 

4'The group C, ,  has two one-dimensional (A,, A,) and one two-dimension- 
al (E ) irreducible representations. 

"In contrast to bismuth, where the smallest of these parameters is prob- 
ably A,, . 

6'This assumption was invoked by Akopyan et a1.19 to explain the nonlin- 
ear dependence of the anisotropy coefficient in the PbTe, -,Sex alloy. It 
will be shown below that this assumption is unnecessary. 

7'Relations (12) and (46) are of symmetry origin. They are due to the gene- 
sis of the terms L ,f ,L : and L ; ,L ; from two triplets ofp-like Wannier 
orbitals. The accuracy of (12) and (46) is therefore determined by the 
smallness of the W, hybridization relative to the distance to other re- 
motep-type bands ( -  lo-'). 

"In post-inversion compounds Pb, - , Sn, Se one can have deviations 
from nonlinearity because of the nonlinear change of the lattice period 
near the point of the phase transition into the orthorhombic phase. 
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