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We use the Holstein-Primakoff transformation to evaluate the thermodynamical characteristics 
and the elementary excitation spectrum in uniaxial ferromagnets with a single ion anisotropy of 
the "easy axis" and "easy plane" type in transverse magnetic fields. We assume the magnitude of 
the single site spin to be arbitrary and the small parameter in the problem to be the ratio of the 
relativistic and exchange energies. The formulae obtained in the paper generalize the results of 
recent papers [E. Rastelli and P. A. Lindgaard, J. Phys. C12, 1899 (1979); E. Rastelli and A. Tassi, 
J. Appl. Phys. 53, 3(II) (1982)l. 
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One of the main problems in the theory of magnetism is 
the calculation of the ground state energy and of the spec- 
trum of the elementary excitations. This problem can be 
solved relatively simply (see Ref. 1) only in the case of collin- 
ear" ferromagnetic structures (CFS), i.e., systems for which 
the stationary states of the spin Hamiltonian are character- 
ized by definite values of thez-component of the total spin S 
and the ground state necessarily corresponds to the maxi- 
mum z-component value of the total spin. In systems with a 
different symmetry (noncollinear ferromagnetic struc- 
tures-NFS) the situation is appreciably more complicated 
and there is as yet no complete quantum-mechanical de- 
scription of the spin wave spectrum. Most simply one can see 
the cause of this difficulty by changing from the spin opera- 
tors to boson operators using any of th%well known transfor- 
m a t i o n ~ , ~ - ~  writing the Hamiltonian %in terms of particle 
creation and annihilation operators, and diagonalizing the 
quadratic terms in the operators. In CFS the second-quanti- 
zation gamiltonian commutes with the particle-number op- 
erator N so that the determination of the ground-state ener- 
gy and of the single-particle excitation spectrum is trivial; 
On the other hand, in NFS this commutator is different from 
zero and the energy characteristics found by using only the 
harmonic terms will be substantially renormalized by the 
anharmonicities. It was assumed for this reason until recent- 
ly in the study of NFS that the spin per site S is sufficiently 
large; the anharmonic terms are then small in the parameter 
1/S, and one can either neglect them completely (quasi-clas- 
sical approximation7.8) or limit oneself to second-order per- 
turbation t h e ~ r y . ~  However, the spin wave spectrum deter- 
mined in this way shows only a poor agreement with 
experiment, since usually NFS have a spin S z  1. lo 

At the same time, since the noncollinearity of the struc- 
ture*) is caused by the fact that the anisotropy axis direction 
and the equilibrium spin position are not the same, it is clear 
that we can use as the "noncollinearity" parameter the quan- 

t i ty  S-p2/JV, (p is the Bohr magneton, J the exchange inte- 
gral, Vo the volume of the elementary cell, and we assume the 
dimensionless anisotropy constant to be of the order of uni- 
ty). In crystals with not too low a Curie temperature we have 
then 64 1; this means that the renormalization of the spec- 
trum due to anharmonicity in such crystals is small for any 

S, so that one can obtain rather exact results by restricting 
oneself to a finite number of terms in the perturbation-theory 
~er ies .~ '  

In our opinion, amongst the different kinds of NFS of 
most interest are the following objects: I) Uniaxial ferromag- 
nets with single-ion "easy axis" type magnetic anisotropy 
(EAFM) in a transverse magnetic field. 11) Uniaxial ferro- 
magnets with single-ion "easy plane" kind of anisotropy 
(EPFM) with a magnetic field along the anisotropy axis. 

The first kind of system was studied in Refs. 7 and 11 to 
15, where two approaches to the solution of the problem 
stated were explicitly developed: on the one hand, in the 
papers by a number of authorsI3-l5 the wave functions of the . - 

ground state and the low-lying excited states were construct- 
ed for the cases S = 4 and S = 1 in the self-consistent-field 
approximation and the magnetization in the direction of the 
magnetic field H (y axis) and the magnitude of the angle 
between the equilibrium direction of the magnetic moment 
and the y axis were determined using the self-consistency 
conditions. A somewhat different approach was developed 
in Refs. 7, 11, and 12. In Ref. 7 the ground state energy and 
the spin wave spectrum were constructed to first order in 1/ 
2S without limitations on the field strength; in Refs. 11 and 
12 the same quantities were evaluated using perturbation 
theory in the limits of small and strong fields for arbitrary 
spin magnitudes. 

For type I1 NFS the problem of finding the spin wave 
spectrum when there is no external magnetic field was con- 
sidered in a number of  paper^^^^,"-'^ accurate to terms - 8 ( 6  2). They used the Holstein-Primakoff (HP),4,5*9 Dy- 
son-Maleev (DM), '7-21 and Lindgaard-Danielson4,5~18 trans- 
formations to change from spin to boson operators. How- 
ever, the authors of these papers were not able to sum 
completely the perturbation-theory series (i.e., solve the 
problem for arbitrary spin). In this connection they used for 
the calculation of the coefficients in the terms in the spec- 
trum which are quadratic in S an expansion in 1/2S. For 
instance, in a recent paper by Rastelli and Tassi,17 who used 
the DM formalism, these coefficients were evaluated up to 
terms - 0 (1/(2S)'). 

In the present report we determine the spin wave spec- 
trum and the magnetic characteristics (magnetization and 
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susceptibility) of type I and I1 NFS for any magnitude of the 
spinper site and in an arbitrary external field. We choose the 
HP transformation4) to change liom spin to boson operators; 
for the given problem it seems to be more convenient than 
the DM transformation, as the latter leads to the appearance 
of a non-Hermitean Hamiltonian. The use of the normal 
quantum-mechanical perturbation theoryz2 enables us to 
evaluate the main corrections to the magnetization and the 
susceptibility due to the zero-point oscillations, and also to 
determine thespin wavespect~imaccurate to terms - 0 (6 2). 

The sequence of treatment in the remainder of the paper 
is as folows: in Sec. 1 we consider EAFM in a transverse 
field: we show how to construci: the random phase approxi- 
mation and we consider the effect of anharmonicity. In Sec. 
2 we consider similarly EPFM :m an external magnetic field 
along the anisotropy axis. In the: Conclusion we consider the 
behavior of a system at finite allbeit low temperatures. 

To improve clarity we relegate the details of the calcula- 
tions and the relatively complicated expressions to Appen- 
dices 1 to 5. 

1. UNIAXIAL FERROMAGNET WITH EASY-AXIS SINGLE-ION 
ANISOTROPY 

We choose the z axis along the easy magnetization axis 
and they axis along the direction of the external magnetic 
field H. Taking into account the exchange and dipole inter- 
action the Hamiltonian of the system can then be written in 
the following form:' 

where S, is the spin operator in the I-th site, J the exchange 
integral, A a vector connecting lattice sites for which J is 
nonzero, p the Bohr magneton, B the dimensionless anisot- 
ropy constant, and Vo the volume of the elementary cell; Rl,, 
is the radius vector connecting the sites 1 and 1'. 

When there is no external field the equilibrium position 
of the magnetic moment is along thez axis; when H increases 
the moment is deflected in the direction of they axis and 
when the field reaches the critical value H = H,, it merges 
with they axis. 

Using standard  method^'.^.'^ we change to a primed set 
of coordinates such that the z' axis is along the equilibrium 
position of the spin S (which, in turn, is determined self-con- 
sistently as a result of solving the problem) and they axis 
remains in they' = z' plane, and we express the Hamiltonian 
(1) of the ferromagnet in terms of the boson operators a,.? 
and a,, using the HP transformation2 

where 2Vo does not contain the operators a,f and a, : 

A?,, and R2, are, respectively, the linear and quadratic 
forms in the operators a,+ and a, : 

% , , = - 2 i ~ ( 0 )  s ( s N / ~ ) ' " ( ~ - - 8 ' 6  cos 8) sin Bao++H.~.  (4) 

Zz. = C A k a k + a k + t l , ~ k a k a - k  + '/,Bk'a,+a-,+, ( 5 )  
k 

where 

A k = J ( 0 ) S [ l - Y  (k )+2h  cos 0  

+ a 6  ( I - ~ / ~  cosZ 0 )  +8n6 sin2 O k ]  , (6)  

(8, and pk are the polar and azimuthal angles of the wave 
vector k). 

We have used in Eqs. (3)  to (7) the following notation: 

J ( k )  
J ( k )  = 1 z e i k " ,  v  ( k )  = - 

J ( 0 )  ' 

8 ' is the angle between the z' and y axes (the quantity S is the 
small parameter of the problem). Furthermore 

where @,") is an n-th order form relative to the canonical 
form of the operators a,.? and a,. 

We give here the explicit expression for the operator 
@:lx due to the exchange terms in the Hamiltonian: 

+ v (2-4)  - 4 S [ 1 -  (1-1/2S) "I [ v  ( I )  + v ( 2 )  -t v ( 3 )  + v ( 4 )  I ) .  
(11) 

We give in Appendix 1 the other terms of A?" used in 
the exposition that follows. 

We must also determine the form of the unitary trans- 
formation' which diagonalizes the quadratic form in the Ha- 
miltonian 2V. It is clear, however, that under such a trans- 
formation the coefficients A,  and B, are renormalized by 
the contributions from the anharmonic terms S,"' - 
(A,  - A , ,  B, - g,), and the renormalized quantities them- 
selves turn out to be functions of the parameters of the uni- 
tary transformation. 

As a result, the diagonalization of the quadratic form in 
terms of the new boson operators C ,+ and C, leads to the 
following set of integral equations for the coefficients5' 2, 
and g, : 
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3 J(0)S BpBq +--c,,, 2 N2 {[$(I-(1- f)") 
PP 

In what follows we show that 

so that the terms dropped from (12) and (13) are, indeed, 
small. To make the exposition more lucid and to avoid the 
appearance of too cumbersome expressions, we assume here- 
after, when evaluating the spin wave spectrum (but not the 
magnetic characteristics), that P>47r. For this reason we do 
not give here the explicit expressions for the coefficients f ,,, 
in (12) and (13). 

The solution of the set of integral equations will be 
sought in the form of a power series in the small parameter 8. 
One notes then easily that in each step of the iteration pro- 
cess the system splits into two independent equations: an 
algebraic equation (12) and an integral equation (13) whose 
kernel factorizes, i.e., the substitution 3, = a + b (1 - ~ ( k ) )  
leads to a set of two algebraic equations for the quantities a 
and 6.  

As a result we get after intermediate calculations 

B~=B:"~+B:'  6 " + ~ : "  hZ+ 0 (ij5/2), (16) 
where 

(18) 
B;' = J (0) Sb [(I 4- y (S) (1 - Y (k))) cos2 0 

while 

is Watson's integral. Expressions for the other coefficients of 
the expansion of the solutions of the set (12), (1 3) in powers of 
S are given in Appendix 2. 

As a result the Hamiltonian of the ferromagnetic is 

%=go + z E.c~+c. + (i%, (0, h)  Cot+%,+ H.c. ). (21) 
k 

The quantity &", is here the unrenormalized energy of 
the ferromagnetic ground state with zero-point oscillations 
taken into account: 

Moreover, 

iio+eo #+ (-1 I") sin 0, 
2 ~ 0  

and the term ZD determines the contribution from all an- 
harmonic terms (reduced to canonical form); the explicit 
form of this operator is given in Appendix 3. 

It is also clear that the equilibrium position of the spin 
(i.e., the angle 0 = 8,(h )) must be determined from the con- 
dition 

(90 1 su* ' l$o )  =o, v4) 
where $o is the wave function of the ground state of the 
Hamiltonian (1). 

la. Random phase approximation (RPA) 

If one compares the transformation given above with 
the standard procedure of quasilinearization in the RPA (see 
Ref. 8) one verifies easily that this approximation corre- 
sponds to neglecting the quantity &PD in (21). This neglect is 
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justified since the anharmonic terms are small in the noncol- 
linearity parameter 6 and one can expect their contribution 
to the renormalization of the spectrum to be small compared 
to (14). Indeed, the analysis of ithe dropped terms given in the 
next subsection shows that the RPA leads to correct results 
if one restricts oneself in Eqs. (12), (13), and (23) to merely 
quantities of first order in 6. M[oreover, one notes easily that 
in the RPA framework the equilibrium position of the spin 
must be determined from the: condition X,(8,(h ),h ) = 0. 
As a result we get the following simple expressions for the 
magnetization and the suscepl:ibility: 

where h, = 86. 
It is important that even in the RPA framework the 

critical field for the phase transition turns out be equal to 
h, = B6- 1 - 1/2S, a natural result, since there is no anisot- 
ropy for S = 4. Moreover, it is clear from (12) and (13) that 
when h = h, the gap in the spin-wave spectrum becomes 
zero, i.e., the phase transition is of second order. 

lb. Allowance for anharmonicities 

We turn to the exact expression (21) and determine first 
the main corrections, due to t:he zero-point oscillations, to 
the thermodynamic characteristics of the system. A simple 
analysis shows that it is sufficient to calculate the depen- 
dence of the equilibrium position of the spin (0 = 0,(h )) and 
the magnetization along the field ( M H )  up to terms - 0 (a3/') 
from the following simple conclitions: 

As a result we get 

PS M H = - [ I - Q ( ~ ) + O ( ~ ~ ) ] ,  h>h,, (28) 
vo 

where 

- 
1 'Tk-ek 

(29) 
Q (h)  = ( 2 s )  -' - x-- - Gala. 

N k  E k 

Equating the right-hand side of (27) to unity we deter- 
mine the critical field for the orientation phase transition: 

- 
4cr=BG[1-P ( h )  -2Q ( h )  +0 (6')]. (30) 

It is now clear from (28) that at the critical point the magnet- 
ic moment is continuous, i.e., the order of the transition does 
not change when one takes anharmonicities into account. 

Now differentiating Eq. (28) with respect to the field we 
determine the longitudinal susceptibility of the ferromagnet: 

X H H = ( l B )  [I+P ( h )  +hPr ( h )  +O(GK) 1, h<hc, ; 

XHH=-GQ' (~)  +0 ( G 2 ) ,  h>h,, (31) 

(the prime indicates here derivatives with respect to h ). The 
quantities P (h ), Q (h ), andxHH are calculated in Appendix 4. 

It  is necessary to note that the terms neglected in Eq. 
(30) and of higher powers in 6 do not contain parts which 
diverge as one approaches the transition point. This is a con- 
sequence of the fact that at T = 0 the critical exponents of a 
three-dimensional quantum system are necessarily deter- 
mined by Landau's theory6,23,24 SO that the longitudinal sus- 
ceptibility (corresponding to the specific heat in the standard 
theory of phase transitions, sincepH2S; is quadratic in the 
order parameter) experiences a finite jump at the transition 
point. 

We now consider the problem of the renormalization of 
the spin-wave spectrum. Without dwelling on the cumber- 
some calculation technique (the intermediate calculations 
are given in Appendix 5) we write down at once the final 
result: up to 0 (6 2, the renormalization of the spectrum for an 
arbitrary external field manifests itsgf only in the renormal- - - 
ization of the coefficient A, (A, -+A,) ,  and at small wave- 
vectors I k . A 14 1 we have 

- - 
Ak=A'k-hi  ( k )  6"+CG2+0 (6' (kA) ') , (32) 

where the quantities A,  and C are given, respectively, by 
(A2.1) and (A5.8). As a result the spin wave spectrum (t, ) has 
the following form: 

To conclude this section we give the explicit expresion for t, 
for fields close to the critical value, 

where E, determines the spectrum gap caused by the dipole- 
dipole interaction: 

E~ determines the spectrum gap caused by the deviation from 
the transition point (.c2=0 at the critical point): 

ez=416 ( h  cos 0+ h,, (1-2 cos2 0 )  ) ; (36) 

E~ determines the speed of the spin waves for small wavevec- 
tors (Ik.Al-41): 
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In formulae (35) to (37) 

cos O=h/hcr, h<ac, ,  
cos 0 = l ,  h>hcr ,  

and W is given by (20). 

1. UNIAXIAL FERROMAGNET WITH SINGLE ION EASY 
PLANE TYPE ANISOTROPY 

In this case the Hamiltonian of the system has, if we 
take into account the exchange and dipole-dipole interac- 
tions and an external field along the z axis, the following 
form: 

It is clear that when there is no external field the magnetic 
moment lies in theXYplane when the field is switched on the 
moment is deflected in the direction towards thez axis and in 
fields H > Hcr the ground state of the system corresponds to 
a maximum z-component of its total spin. Therefore, when 
H >  H,, the system is collinear and has been relatively well 
studied.' In fields H < Hcr the equilibrium position of the 
spin makes an angle B with the z axis. Choosing they axis 
along the direction of the spin when there is no field and 
performing further transformations completely equivalent 
to those performed in Sec. 1 we get the following expression 
for the Hamiltonian (38): 

k 

A 
(39) 

where the quantities R D ,  R o ,  XI and E~ are, as before, 
given by Eqs. (A3.1), (22), (23), and (14) (one must change in 
(A3.1) the sign of f i k )  and replace cos2B by sin2B in 8;)) 
while the coefficients A, ,B, J,, ,g, which determine the 
spectrum and the classical ground state energy have the fol- 
lowing form: 

% o = ~ ( ~ ) ~ ~  [-'/,+86 c o s z ~ +  B6-2h cos 0  

Here A f) determines the spin wave spectrum when there is 
only the exchange interaction 

A:')= ~ ( 0 ) s  (1-v (k) ), (43) 

while A and B If) determine to first order in S the spectrum 
corrections due to the anisotropy, to the dipole interaction, 

and to the external magnetic field: 

AkC')= J (O)S[2 (h /6 )  cos 0+D(1-3 cos2 0 )  + 8n s inVk] ,  

B:) = - J (0) S P  [ ( I  + y ( S )  (1 - Y (k ) ) ]  sin2 0  + (8n:b) 

>Csin2 0ke-2i'Pk 1. (44) 

Moreover, 

A,=A,"'+ A:') 6,  (45) 

The remaining coefficients A (" andB fi) are given explicitly in 
Appendix 2. 

One easily gets from the Hamiltonian (39) equations for 
the equilibrium position of the spin S as a function of the 
external field: 

cos 0=(h/p6)  [ I -P(h)  +2Q(h)  +O ( ,6 ' ) ] ,  (46) 

as well as for the magnetization along the z axis: 

PS h  M,  = - - - - [ I -P(h)+Q(h)+  0 ( 6 ' ) ] ,  h<h c r ,  
vo I36 

PS & = - [ I - Q ( h ) + 0 ( G 2 ) I ,  h>hcr 
(47) 

Vo 
and the longitudinal susceptibility 

(primes indicate differentiation with respect to the field). The 
quantities P (h ), Q (h ), andx, are evaluated in Appendix 4. 
We note that the deflectionof the magnetic moment from its 
nominal value in fields h  > h,, and the shift of the transition 
point compared to the value determined in the 
RPA(ho = 8 6  ) are caused by the effect of the dipole interac- 
tions. 

One further shows easily (see Sec. 1) that the renormal- 
ization of the spin/wave spectrum up to terms - 0 (S 2, mani- 
fests itself in the renormalization of the coefficient 2, and 
for small wave vectors we have 

~ ~ - + z ~ = i ~ ~ - h ,  ( k )  S"2+C62+0(62 ( k b ) ' ) ,  (49) 

wherec and 2 ,  are defined in (A5.8) and (A2.2), (A2.1). Final- 
ly, the spin wave spectrum has the form 

zk= [ (A;) ' -  1 Bk 1 2 ]  (50) 

and one checks easily that the gap in the spin-wave spectrum 
in fields j < h,, is caused exclusively by the dipole interac- 
tions. We give now the explicit expression for the spin-wave 
spectrum in a zero field ( I  k . A1 < 1): 

E ~ " ( J ( O ) S ) ~ ( & ~ ~ E ~ ) ,  (51) 

where E,  determines the spectrum gap caused by.the dipole 
interaction: 

~ , = 3 2 n 1 6 ~  sin2 0k sin2 rpk, (52) 

and E~ determines the speed of the spin waves for small wave 
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vectors: 

Equations (5 1) and (52) generalize the results of Refs. (9) and 
(17) in which the coefficient of the term quadratic in 6 was 
evaluated up to terms of order 1/S and 1/S 2, respectively. 

CONCLUSION 

In our analysis we limited ourselves to the case T = 0, 
i.e., we studied only the zero-point oscillations of the ferro- 
magnet. It is, however, well known6.23-25 that at arbitrarily 
low but finite temperatures the system will behave classical- 
ly in the vicinity of the transition point, i.e., for h = h,, one 
will observe divergences of the thermodynamic characteris- 
tics with exponents corresponlding to the Ising model for 
EAFM and XY model for EPFM.~' At the same time outside 
the vicinity of the critical point the behavior of the system is 
determined by the quantum-mlechanical zero-point oscilla- 
tions, so that the critical exponents correspond to the Lan- 
dau theory (see Ref. 24). This; means that when one ap- 
proaches the transition field (h == h,, (T)) one shoudl observe 
a cross-over from the Landau exponents to the correspond- 
ing model exponents,23 and the change in behavior occurs 
when 

I h-h,, ( T )  I = (TIJ(0) S) 2/c, 

where z determines the ratio of'the power exponents of the 
wave vector and frequency in the effective classical Hamil- 
tonian that leads to the same partition function as the initial 
quantum-mechanical Hami l ton~ian .~~~~ For EPFM in fields 
above critical the system is collinear and the construction of 
the corresponding Hamiltonian proceeds by well known 
methods6; as a result we get z == 2. For EAFM the effective 
classical Hamiltonian must co:rrespond to the four-vertex 
Ising the frequency smd wavevector then enter in 
the Hamiltonian in identical manner, so that z = 1. 

In conclusion the author wants to express his deep 
gratitude to M. I. Kaganov for his constant support of the 
work and for many conversations, and also thank all with 
whom he has discussed this paper. 

APPENDIX 1 

The operators 2?:' have the following form: 

where 2?21X was given in the main text and 

ahere the Q> (...) are some functions of the wave vectors k (we 
use the notation I k , ,  and so on). 

Explicitly these functions look as follows: 

S  'la  
9 (12.3) = -2iJ(O)S (--) {[/36 00s 0 (1 - (1 - - 

. 2 N  2 s  

We give here the explicit expressions for the form in sixth 
order in the operators a: and a, ,  due to the exchange terms 
in the Hamiltonian, as this operator determines the spin 
wave spectrum to the same order as the operators which are 
fourth-order expressions in a,f and a,.  

APPENDIX 2 

The coefficients determing the solution of the set (12), 
(13) have the form 

(a) EAFM: 

Br(')= h2 (I-v ( k )  ) cos2 0, 
(A2.1) 

B / ) =  (i5+hs (I-v ( k )  ) ) cos2 e, 
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where 

(A2.5) 

The expressions for the coefficientsil, and& lare not used in 
what follows and we do not give them. The quantities y and 
Ware given in (20); 

(b) EPFM: 

A / ' = ~ ~ [ I - ' / ~ ( I - V  (k) ) I &  hi ( k ) ,  

A:" = [hs+hp ( I - v  ( k ) )  ]sin4 9,  
(A2.6) 

B:'= hz ( I - v  ( k )  ) sin2 0, 

~1;'"= [hs+hs (1-v (k) ) 1 sin2 0, 

where A ,, A,, and A, are given by Eqs. (A2.2) and (A2.4) (us- 
ing (43), (44)) while the coefficient A, turns out to equal: 

APPENDIX 3 

The operator X, determining the contribution from 
the anharmonic terms in the Hamiltonian has the form 

where the term @AJ is caused by the effect of the exchange 
interaction: 

while the operators @;' and determine the effect of the 
anisotropy, the dipole interaction, and the external field: 

(we have written down here only the operators which turn 
out to affect the renormalization of the spin wave spectrum 
up to 0 (6 ')). In expressions (A3.2) and (A3.4) 

APPENDIX 4 

We give analytical expressions for the functions P (h ) 
and Q (h )which determine the behavior ofthe magnetic char- 
acteristics in various fields. 

a) EAFM: 

P ( h )  =pl1 (s)  h"P6'+0 (6") , 

Q ( h )  = (2S)-i6'hI) ( h )  +0 (67 ,  

while one can only obtain analytical expressions for the func- 
tion $(h ) in limiting cases: 
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where Z = J(0); v(S) = (2s ) - '  (1 - 1/2S)(W + y(S)); 
b) EPFM: 

P (h) =3tiq (S) ( l - h ~ / P 8 ~ )  -t0 (?I%), 

Q(h) = (2s)-'ti"$ (h),  

where 

(A4.4) 
One easily obtains from Eqs. (A4.1) to (A4.4) an expres- 

sion for the longitudinal susceptibility. 
a) EAFM: 

(A4.5) 

b) EPFM: 

It is clear from (A4.5), (A4.6) that at the transition point 
the longitudinal susceptibility sh~ows a finite jump. 

APPENDIX 5 

For the sake of argument we consider EAFM in fields 
h > h,,. We note first of all that ithe last term in 8;) corre- 
sponds to the normal exchange between two magnons and 
does not have any degree of smarllness, so that when deter- 
mining any term in the perturbartion theory series (PTS) in 
powers of 6 we must completely :sum the "exchange ladder" 
(vide in fra). Moreover, since 

1 1 - Zak8.-6, and - 7 1811' - 8' 
N N d  

(see (A4.1)) we can directly check: that the main correction to 
the spectrum (MCS) is determined by the PTS caused by the 
operator 8;' and containing magnon creation and annihila- 
tion processes with the same indexes BPI and magnon ex- 
change processes with indexes a,. Since 2 JBp , I 2  is deter- 
mined by small p, (p; 5 6) and Za:, by large pi =: 1, we can to 
first approximation integrate independently over pi and p j  

putting p j O  in all functions of pi and pi in the numerator. 
Moreover, a simple analysis shows that the PTS for the MCS 
(A&) can be constructed from just four blocks (see the figure, 
a to d )  and since any combination of blocks is realized 
through an interemediate state with energy z ~ E , ,  each suc- 
ceeding term in the series will, apart from a numerical factor, 
differ from the preceding one by the quantity 

R (h, k) =q(k) Xr/er2, 

R(h, k ) s l  when h>hcr, 
(A5.1) 

R ( h , k ) g l  when h~h , , ,  lkA141, 

R(h, k) -1 when h-h,,, / kA 1 a1, 

where 2, and E, are given by Eqs. (12) and (14) while the 
quantity q(k) is determined by integrating over the internal 
wavevectors in the block: 

P 

In deriving Eq. (A5.2) we succeeded in summing by induc- 
tion completely the exchange ladder (dark triangle in the 
figure). 

It follows from (AS. 1) that outside the immediate vicini- 
ty of the transition point we can restrict ourselves in the 
determination of the MCS to second order perturbation the- 
ory, i.e., take only processes a and b (see the figure) into 
account, whereas when h =: h,, (and small k: I k A1 ( 1) it is 
necessary to find the total sum of the series. This can be done 
relatively simply if we note that the PTS of interest to us 
corresponds to the following Hamiltonian Xint : 

= 9 (k) [ (a,'+ bk2) Ck*Ck+ak$k (CkC-k+Ck+C-k*) 1, 
k 

(A5.3) 

so that for the determination of the MCS it is sufficient to 
perform an elementary UV transformation. As a result we 
find that taking anharmonicity into account to first aproxi- 
mation leads to a renormalization of the coefficient A,: 
2, - 2, + 2 If1, where 

FIG. 1 .  Virtual processes determining the main contribution to the ele- 
mentary excitation spectrum; the arrows correspond to creation and anni- 
hilation operators with well defined indexes (a, orb,); the dark triangle 
corresponds to the summation of the exchange ladder (see the text). 
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x:"=~ (k) =-hi (k) fish, (A5.4) 

whileA,(k) is given in (A2.2), (A2.1). 
The same result (renormalizationof only the coefficient 

2,) is obtained also when we consider the next order correc- 
tion to the spectrum ( A ~ l f ) - 8 ~ 2 ~ / ~ ~ )  and it then turns out 
that the corresponding integrals are determined by the large 
wave vector region so that the quantity 2 If) cc 62 is indepen- 
dent of the field and hence can be determined elementarily 
from the condition that the gap in the spin wave spectrum 
vanish at the phase transition point ( I  k A1 4 1): 

(see (A2.4)). We can similarly consider the region below the 
transition point; the additional renormalization of the coeffi- 
cient 2, due to the term @;' (see (A3.4)) can be evaluated 
exactly: 

The final result is the following: taking anharmonicity 
into acco%nt leads to a renormalization of the coefficient 
2,(2, -Ak) with 

~ r = K k - h r  (k) 6"+C62+0(.62\ kA 1 2 ) ,  (A5.7) 

where for EAFM 

while for EPFM one must replace cos 8 in (A5.8) by sin 8. 

"In the present paper the term "collinear structure" and "non-collinear 
structure" indicate well defined kinds of symmetry of a spin system (see 
the following text). 
We have in mind structures described by the Heisenberg model; in what 
follows we shall be dealing with just such systems. 

-"In NFS with noncollinearity due to the external field the quantity 
h /p V ,  ' may emerge as the small noncollinearity parameter. It is inter- 
esting that in that case the spin-wave spectrum to second order in h can 
be determined exactly without recourse to second quantization." 

4'Generally speaking, when one uses the HP transformation one must 
bear in mind the presence of unphysical states1; however, a comparison 
of the HP transformation with the recently proposed exact boson expan- 
sion for arbitrary spin16 shows that in calculations with the chosen accu- 
racy the problem of unphysical states does not arise. 

5' A similar "generalized" Bogolyubo~ transformation leading to integral 
equations for the quantities A,  and B, has already been used in a number 
of The authors of these papers considered, however, only the 
case S>1 and restricted themselves even in the initial Hamiltonian to 
terms -0(1/S) .  In such an approach (choice of ~ o l u t i o n ~  accurate to 
terms -O(l /S))  the equations for the quantities A,  and B, are in fact 
algebraic. 

6'In this section we do not consider the complications introduced by di- 
pole interactions. 

'A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. Peletminskii, Spinovye 
volny (Spin waves) Moscow, Nauka, 1967 [English translation published 
by North Holland, Amsterdam]. 

'T. Holstein and H. Primakof, Phys. Rev. 58, 1098 (1940). 
'F. Dyson, Phys. Rev. 102, 1217 (1956); S. V. Maleev, Zh. Eksp. Teor. 
Fiz. 33, 1010 (1957) [Sov. Phys. JETP 6, 776 (1958)l. 

4P. A. Lindgaard and A. Kovalska, J. Phys. C9,2081 (1976). 
'P. A. Lindgaard and 0 .  Danielson, J. Phys. C7, 1523 (1974). 
61. Goldhirch, E. Levich, and V. Yakhot, Phys. Rev. B19,4780 (1979). 
'L. D. Filatova and V. M. Tsukernik, Zh. Eksp. Teor. Fiz. 53,2203 (1967) 
[Sov. Phys. JETP 26, 137 (1968)l. 

'J. Feder and E. Pytte, Phys. Rev. 168, 640 (1968). 
9E. Rastelli and P. A. Lindgaard, J. Phys. C12, 1899 (1979). 
'OM. Steiner and J. Kjems, J. Phys. C10, 2655 (1977). 
"1. G. Gochev and V. M. Tsukernik, Fiz. Tverd. Tela (Leningrad) 15, 

1963 (1973) [Sov. Phys. Solid State 15, 1315 (1974)l. 
IZL. D. Filatova and V. M. Tsukernik, Phys. Stat. Sol. 70,45 (1975). 
I3L. M. Noskova, Fiz. Tverd. Tela. (Leningrad) 18, 1669 (1976) [Sov. 

Phys. Solid State 18,969 (1976)l. 
I4V. M. Loktev and V. S. Ostrovskii, Ukr. Fiz. Zh. 23, 1708 (1978). 
I5F. P. Onufrieva, Zh. Eksp. Teor. Fiz. 80, 2372 (1981) [Sov. Phys. JETP 

53, 1241 (1981)l. 
161. Goldhirch, J. Phys A13,453 (1980). 
"E. Rastelli and A. Tassi, J. Appl. Phys. 53, 3(II) (1982). 
"E. Rastelli and A. Tassi, J. Phys. C13, 4377 (1980). 
19E. Rastelli and A. Tassi, J. Phys. C15, 509 (1982). 
'OU. Balucani, M. G. Pini, A. Rettori, and V. Tognetti, J. Phys. C13,3895 

(1980). 
21U. Balucani and V. Togmetti, J. Phys. C12, 5513 (1980). 
22L. D. Landau and E. M. Lifshitz, Kvantovaya mekhanika (Quantum 

mechanics) Moscow, Nauka, 1973 [English translation published by 
Pergamon, Oxford]. 

23J. Hertz, Phys. Rev. B14, 1165 (1976). 
24M. Suzuki, Progr. Theor. Phys. 56, 1454 (1976). 
"P. Pfeuty, J. Phys. C9, 3993 (1976); A. P. Young, J. Phys. C8, L309 

(1975). 
26V. G. Bar'vakhtar. E. V. Zarochentsev, and V. A. Popov, Fiz. Met. 

~etalloved. 25, 3 (1968). 
27V. G. Kukharenko, Zh. Eksp. Teor. Fiz. 69,632 (1975) [Sov. Phys. JETP 

42, 321 (1975)l. 

Translated by D. ter Haar 

773 Sov. Phys. JETP 58 (4), October 1983 A. V. Chubukov 773 


