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The behavior of the magnetostriction of rare-earth paramagnets with garnet structure is investi- 
gated theoretically and experimentally. It is shown that, owing to the presence of low-symmetry 
nonequivalent sites occupied by the rare-earth ions in the garnet lattice, the set of invariants that 
describe the temperature, field, and angular dependences of the magnetostriction differ from the 
standard ones and do not reduce to them. The theoretical results are compared with the experi- 
mental data. 

PACS numbers: 75.80. + q, 75.20.Ck 

In a phenomenological analysis of magnetoelastic phe- 
nomena in cubic systems, the magnetoelastic energy is usual- 
ly represented, following Akulov,' as a sum of the following 
two magnetoelastic invariants: 

where E~ are the components of the strain tensor and mi the 
components of the magnetization vector. We observed2 cer- 
tain peculiarities in the behavior of the magnetostriction of 
holmium iron garnet Ho3Fe501,, which are not covered by 
the classical theory of magnetostriction. Notice must be tak- 
en primarily of the unusually strong dependence of the mag- 
netostriction of this garnet on the magnetic field, a depen- 
dence that cannot be attributed to the paraprocess of this 
material. A second important fact is that the temperature 
and the angular dependence of the magnetostriction do not 
correspond to those which follow from the classical theory3 
based on representing the magnetoelastic energy in the form 
(1). The reason is that the theory in Ref. 1 was developed for 
weakly anisotropic magnetic ions (strictly speaking, for ions 
in the S state), whereas the Ho3+ ion in iron garnets is 
strongly anis~tropic.~ The same situation obtains also for 
other rare-earth (RE) ions with nonzero orbital angular mo- 
menta. 

The development of a theory of magnetostriction of 
magnetically ordered substances with strongly anisotropic 
ions, however, encounters serious difficulties. To under- 
stand the nature of the magnetostriction of strongly aniso- 
tropic magnetically ordered substances (and, in particular, 
iron garnets), we have turned to investigations of simpler 
magnets, namely RE paramagnetic garnets R3M5012, where 
M is a nonmagnetic ion (Al, Ga, and others). For these mag- 
nets the problem becomes simpler, since there is no exchange 
interaction of the RE ions with the iron ions in them. 

Definite progress has been made recently in the investi- 
gation of magnetostriction of anisotropic 
It has been shown, in particular, that the temperature and 
field dependences of the magnetostriction in compounds 
such as LiTbF, depends on the character of the ground state. 
The problem was solved for definite types of measurement 

generally by numerical means, and the angular dependence 
of the magnetostriction was not analyzed. 

There is another approach, which we shall follow in the 
present paper. It is traditional in magnetism to pay principal 
attention in the theory to the invariants that determine the 
magnetoelastic energy (and hence also the magnetostriction) 
of the crystal. Garnets have a complicated structure with six 
nonequivalent RE-ion sites with low symmetry of the sur- 
rounding. The complicated spatial symmetry and the afore- 
mentioned appreciable anisotropy of the magnetic moment 
of the RE ion are the reason why the set of invariants in the 
magnetoelastic energy differs substantially from (1). It is de- 
termined by the space group and not by the point group of 
the crystal. This is also the reason why the magnetostriction 
has the unusual angular dependence that will be discussed 
below. 

To determine the essential invariants we shall carry out 
a microscopic analysis of the magnetoelastic energy, based 
on the known premises concerning the ground state of RE 
ions in a garnet crystal. This analysis permits determination 
of the actual forms of the field, temperature, and orientation 
dependences of the magnetostriction, connect them with the 
character of the ground states of the investigated ions, and 
compare the theory with experiment using a small number of 
indeterminate magnetoelastic parameters. 

THEORY 

Crystalographicstructure. RE garnets have a cubic sym- 
metry described by the space group 0 p. The unit cell of the 
garnet contains eight R3M50,, formula units, and the RE 
ions are located at sites with dodecahedra1 surrounding (c- 
sites). The symmetry of the surrounding of these sites is de- 
scribed by the point group D,, which has one-dimensional 
irreducible representations. The basis functions of the irre- 
ducible representations of the guantities of interest to us (of 
the components of the strain tensor, of the operator J, of the 
external magnetic field strength vector H, and of the even 
powers of the components x', y', andz') are listed in the table. 
Here and below x', y', and z' pertain to the local coordinate 
system and x ,  y, and z to the crystallographic frame, whose 
unit vectors are [loo], [OlO], and [OOl]. In addition, in our 
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TABLE I. Basis functions of irreducible group representations. 

Irreducible represents- JiXixi  1 ' i f  1 
tions 

convenition the Latin and Greek indices designate the local 
and crystallographic frames, respectively. 

Hamiltonian ofproblem. The Hamiltonian of an RE ion 
at site r (in terms of the local symmetry axes of the given site) 
will be represented in the form 

Here Xc, is the Hamiltonian of the RE ion interaction with 
the crystal field, and Z, is the Hamiltonian of the RE ion 
interaction with the external field and is conveniently repre- 
sented in the form 

4 

~ Z = - P B ~ J J H = - ~  P (rj) H(rj), P (rj) =gJpBJ(rj), 
j=2 

(p,  is the Bohr magneton and g, is the Lande factor of the 
basic multiplet of the RE ion); Xm, is the single-frequency 
magnetoelastic Hamiltonian: 

A 

where C',, are the magnetoelastic coefficients, and ~(r,) 
will be taken to mean an arbitrary linear combination of the 
diagonal components of the strain tensor: &(TI) = a,&, 
+ + a,&,, , N (r, ) are quantities having the meaning of 

magnetoelastic stresses and transform in accord with the ir- 
reducible representations rj of the point group D,. 

Eflectiuespin-Hamiltonian. The energy spectrum of RE 
ions in garnet is split to the utmost: to doublets and singlets 
respectively in Kramers and non-Kramers ions. The dis- 
tance between the doublets of Kramers ions reaches 50-100 
cm-'. The picture is similar also for certain non-Kramers 
ions (Tb3+, Ho3+, ...), whose lower levels are quasidoublets 
(in which the distance 24,  between the singlets is ofthe order 
of 1 cm-') sufficiently well separated from the upper lev- 
els. l3  

In a theoretical consideration of the magnetic and mag- 
netoelastic properties of garnets with such ions at low tem- 
peratures T 100 K it suffices to confine oneself to the low- 
er doublet or quasidoublet, and take the interaction with the 
unpopulated excited levels into account by perturbation the- 
ory. It is convenient in such a physical situation to go over 
from the general Hamiltonian of the problem to the effective 
spin-Hamiltonian. To construct the spin-Hamiltonian we 
project X o n  the subspace of the functions generated by the 
two states of the lower doublet or quasidoublet. We shall use 

here the small parameter x -  llZz 11 W; l, IIXme 1 1  W; 
where W3 is the characteristic energy that separates the ex- 
cited levels from the ground doublet. In the analysis that 
follows we shall deal separately with the Kramers and non- 
Kramers ions. 

Kramers ion. Using the Ti multiplication table for the 
D, group: 

we find that in the approximation linear in E the effective 
spin Hamiltonian takes the form1' 

where u ( r i )  are Pauli matrices: u ( r2 )  = a,. , u(T3) = a,,. , 
u(r,) = ux. ; g, are the diagonal elements of the g-tensor of 
the ground doublet: g, = g, , g ,  = gy , g, = gx ; Cki are the 
real effective magnetoelastic coefficients having a W - ' de- 
pendence on the crystal field; there are nine of them. 

Non-Kramers ion. Assume that at H = 0 the wave func- 
tions !Pi of the two levels of the ground quasidoublet, with 
energies - A, and A,, are transformed in accord with the 
representations rA and I', (Fig. I), while the wave functions 
of the excited levels are transformed in accordance with Tm . 
All the wave functions are chosen to be real. The matrix 
elements of the operator Zm, are then real, and those of Xz 
imaginary. We find in this case that the effective spin-Hamil- 
tonian is of the form 

FIG. 1. Lower-level scheme of a non-Kramers RE ion in the garnet struc- 
ture. 
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+El?,& ( r , )  x-'H2(I?,)  +N18 ( r l )  
1 

where 

Thermodynamic potential. We calculate the contribu- 
tion of the magnetoelastic interaction to the thermodynamic 
potential of the crystal. This calls for the following: a) Using 
the spin Hamiltonians obtained above, find the spectrum of 
the investigated RE ion as a function of the external magnet- 
ic field and of the strain. b) Calculate the thermodynamic 
potential of the r-th site, @, = - T In Zr , where Z,  is the 
partition function. c) Separate from r the magnetoelastic 
part in accord with the formula 

d) Sum the result over r from 1 to 6. The transformation from 
the local coordinates of site r to the laboratory frame is by 
means of the formulas 

E '  = T ( T i  Tabr= (eaerT) .  (4) 
76 

where Tis the rotation matrix, and e, and e; are unit vectors 
of the laboratory and local coordinate frames, respectively. 
We use for the latter the definition given in Ref. 2. We now 
present the calculation results. 

Kramers ion. 

where M''' (rk ) is the magnetic-moment component of the r- 
th ion and transforms in accord with the irreducible repre- 
sentation r, : 

M"' ( r k )  = g k Z p ~ 2 H ( r '  (J?k)xI9 xr=th ( A r / T ) / A r .  (6) 

Here 24, is the splitting of the ground doublet of the r-th ion 

and is determined by the spin-Hamiltonian (2) at E = 0: 

Non-Kramers ion. 

Here 24, is the splitting of the ground quasidoublet and is 
determined by the spin-Hamiltonian (3) at E = 0: 

We have left out of (9) a small term of order xz H4, which 
can be easily accounted for if necessary. 

Magnetoelastic variants of the space group 0 y. From 
the symmetry viewpoint, expression (5) for @,, is a combi- 
nation of invariants of the garnet-crystal space group 0 lo, 
which are made up of the components of the strain tensor, of 
the magnetic field, and of the magnetic moments of the six 
RE sublattices. We shall consider the structure of expression 
(5) from this point of view. The components of the vectors of 
the sublattice magnetic moments M(r), r = 1, ..., 6, make up 
an 18-dimensional irreducible representation of the OF 
group, which we shall designate 2JI. It can be resolved into 
magnetic modes, to each of which corresponds a definite 
irreducible representation ri . They are given, e.g., in Ref. 14. 
In that book are considered 12 sites for RE ions. For the 
magnetic properties of RE paramagnetic garnets it suffices 
to use the abbreviated 6-site description of the RE subsys- 
tem. 

Of greatest interest to us are the following modes: 

where r = 1, ..., 6. These modes are expressed here in local 
coordinates, in which they take the simplest form. We do not 
present the rather lengthy expressions for the modes in the 
crystallographic coordinate frame, to which we can trans- 
form using Eqs. (4). The representations T,, T;, and T, are 
three-dimensional. In abstract six-dimensional space, each 
of the points of which is a three-dimensional vector, these 
representations are specified by matrices of dimensionality 
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3 x 6. The unitary representation T, is one-dimensional and 
is specified by a 1 X 6 matrix. 

It follows from (5) that the magnetoelastic energy is de- 
termined by the product of three modes: T(E, ), r(Di'), and 
T(H). For this product to be an invariant of the group it is 
necessary that it transform in accord with the unitary repre- 
sentation T,. To find all the invariants that are products of 
the components E , ~ ,  Ha, and M L) it is necessary to find all 
the triple products of the representations T,, T;, T,, and T, 

which contain a single T,. Such products are T, x T, X T,, 
T, X T; x T;, 7, x T, X T, as well as products of the type 
7, x r9 X T; , with different permutations of the indices. We 
assume in these products that the first, second, and third 
factors pertain to the strains r(.zik ), ~(132), and T(H), respec- 
tively. It can be easily seen by direct comparison that these 
invariants (of which there are nine) coincide with those con- 
tained in (5). Thus, the general expression (5) for the magne- 
toelastic energy can be represented in the form 

where Jk are invariants written in abstract form, 

The indices of the representations and the number of the 
invariant have been left out here for brevity. In accordance 
with the foregoing, a representation that coincides with T(E) 

is singled out in the direct product ~(132) x T(H). The symbol 
CB denotes a scalar product in the space introduced above, 
i.e., a scalar product of three-dimensional vectors (or one- 
dimensional in the case of T,) and summation over r. A sym- 
metry analysis of the potential (8) for a non-Kramers ion can 
be carried out in by the same procedure. 

Magnetostriction. Let us calculate, starting from 
expression (5) for the magnetoelastic energy, the crystal 
magnetostriction along the [I 111 direction. To this end it is 
necessary to add to @,, the energy of the elastic stresses and 
minimize the sum over the components of the tensor E ~ ~ .  We 
present the results of such a calculation of the quantity (81 / 
I = E, + E,, + E , , ~ ,  where the components of the ten- 
sor E, are calculated in the crystallographic system of co- 
ordinates: 

where c4, is the component of the elastic-constants tensor (in 
the Voigt notation). The quantity (10) is thus determined in 
the general case by five effective parameters. 

MAGNETOSTRICTION OF TboGa5OI2 AND Dy3AI5OI2. 
THEORY AND EXPERIMENT 

We have presented above general relations for the mag- 
netostriction of paramagnetic garnets with anisotropic RE 

ions. To use these relations for specific garnets we must 
know the energy structure of their RE ions. The simplest are 
the expressions for the magnetostriction in the case of Ising 
RE ions. These can be taken to be the Tb3+ ion in the gallate 
garnet13 and the Dy3+ ion in the aluminum garnet.I5 We 
have calculated theoretically the magnetostrictions of these 
garnets and compared them with the experimental data. 

For the Kramers ion Dy3+ in Dy,A150,, we have15 

In this case X, ZX,, x 3 z x 4 ,  x5 zX6. The validity of this 
statement, with allowance for the relation 

H"' ( r2)  =H(') ( r2) ,  HC3) ( r2)  =H(') (rz) . 

follows obviously from (13) and (14) for field directions such 
that 

gzH(" (r2) Bg3H") (rs), g,H(l)  ( r p ) .  

For field orientations in planes of the type { 1001, however, 
the component H (r,) = 0 for any pair of sites r = 1 and 2,3 
and 4, or 5 and 6. Thus for example, for a vector H located in 
the (001) plane we have H(') (r,) = H(,) (r2) = 0. In this case, 
by virtue of the smallness of g3 and g4 and the following 
relation is valid at helium temperatures and higher even in 
strong fields, 

( A t ,  2/22') 1 H(*.e)(r2,=oGi. 

Then 

xt, e=th ( A t ,  2/2T) /Ale  2" [ I - ' / 3  ( A i ,  2 / 2 T ) 2 ] / 2 T .  

It iollows hence that Ix, - x21 4 x l ,  i.e.,x, zx2. Thus, at all 
field orientations the pure Ising approximation forx, is suf- 
ficient: 

x,= [ g z ~ s H " '  ( r2)  I -' th [ g z j ~ ~ H ' "  (r,)  /2T]. 
Expression (10) takes in this case the form (in the crystallo- 
graphic coordinate system) 

(61/1) ,,,,,=C,It ( H )  +C2T2 ( H )  , (1 1) 
where 

I ,  ( H )  =H,H,m,lH,+HrHzm,/H,+H,Hzm,/Hx, (13) 

me=th [ g 2 p s H ~ / 2 T ] .  (14) 

The quantity m8 has the meaning of the reduced compo- 
nents of the summary magnetization of the Dy3+ ions in the 
pure Ising approximation. Despite the fact that I C2 I < I C, I 
( g 2  > g3, g4) in the general case, the invariant 12(H) can 
nonetheless make a noticeable contribution to (81 /I ) I l l  ,] at 
low temperatures in strong fields when the external field is 
directed along an axis such as ( 1 10). At such an orientation 
of the vector H the invariant 12(H) is a quadratic function of 
the field and takes the form 
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According to Ref. 13, the Tb3+ ion in Tb3Ga5Ol2 has 
rg = rA X r B  = r2 and the Ising axis coincides with the 
local z axis. In this case we have, just as for the Dy3+ ion, 
x1 z x 2 ,  x3 z x 4 ,  x5 zxs [see (9)]. In addition, since the split- 
ting for the Tb3+ ion is A,-, 1 cm- ',I3 at helium tempera- 
tures and higher we have A0/2T ( 1. Calculation of (S1/ 
I using expression (8) in which Tg = T2, with account 
taken of the facts described above, leads to an expression 
similar to (1 1): 

where 

D,= (Bs4-B~)  p,, 0,=2(a2-at) N, (d3'-X5k' )/kt 

and the quantities I ,,, (H) are defined by Eqs. (12)-(14), in 
which g, must be replaced by pg /pB . 

It must be noted that incontrast to (SI /I )[,,,] the quanti- 
ties (61 /I )[,,, for Kramers and non-Kramers RE ions will be 
described by different invariants whose field and angular de- 
pendences are not the same; this is a consequence of the dif- 
ference between the magnetoelastic energies (5) and (8). 

We emphasize once more that the representation of the 
magnetostriction (61 /I )[, , ,, by a sum of two relatively simple 
invariants I, and I, defined by Eqs. (12)-(14) is valid only 
under the cited restrictions on the values of H and T, and is 
applicable only to strongly anisotropic (almost-Ising) ions. 
To describe the magnetostriction of RE garnets in the gen- 
eral case we can use Eqs. (5), (8), and (10). 

The magnetostriction was measured with wire strain 
gauges at 4.2 K in fields up to 65 kOe. The samples were thin 
single-crystal Tb3Ga5012 and Dy3A15012 cylindrical plates 
cut in the (1 10) plane with diameter 5 mm and thickness 1 

mm. Special strain gauges with small galvanomagnetic effect 
were used. We measured the dependences of the magneto- 
striction strains along the [ I l l ]  direction on the field orient- 
ed along the measurement direction [ I l l ]  as well as along 
other directions in the (1 10) plane: [001], [I 101, [I  li] and 
perpendicular to [I l l ] .  In addition, we measured the angu- 
lar dependences of the magnetostriction along the [ I l l ]  axis 
in a given field on the field orientation in the (1 10) plane. 

Our measurements have shown that the magnetostric- 
tion along the [ I l l ]  direction with the field oriented along 
the [001] axis is close to zero. The experimental data for the 
dependence of the magnetostriction along the [ l  1 11 axis for 
other field directions are shown in Figs. 2a and 2b for 
Tb3Ga5Ol2 and Dy3A150,,, respectively. Attention is called 
to the following: in most cases the magnetostriction does not 
saturate in the investigated field range, whereas the plots of 
the field dependences of these compounds show a pro- 
nounced tendency to saturation at H>30 kOe. This can be 
easily seen in Fig. 2, which shows the magnetization along 
the [ I l l ]  axis as obtained in Ref. 16 for Tb3Ga5012 and from 
our data for Dy3A15012. Thus, even a qualitative considera- 
tion leads to the conclusion that, in agreement with the theo- 
retical estimates, the magnetostriction is not a simple func- 
tion of the magnetization. The solid lines in Fig. 2 show the 
theoretical magnetostriction field dependences plotted using 
the parameters given above for the ground states of Tb3+ 
and Dy3+ in the garnets. The calculations were in accord 
with Eqs. (1 1) and (15). To determine the two magnetoelastic 
coefficients contained in these equations, the theoretical 
curves were matched to the experimental plots of the magne- 
tostriction at two points: in a field 60 kOe oriented along the 
axes [ I l l ]  and [110]. The magnetoelastic coefficients are 

FIG. 2. Field dependences of the magnetostrictions of the single crystals Tb3Ga50,, (a) and Dy3A150U (b) at different field orientations in the ( 1  10) 
plane. Solidlin-theory. Symbols--experiment: A-H1I[11 I]; 0-HII[110]; 0-Hl[11 I]; A-HII[lll]; %magnetization along [ I l l ]  measured in 
units ofp, per Tb3+ ion in (a) or Dy3+ ion in (b). 
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CONCLUSION 

FIG. 3. Angular dependences of the magnetostriction of Tb,Ga,O,, (a) 
and Dy,Al,012 (b) along the [ I l l ]  axis at field orientation in the (1 10) 
plane, in fields: &H = 20 kOe; A-H = 40 kOe; 0-H = 60 kOe. The 
magnetostriction at HIJ[11 I] is taken equal to zero. 

The experimental dependences of the magnetostriction 
on the angle at various field values are compared with the 
theoretical ones in Fig. 3. No adjustment parameters were 
used in this case. It can be seen that the theoretical depen- 
dences on the field and on its orientation describe subtle fea- 
tures of the experimental data, and in particular the asym- 
metry of angular dependence of SI /I, the almost linear field 
dependence of the magnetostriction in strong fields for most 
directions and, at the same time, the saturation of the dys- 
prosium-aluminate magnetostriction in a field parallel to 
[ l  lo], and others, although there is no quantitative agree- 
ment in a number of cases. Better agreement with experi- 
ment can be obtained by taking into account in the theory 
invariants of higher order in the field, exchange interactions 
[this is particularly important for Dy,Al,Ol,, whose Ntel 
temperature is 2.5 K, Ref. 151, and others. 

Thus, the constructed general theory of the magneto- 
striction of paramagnetic garnets with anisotropic RE ions 
permits a satisfactory description of the experimental depen- 
dences of the magnetostriction, along the [I 111 axis, of the 
garnets Tb3Ga,012 and Dy3A1,0,, with Ising ions. 

We emphasize once more that the experimental data do 
not agree with the theoretical relations that follow from the 
classical expression (1) for the magnetoelastic energy. This 
manifests itself most strongly in the fact that the magneto- 
striction continues to vary with the field in that field region 
where the magnetization saturates and, in addition, the an- 
gular dependence of the magnetostriction is much more 
complicated than predicted by this theory. 

There are two physical causes of this difference. First, 
as shown above, the magnetoelastic-coupling constants are 
determined not only by the lower levels but also by the influ- 
ence, primarily, of the excited states. In other words, the 
magnetoelastic coupling appears in the considered cases be- 
cause of mixing, in the field, of states belonging to different 
doublets. This is so to speak an analog of the van Vleck sus- 
ceptibility in the magnetoelasticity, and determines the field 
dependence of the magnetostriction. Second, in magnets 
with weakly anisotropic ions the saturation magnetic mo- 
ment does not depend on the field orientation. In magnets 
with strongly anisotropic RE ions the saturation magnetic 
moment changes with change of field orientation relative to 
the crystallographic axes. This fact together with the pres- 
ence of nonequivalent sites occupied by the RE ions is indeed 
the cause of the unusual dependence of the magnetostriction 
on the field direction. 

The angular and field dependences of the magnetoelas- 
tic interaction and of the magnetostrictions are determined 
by the space group of the crystal, and the point symmetry of 
the crystal suffices for their description only as H + 0. 

We note that the theory developed above deals with 
states having an effective spin 1/2 and contradicts to some 
degree the classical theory of Akulovl and of the Callens," 
which predicts the vanishing of the magnetostriction in the 
case of ions with S = 1/2. 

"Here and elsewhere we have left out of Ze, the terms proportional to 
the unit matrix, since they are irrelevant to the subsequent analysis. 
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