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The nonlinear relaxation absorption of ultrasound and electromagnetic microwaves in dielectric 
glasses is considered at low temperatures, when two-level systems (tunnel states) are responsible 
for the absorption. It is shown that in the nonlinear regime there exist three characteristic fre- 
quency ranges in which the dependences of the absorption on the frequency are different. With 
decrease in intensity, the high and low frequency regimes go over into the respective ranges of the 
linear theory, whereas the intermediate range disappears. For each of the frequency ranges men- 
tioned, the dependences of the absorption on the wave intensity and on the frequency, and also on 
the temperature, are determined. 

PACS numbers: 62.80. + f, 78.70.Gq, 77.90. + k, 43.35.Fj 

1. INTRODUCTION 

Many papers have appeared during the past several 
years on the study of the acoustic and electromagnetic prop- 
erties of glasses (see, for example, Refs. 1 and 2). Interest in 
this field is due to the fact that many properties of glasses at 
low temperatures differ essentially from the corresponding 
properties of crystals and are to a large degree universal in 
this situation. That is, the properties do not depend on the 
specific glass composition. Such properties include the lin- 
ear temperature dependences of the specific heat and the 
quadratic dependence of the thermal conductivity, and also 
the very unusual anomalies of the acoustic and electromag- 
netic properties, of which we shall speak later. Pracitcally all 
these anomalies find their explanation within the framework 
of a two-level-system model (TLS), which was proposed in- 
dependently by Anderson et al. and by Phillips (Refs. 3-5). 
According to this model, the kinetic and thermodynamic 
properties of the glasses are explained by the presence in 
them of a TLS, the separation 2E between the levels of which 
is smoothly distributed over a wide range of values. The low- 
er bound of this interval, as contemporary experiments 
show, is less than 0.01 K, while the upper bound is deter- 
mined from the condition that the separation between the 
levels be greater than their blurring due to rela~at ion.~ This 
condition gives the value E, - 10-30 K for the upper bound- 
ary of the interval. 

One of the most powerful methods of study of the TLS is 
the study of absorption of ultrasound and electromagnetic 
waves of the microwave band in glasses. These experiments 
make it possible to assess the TLS distribution in energy, and 
also their relaxation properties. Two different absorption 
mechanisms are connected with the TLS. The first is reso- 
nance absorption, which is connected with the direct absorp- 
tion of a relaxational absorption due to relaxation of the level 
populations of the TLS upon change in the level separation 
under the action of the electromagnetic or sound waves. The 
relation between the corresponding contributions depends 
on the frequency w and the temperature T. In the case h ( T ,  
in which we shall be interested, the coefficient of resonance 

absorption r(") (for definiteness, we shall be speaking of 
(sound) is determined by the equation1 

where a is a dimensionless coupling constant and s is the 
speed of sound. The coefficient of relaxation absorption is 
equal to's7 

where T is the minimum time of relaxation of the populations 
of the TLS for which E =: T. At w ~ (  1, the relaxation absorp- 
tion always predominates. Ifw7.4 1, the ratio of the contribu- 
tions of the given mechanisms is determined by the dimen- 
sionless parameter h27 /T ,  which can be either greater than 
or less than unity under experimentally achievable condi- 
tions. 

As experiments show, the absorption becomes essen- 
tially nonlinear, even at very low intensities. As a rule, the 
nonlinearity of the absorption is connected with the equaliz- 
ing of the level populations of the TLS in resonance transi- 
tions. Such an equalization appears even at sound intensities 
2 W/cm2; at higher intensities the resonance mecha- 
nism is completely disengaged. Thus, even at relatively low 
intensities, the relaxation absorption becomes the principal 
form even in those cases in which the resonance absorption 
predominates in the linear regime. 

We shall show that the relaxation absorption can also be 
nonlinear, and the investigation of the nonlinear relaxation 
absorption can give many important data on the relaxation 
properties of the TLS. As an example, we cite the recently 
interesting experiments of Elbaum et ~ 1 . ~  on the observation 
of nonlinear absorption of ultrasound in metallic glasses, the 
acoustic properties of which are similar in many ways to the 
properties of dielectric glasses. 

The purpose of the present work is the calculation of the 
nonlinear coefficient of relaxation absorption and the analy- 
sis of the conditions under which it can be observed. 

In the next section, we write out the basic equations and 
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formulate the setup of the problem. Before proceeding to the 
nonlinear theory, we shall show how to obtain qualitative 
estimates of the linear absorption under different limiting 
cases. We shall then construct the nonlinear theory of relax- 
ation absorption, and in the last section, we shall discuss the 
physical meaning of the results and make appropriate esti- 
mates. " 

2. CALCULATION OF THE ABSORPTION COEFFICIENT 

We write the Hamiltonian of the TLS in an external 
field in the form7 

H= (A+d cos a t )  os+Aoul. (3) 

HereA is the energy gap between the levels of isolated poten- 
tial wells, A, = &,exp( - A ) is the tunnel matrix element 
(w, is the characteristic frequency of oscillation of an atom in 
a single well, A is the tunnel integral), ui are Pauli matrices; 
d =Aik#$' in the case of a sound wave (A, is the deforma- 
tion potential tensor of the TLS, #!:'is the amplitude value of 
the deformation tensor) in the case of an electromagnetic 
wave d = fl E, (pis the dipole moment of the TLS, E, is the 
amplitude of the electric field); as is usually done, we shall 
assume A and A to be independent random quantities, uni- 
formly distributed over a range of values much broader than 
that which makes the basic contribution to the absorption; 
we shall assume A, to be a random quantity, independent of 
A and A, the distribution of which has a maximum near some 
value of the order of unity (in eV, a similar assumption can be 
introduced relative to /? ). 

As has already been noted, we shall be interested in the 
case of rather low frequencies. On the other hand, the char- 
acteristic separation between the levels of the TLS, which 
makes a contribution to the absorption, is not less than T, as 
we shall see. Therefore the energy of a quantum of the exter- 
nal field turns out to be small in comparison with the charac- 
teristic separation between the levels. The slow variation of 
the external field makes it possible to use the adiabatic ap- 
proximation for the solution of the quantum mechanical 
problem, i.e., in the solution of the Schrodinger equation we 
neglect derivatives of the external field with respect to time. 
The sufficient condition for the applicability of the adiabatic 
approximation, as analysis shows, is the inequality. 

Upon satisfaction of the condition (4), the TLS is character- 
ized by the spacing 2~ between the levels, which depends on 
the instantaneous values of the field 

E= [ ( A + d  cos a t )  '+At ] '" ,  (5) 

and the occupation numbers of the upper (n) and lower 
(1 - n) levels. We can obtain for the occupation numbers the 
balance equation 

where 

no= (e2"/Ti-1) -', 

and the relaxation time r is determined by the same expres- 

sion as in linear theory6.': 

1 A t e  e 
-=-- cth - , 
r r o T Z T  T 

p is the glass density. It is important that Eq. (8) contains the 
time-dependent energy E. We note that in the derivation of 
Eq. 6 we have assumed the phonons to be at equilibrium. 

The absorbed power is determined by the expression 

where N is the density of states of the TLS, and the angle 
brackets indicate averaging of the various values of A, or Pi. 
The bar above denotes averaging over the period: 

In a number of limiting cases, it is convenient to use for nE. 
the following expression 

which is obtained from (1 1) by integration by parts and using 
Eq. (6). In experiments on microwave absorption, measured 
quantity is usually P, while in acoustical experiments it is the 
coefficient of sound absorption 

r =P/I,  (13) 

where 

1=~s3(ui:O' ) 

is the flux density of the sound energy. 

3. LINEAR THEORY 

In the linear approximation 

A 
E = E ~  + - d cos a t ,  E O =  (Az+Ao2)"' 

E o  
(15) 

n,  A ano f i  ---f ---. 
I - a d  sin a t ,  

T EodEo (17) 

where 7 is calculated at E = E,. The basic contribution to the 
absorption is made by the TLS for which no= 1, i.e., E, 5 T. 

We now analyze the contribution to the absorption of a 
single TLS, equal to nz. If w7) 1, the TLS cannot relax with- 
in the period of the sound wave. The principal part of its 
population n does not depend on the time and, in the linear 
approximation, it can be assumed to be equal to no(&,) - 1. 
The time-dependent part of n is equal to d / u r T  in order to 
magnitude. According to (1 I), the contribution of this sys- 
tem to the absorption is of the order of d */TT. Systems for 
which ur( 1 relax within a time much shorter than the peri- 
od, and their populations differ little from no(&). The non- 
equilibrium increment, which makes a contribution to the 
absorption, is n - no(&) w o r d  /T. To sum up, the absorbed 
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power, as is seen from (1 I), is of the order of w2rvd '/T. We 
now recall that the relaxation time r depends essentially on 
A, [see (8)]. If wr,) 1, the condition 07) 1 is satisfied for all 
TLS making a contribution to the absorption, since A, 5 T 
for them. Upon decrease in A,, the power absorbed by such 
systems falls off as A i so that the important condition is 
A,>T. As a result, the absorbed power [see (17)] is 

If wrO<l, then systems with r Z ro can make a contribution 
to the absorption. For TLS with wr(1, the aborbed power is 
proportional to A ; '. With decrease in A,, this power in- 
crease, until wr does not become of order unity (at 
A,= T (wro)"2(~). Systems with w r z  1 also make a funda- 
mental contribution to the absorption, so that 

As has already been noted in Ref. 7, the absorption in this 
case does not depend on the relaxation time, and conse- 
quently does not depend on the temperature. This is a conse- 
quence of the exponentially broad distribution of the relaxa- 
tion times. 

4. NONLINEAR THEORY 

Significant nonlinear effects can be expected when, in 
the case of a change in the separation between levels by an 
amount of the order d, a significant change can take place in 
the equilibrium population no, or in the relaxation time r 
determined by the equilibrium number of phonons taking 
part in the transitions between levels. In either case we mean 
by the nonlinearity parameter the ratio d /T. 

Generally speaking, Eq. (6) can be solved exactly and 
the absorbed power P can be expressed in the form of quadra- 
ture~:  

OD e ( t )  & ( t - t ' )  
c h z [ ~  ( t - t f ) / T ]  

where 7 depends on t through ~ ( t  ). However, the expression 
obtained is so complicated that it can be analyzed only under 
certain limiting cases. For this reason, we shall consider 
from the very beginning only the limiting cases which admit 
of clear physical interpretation. In particular, we shall con- 
sider only the case of a strong nonlinearity, when 

We now consider the dependence of the energy of the TLS on 
the time, shown in Fig. 1. The maximum value of the energy 
is A,, = [(2 + Id +A i ~ ' ' ~ ,  and the minimum E,, 

= A,. For TLS for which A,>T the condition E) T is satis- 
fied throughout the entire period. Therefore such systems 
are unpopulated and do not make a contribution to the ab- 
sorption. The same applies to systems for which A - Id 1) T. 
Thus, we shall be interested only in systems A, 5 T and 
A 5 d. On the other hand, E,, ) Tby virtue of the condition 
(20). We shall say that the system is in region I when its 

Fig. 1.  Characteristic dependence of one half of the level spacing on the 
time. 

energy E 5 Tand in region I1 when E) T. The system is locat- 
ed in region I for a time interval t, - T/dw that is much 
shorter than 2?r/o. 

In region 11, the equilibrium population density is ex- 
ponentially small. Therefore, are increase in the occupation 
numbers n is possible only in region I, while in region I1 the 
relaxation leads to a decrease in the occupation numbers. 
The character of the absorption depends significantly on 
how rapidly the relaxation of the system takes place in com- 
parison with the time t, of its being in region I, and also with 
the time z2?r/w of its being in region I1 between two succes- 
sive entries into region I. 

In region I we have E =: T and the characteristic relaxa- 
tion time 7, ~ r , ( T / d , ) ~ .  In region 11, E-d and the charac- 
teristic relaxation time rII NT, T/d (rII. AS has been seen 
from consideration of the linear theory, the character of the 
absorption can depend significantly on how systems with 
A,z  T, for which rI NT,, relax. There are three limiting 
cases: mII > 1, wr,, ( 1, and t, (r,, ro<t,. 

A. Case or,, % 1. 

This inequality means that in region I1 the relaxation 
takes place slowly. A tthe same time, it follows from this that 
tI/rI = ( ~ r , , ) - ~ ( T / d  )2#(~711)-1< 1, the relaxation in re- 
gion I is also slow. This means that the occupation numbers 
differ little from their average value ii over the period, which 
values can be determined from the balance equation 

The left-hand side of this equation contains the increase in 
the occupation numbers in region I, and the right side their 
decrease in region 11. From the relation (2 1) we have 

The absorption of a single TLS takes place principally in 
region 11, so that Eq. ( 12) gives 

It is then seen that the principal contribution to the absorp- 
tion is made by systems for which A, z Tand A z d ,  meaning 
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that 

P=NdT/z,.  (24) 

In order to determine the numerical coefficient in this for- 
mula, we obtain Fi by averaging Eq. (6) over a period: 

ii= [ e  c t h ( e / l ~ )  1 - 1  [ 
exp (2eIT) -1 

In the second factor of this expression (arrival) the principal 
contribution is made by region I, so that we can set 

~ t = x + ' / ~ n + u ,  I U I  < < I ,  (26) 

where x + ?r/2 is that value of wt where the energy has a 
minimum 

sin x=A/d, O<x<n/2. (27) 

Here the energy has the form 

e= [d2u2 cos2 x+AOZ] ' (28) 
and integration over t reduces to integration over u in the 
limits from - w to + co. In the first factor (departure the 
principal contribution is made by regionII, so that we can set 
E = d I sin x + cos wt I ,coth(~/T) z 1 in it. As a result, 

n= ( T / d )  j dl[\'+ (Ao/T)zl'lz 
2  (cos x+ x sin x)cos x exp{2[E2+ (Ao /T)  2]"')-1 . (29) 

- m 

It is taken into account here that region I reached twice in 
one period. According to (12), the power absorbed by a single 
system is 
- iio * l o  Ao2d2 1 
n~ = - J &el.= -(2 + sinzx)  ii. 

T3ro  (30) 
n o  

Substituting this expression in (10) and integrating over A, 
and (, we obtain 

n4a N( ld l>T , a = ~ * f '  1+2 sin2 x p = -  7dxwi.2. (31) 
120 To 2 cosx+xs inx  

0 

B. Case COTl1 (1, t, ( T O  

In this case, within the time of passage through region I, 
the system withdo= T does not manage to relax to the equi- 
librium value, while in region 11, it relaxes within a time that 
is much shorter than the period. Thus, such systems go from 
region I1 to region I with negligibly small values of the occu- 
pation numbers n. In passing through region I, n increases to 
the value 

On going into region 11, the systems relax in a small neigh- 
borhood of region I. In this neighborhood, ~ ( d .  Therefore 
the relaxation time there is t,, =: (A i )E/r,T 3)- '>rII. On the 
other hand, in this neighborhood we can use the substitution 
(26) and the expression for the energy (28), where u - wt,, . By 
virtue of the conditions E)T (i.e., the region of relaxation is 
much greater than the region I, t,,)t,) ind A,S T, the 
expression (28) is simplified: ~ z d w t , ,  . As a result we obtain 
for tII the following estimate: 

The power absorbed by a single system is 
- 
nb=n,do. otII=Ao ( T o / d z o )  ". (34) 

It is then seen that values A o z  T are significant, and since 
A S d the total absorbed power is 

P=N~%=NI"/~  do/^^) '". (35) 

For the determination of the numerical coefficient, we 
first calculate the maximum value n, achieved by the occu- 
pation numbers in the passage through region I. We recog- 
nize that in region I we can neglect the relaxation term - n/ 
r in Eq. (6), make use of the substitution (26), and set n = 0 as 
U+ - w . Then 

In region 11, we can neglect the source n d r  in Eq. (6) and 
neglect the quantity A i in the expression for the energy (28). 
Selecting n 1. = , = n, as the initial value in this region, we 
obtain 

Substituting this expression in (1 I), taking it into account 
that P = dw in this region, integrating over u from 0 to m, 
keeping it in mind that there are two regions I in the period, 
we obtain 

Substituting (38) in (lo), we have with account taken of (36) 

p = -  n'6(3) N T ~ ( ~ / T . ) " (  ldl*). r2 (1 /4)  (39) 

C. Case To(tl 

In this case, for systems with A,zT, the relaxation 
should occur in region I; in region 11, the occupation 
numbers are negligibly small and we do not have to consider 
this region. For systems with rI (tI, all the arguments ad- 
vanced above for the case of the linear theory at wt(1 are 
valid, except that the role of the period for them is played by 
the time t, . As a result, it turns out that the principal contri- 
bution to the absorption is made by those systems for which 
rI z t I ,  i.e., A,=: T(T,,/~,)'/~. Obviously, for systems with T, 

z t ,  , the occupation numbers are of the order of unity, while 
& in region I is of the order of dw for these systems, by virtue 
of the condition AO(T. 

Thus, the power absorbed by a single system is 
- 
nS=do - o t I ~ o T ,  (40) 

and the total absorbed power is 

For the determination of the numerical factor, we again use 
the substitution (26), and neglect the quantity A, in the 
expression for the energy (28). Equation (6) is solved with the 
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initial condition n = 0 as u-+ - CO,  while in the calculation 
of n by Eq. (1 l), the integration5ver u is carried out in the 
limits from - co to + co . AsJ a result, P = bNwT ( Id I ), 
where / 

f 

X eap ( -q 1 dt" t" cth t") =0.89. (42) 
E' 

5. DISCUSSION OF THE RESULTS 

In considering the limits of applicability of cases A, B, 
and C, if it is not difficult to verify that in the nonlinear 
regime, in contrast to the linear, there are not two but three 
characteristic frequency intervals. Case A corresponds to 
the high frequencies: 

ozoWd/T, (43) 

case C, to the low frequencies: 

wzo<T/d, (44) 

while case B corresponds to the intermediate frequencies: 

T/d<oz0<d/T. (45) 

It is not difficult to show that at d / T z  1 the results obtained 
for cases A and C go over to the results of the linear theory in 
order of magnitude, for the limiting cases 07,) 1 and wr( 1, 
respectively. As for the frequency interval B, it vanishes in 
the case d / T z  1, as is seen from (45). 

The frequency dependence of the absorption coefficient 
(for definiteness, we shall now speak of the case of sound) is 
characterized by the fact that in the low-frequency interval 
C we have r a w, while r a wl" in the intermediate interval 
B and r does not depend on w in the high-frequency interval 
A. 

The dependence of r on the intensity has the same char- 
acter for all values of wrO (although the absolute value of r 
depends on 07,) and is shown schematically in Fig. 2. The 
intensity I, at which the nonlinear effects set in is determined 
by the condition d z  T. On going through I, ,  we find our- 
selves either in region A at ~ 7 ~ )  1, or in region C at wro( 1. 

We note that t h e r  (I ) dependence in the region 1,(1(12 
is the same as the asymptotic dependence for the resonance 
absorption.' The threshold value of I, is proportional to T 2  
and does not depend on w. We note that for resonance ab- 
sorption, the theory of Ref. 9 predicts the following depen- 
dences of the critical intensity: I, mwZT '. In the experiment 
of Ref. 10, a quadratic dependence of I, was observed. How- 
ever, I, is practically independent of a. The reason for this 
divergence is apparently not clear at the present time. 

We estimate the possibility of realization of the nonlin- 
ear regime as applied to sound. Setting p z 5  g/cm3, 
s z  2 X lo5 cm/s and z 2 eV we obtain 

Fig. 2. Schematic form of the dependence of the coefficient r of the relaxa- 
tion absorption of the ultrasound on its intensity. 

Thus, at I = 1 W/cm2 and T = 0.1 K we obtain d /Te3 .  
The quantity wr0 can vary over wide limits because of 

the strong dependence of 7, on the temperature. At Tz0.1 
K and E, z 2 0  K we obtain r 0 z 4 X  lop6 s. Thus, the low- 
frequency region is reached at frequencies below 1 MHz. 

In conclusion, we shall discuss what information on the 
TLS can be obtained from experiments on low-temperature 
relaxation absorption. The frequency and temperature de- 
pendence of r allow us to assess how well the usually em- 
ployed TLS model describes the real situation in glasses. 
However, from this point of view, the nonlinear absorption is 
not much greater than the linear. What is essentially new in 
the nonlinear absorption is its dependence on the intensity. 
In the first place, we can estimate directly the value of the 
deformation potential (or the dipole moment in the case of 
microwave absorption) from the threshold value I,. Further- 
more, the data on the linear absorption coefficents of longi- 
tudinal and transverse sound allow us in principle to deter- 
mine ((Sp A )') and (SPA '). The nonlinear absorption 
contains more complicated functions of the tensor A, and 
thus permits us to assess not only the order of magnitude of 
its characteristic values, but also on their distribution. 
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useful discussions. 
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