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The critical-dynamics equations in the strong-fluctuation region are obtained for a model with a 
nonconserving n-component order parameter pi and with interaction (pipi )' in three-dimension- 
al space. The equations are derived by expanding the Ward identities for the temperature Green 
functions and vertices in terms of the tota! interaction vertex. In the case when the fluctuations of 
pi are optical phonons, the retarded paired correlation function of the order parameter squared is 
calculated. Also calculated are the order-parameter retarded-Green-function corrections neces- 
sitated by multifrequency scattering processes, in the region where these corrections are small. In 
various limiting cases, expressions are obtained that describe the shapes of the spectra of the 
scattering of light and of neutrons by soft optical photons, as well as the frequency and tempera- 
ture dependences of the sound damping near second-order phase transitions. 

PACS numbers: 64.60.Ht 

The correlation-coalescence rule established by Polya- 
kovl and Kadanop and the dynamic scaling hypothesis3 are 
at present the basic phenomenological premises concerning 
the spatial and frequency dispersion of the correlation func- 
tions of fluctuating quantities near a second-order phase 
transition. They permit the exponents of the power-law mo- 
mentum asymptotics of the correlation functions and of the 
asymptotics of their characteristic frequencies wi (k ) in the 
fluctuation regions kr, )i to be connected with the critical 
indices that describe the temperature dependences of the 
susceptibilities and of the kinetic coefficients at k = 0. At the 
same time, the dynamic-scaling hypothesis leaves open the 
question of the nature of the singularities that cause the fre- 
quency dispersion of the susceptibilities. For linear dynamic 
susceptibilities considered within the dynamic-scaling 
framework it can be assumed as a rule that their characteris- 
tic frequencies wi (k ) determine the positions of the poles that 
describe the excitation of one quasiparticle by an external 
field. Allowance for the effect of multiparticle excitations is 
possible only in the microscopic theory. Generally speaking, 
this influence can be noticeable for linear susceptibilities 
only at frequencies w(Re wi (k ) or w)Re wi (k ). A more im- 
portant role is played by the microscopic theory in the study 
of the character of the dispersion of higher-order correlation 
functions over fluctuating fields whose singularities are due 
precisely to the multiparticle excitations, and are not simple 
poles. 

An essential feature of multiparticle processes is that 
the momenta of the individual excited quasiparticles can 
generally speaking be arbitrarily large. This makes it neces- 
sary in the microscopic dynamic theory to take exact ac- 
count of the spatial dispersion of the vertices and of the cor- 
relation functions of the fluctuating fields. In the 
present-day variants of the theory of interacting  mode^,^-^ 
however, this dispersion can be described only phenomeno- 
logically. 

In the present paper we obtain critical-dynamics equa- 
tions for a model with nonconserved n-component order pa- 
rameter pi and with (pipi)2 interaction in three-dimension- 

al space, by expanding Ward's identity for the temperature 
Green functions and the vertices in terms of the total interac- 
tion vertex. The solutions of these equations have at w = 0 
and kr, ) 1 momentum asymptotics that agree with the cor- 
relation-coalescence rule,' and go over at w = 0 and k = 0 
into the corresponding results for the homogeneous static 
quantities.' These equations were used to obtain the paired 
retarded correltion function CR (k,w) of the square of the 
order parameter and to calculate, in the lowest order in the 
invariant charge, the corrections to the retarded correlator 
of p i ,  the Green's functions GR (k,w), for the case when the 
order parameter is an optical phonon. The expressions ob- 
tained for these functions permit a qualitative, and in indi- 
vidual cases also a quantitative description of the shapes of 
the scattering spectra of light and of neutrons from soft opti- 
cal phonons, as well as the frequency and temperature de- 
pendences of the sound damping near structural second-or- 
der phase transitions. 

5 1. WARD'S IDENTITY AND CRITICAL-DYNAMICS 
EQUATIONS 

The functions GR (k,w) and CR (k,w) are analytic contin- 
uations of the temperature correlators G (K ) and C (k ) to the 
real axis from discrete imaginary frequencies iw, in the up- 
per complex w plane. These correlators are defined by the 
relations 

1 
tjijG ( K )  = - 5 doJ  d 3 ~ ~ i ( K x )  ( T a  {vi ( X )  cpi (0) ) ), 

P, (1) 

whereX = {x,a],  K = (k,w, ), (KX) = kx - w,u,andBis 
the reciprocal temperature. The matrices tg were introduced 
for convenience in the calculations that follow; in the final 
expressions we shall put tg = 6ii .  

We introduce also the vertex 
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T,(P, K) =G-' (I'+K) G-'(P) Dij (P, K), 

where 

Dij (P, K) = - ~ d 4 ~ ~ d k ~ e : r p i [ ( ~ ~ ) + ( ~ ~ ) ]  ag2v 

It follows from the definition of this vertex that at to = 8, 

Tij (P, 0) = 
aG-'(P) 

6 i j ~ T  (P) 6ij, a T 

where 7 is the coefficient of the term pi pi in the Hamilton- 
ian. 

The diagram expansion of T, (P, K ) is a sum of dia- 
grams with two tails and one corner, the latter correspond- 
ing to a bare vertex t, , while the expansion of C (K ) contains 
diagrams with two such corners. The inner lines can be re- 
garded as corresponding to the complete Green functions 
G (P ), leaving out thediagrams with self-energy insets. Just as 
in the static case,' differentiation of G (P ) with respect to T in 
each diagram, with allowance for the equality aG(P)/  
d r  = - GZ(P)T(P)  yields Ward's identities-the dia- 
gram expansions of a C  (K )/dr arnd dT, (P,K )/dr. (An identi- 
cal procedure yields an expression for the derivative, with 
respect to r ,  of the total interaction vertex 
rijk/ (K1*K29K3,K4)+ 

The expansions obtained im this manner for the deriva- 
tives contain, besides G (P ) and :T (P ), also the bare vertices tV 
and 

They can be expressed in terms of the total vertices by iterat- 
ing the corresponding perturbation-theory series, assuming 
the total vertex ri,, to be smiill. It is convenient here to 
regard the bare vertices as dependent on the external mo- 
menta: 

tij=tij(P, K), r:i;=I'::j (K,, K,, K3, K,) . 
Once they are excluded, the Ward identities for T, and rvkr 
together with Eq. (2) form a closed system of equations, 
whose right-hand sides are represented by expansions over 
rijkl.  In the lowest order of tlhis expansion, they take the 
form 

xr,,,, (-Q, Q+K,+K~, K,, Kr) G(Q+K~+ ~ 2 )  G'(Q) T(Q) 
+(j-k,2*3)+(i*k, 1*3), (3) 

If the reciprocal radius of the c:orrelations 

is of the order of u, the solutions (2)-(4) should go over into 
the corresponding bare quantities, so that we obtain the fol- 
lowing boundary conditions at no- u: 

rijkr (Kt, Kz, Ks, KL) I X=X~=' /~U (6ij6k1+6ik6j1+6i16jk) r 

Tij (P, K) I .=,=tij, G (P) I .=,=GO (P) I z=,*. 
The equation for C (K ) takes in the lowest order in rUkl 

the form 

(5) 
with the boundary condition 

1 
C (K) I,-, = - 2 tlmtlmn (K) , 

The integration region in (3)-(5) is bounded by the cutoff 
momentum A - u. 

The fluctuations of the order parameter in the vicinity 
of the phase tansition are quasiclassical, so that 
G (q,O)%G(q,w,) at all w, # O  and q < A .  The presence of 
G '(Q ) in the right-hand sides of (3)-(5) allows us to assume 
that the leading contribution to the sums over the frequen- 
cies Q4 = w, is made by the integrals with Q4 = 0, in which 
G 2(q,0) restricts the integration to values q 5 x.  

Therefore, assuming the vertices r,,, and T, to be 
slowly varying functions of the four-dimensional momen- 
tum, we can, in the right-hand sides of (3)-(5), as x 4 ,  re- 
place the vertices that depend on the external momenta by 
their values at Q = 0. The procedure used in Ref. 7 in the 
static case to renormalize the Ward identities reduces in fact 
to the same approximation. Therefore Eqs. (3)-(5) simplified 
in this manner will coincide at zero external momenta, in the 
lowest order in r ,  with the corresponding static equations.' 

Following the indicated procedure in (3)-(5) and assum- 
ing also that K, = - K, = Pand K, = 0 in (3), we obtain the 
following closed system of equations: 

d gruo) 
- I1ijhl (P) =-3I'{jrnn (P) r m n h t  (0)- 
d z d z 

where 
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r i j  ( P )  i j  P  P  0 0  To=T ( 0 )  

Although it is impossible to justify rigorously the proce- 
dure used to derive Eqs. (3)-(5) and the qualitative argu- 
ments used to obtain (6)-(lo), we can nevertheless regard the 
agreement between the asymptotic solutions of Eqs. (6)-(10) 
and the results of the phenomenological treatment' and of 
the microscopic calculations (see below) as an indication that 
the employed approximations are acceptable. 

5 2. VERTICES AND TEMPERATURE CORRELATION 
FUNCTIONS 

It is easy to obtain from (6) and (7)  at P = 0 

r,*, (0) =l/sro 
(n+8)  [11 ( 0 )  -n ( O ) ]  +u-*, 

To= ( r o l u )  E l =  (n+2)  / ( n + 8 ) .  

Inasmuch as x-0 we have 
n ( 0 )  -3~-'+29, To -XZ-~-"v ,  

we get 

A, (P)  =4(n+2)  F,+ (n -2 )  (n+4)  Fz-n(n+6) ,  E2==2/(n+8). 

(15) 
In the lowest order in the invariant charge 
g = rd7 (0)  =; (n + 8)-' (Ref. 7 )  we have F, (P ) =; [ r 0 / r  (P )I&', 
since the second term in the right-hand side of ( 1  5) is propor- 
tional to (n + 8)-'. Indeed, the quantities Ai (P ) can be repre- 
sented as sums of terms proportional to 

and whose integrals are finite at all values of P and x.  Thus, 

At n = 1 the expression for the scalar vertex of the in- 
teraction is given by Eq. (16) with 6, = 1/3. 

Putting TV (0, K ) = SVR (K ), we obtain from (8)  

Replacing Ti (K ) by r (K ) we obtain an expression for R (K ) 
accurate to terms of order fi : 

R ( K )  = [ r  ( K )  Iu] 'I. 
2-q--1/v 1 

E i =  ~ 2 - - - ,  1-211 v 
(12) From (9) and (17) we have 

n 1 a / v  

where q is the Fisher exponent and v is the correlation-radi- c (K)=  {n ('1 + $ [ ( r(K)) -I ] 1 
us exponent. 

The solution of (6) can be represented in the form 

3ri;Al ( P )  It follows from (7)  and (16) that 

= [ (n+2) In] r ,  ( P )  6ij6)ll+r2 ( P )  [6,k6jI+6i16jk- ( 2 /n )  6ij6h,],  

where the ri (P ) satisfy the equations 
n+2 rl ( P I  =nq r1 ( P I  Using (10) and (19) we can represent G ( P )  in the form 

2 .  G- ( P )  =G-I ( P )  +Z ( P )  , - - II(P) [ (n+&) r I 2 ( P )  +2 (n - I )  rz2 ( P )  1, 
n 
0 

where 

F,(P) = 4 - r z ( ~ )  (13) G-1 ( p )  =r+G,-' ( P )  -Go-' (0) , r--G-' ( 0 )  = x z ,  
n f 8  (20) 

. \  , ,..--, -, , n, 
in which the dot denotes differentiation with respect to In ro. 

B J ~ T ~ ~  ($ -$){[ 
We introduce new varibles Fi ( P )  defined by T O  

ri ( P )  =r ( P )  Fi ( P )  , 
where 

( P )  = (n+8) [I1 ( P )  -n ( P ) ]  +u-ti 

It will be shown below that in the region max (x,p)%xoe - 
we have G @ , o ) ~ G  @,o). At P,=w, = 0 we have 
G - '@,o) = x2-+ P2 ,  SO that 

(14) 

For F, (P ) we obtain from (1 3) 
1 P 

lI(p,O)=-arctg-. 
4np 2% 

A, ( P )  , 
Substituting this expession in (14) and (16)-(19) we obtain at 
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rp, (p, 0) -pp,-E~~E~--pi/v-iTo, 

T (p, 0) -pi-~'X2E~-p,-Pi/V-i(: (0) , 

R (p, 0) -pg~~pZ-"v.  

The exponents in these asympl.otic equations agree, apart 
from the index 7, with those obtained in Ref. 1. 

5 3. THE RETARDED CORRELATION FUNCTIONS GR AND CR 

An equation for GR @,a) can be obtained by analytically 
continuing expressions (1 l), (201, and (21) from the discrete 
imaginary frequencies iw, in the upper half-plane 
(om = 2?rm/flfi>O). To this encl we represent L7 (P) in the 
form 

At w, >0, in the quasiclassical approximation, the 
summation over the frequencies a, in (23) can be restricted 
to the interval O(o,  (w,, inasmuch as there are no terms 
with G @,O) outside this interval. We can then expess A in 
terms of GR @,a) as follows: 

P fi = - 8  do' 
2ni exp (Bfio') -1 GR (.pi, a') GR (PZ, iom-a'). (24) 

The integration contour in (24) contains the segment [O,iw, ] 
on the imaginary axis. Moving it off to infinity, the integral 
in (14) can be transformed into a sum of integrals over con- 
tours that contain the singulari ties of the functions GR (the 
contribution from the poles [exp(Bhl) - I]-' can be ne- 
glected in the quasiclassical approximation). We shall as- 
sume that the singularities of G, (p,w) in the lower half-plane 
include simple poles that tend tcl the point w = 0 as x--4 and 
p - 4 .  The integrals over the contours around these poles 
make then the main contributic~n to A, a contribution that 
diverges as x 4  and pi+O as a result of the clamping of 
these contours between the poles GR and [expdoh') - I]-' 
at a' = iw, and a' = 0. Thus 

where the contour C, contains the poles GR (p,,wl) and C2 the 
poles GR @,,iwm - w'). Substituting w" = iw, - w' in the 
integral with respect to C,, we obtain 

do' 
GR (p,, or) GR (p2, iom-o') 

The analytic continuation of (25) reduces to the substi- 
tution iw, --m, so that for the continuation of (22), assuming 
that I f l ~ ' l (  1 on C, and Iflh" 14 1 on C', we obtain 

1 d3pp, do' 
118 (p, a)= -% 5 $ 7 ~ R  (pi, o J ) ~ R ( ~ - ~ i ?  o-w')+ 

CI 

(26) 

For GR @,w) we have from (14), (20), and (21) 

By the term with exponent 1 - 6, in (28) is meant that ana- 
lytic branch of this function which is real at real rR with a 
cut along the line that starts out from zero and lies outside 
the region of the values of rR at Im w > 0. 

A characteristic feature of Eqs. (26)-(29) that determine 
GR @,w) is that all the functions GR contained in them have 
frequencies lolI 5 max(lwi @)I, lw I), where wi (p) are the fre- 
quencies of the poles of GR . Assuming that the fluctuations 
of pi are slowest motions in the system, i.e., that loi @)It, 4 1 
(t, is the longest characteristic time of the noncritical fluctu- 
ations," and considering only the frequency region with 
at ,  (1, we can regard the frequency w in (26)-(29) as satisfy- 
ing this condition and represent G &' (and with it also G ; ') 
by an expansion in powers of w: 

GOB-' (p, o )  =~+p~-2ioL-M0~. (30) 

Inclusion in (30) of the term quadratic in w allows us to 
consider the case when the fluctuations of the order param- 
eter are propagating excitations, for example soft optical 
phonons near a second-order structural phase transition. In 
the effective field region r >  x i  the soft phonons are well- 
defined elementary excitations at L 2 4 M ~ ; .  It will be shown 
below that in the region of strong fluctuations (xxx,) there 
exists a section in which 

GR-' (p, o )  zZTR-' (p, W )  =x2+p2-2ioL-02M (31) 

and the condition L 2(Mx2 can be satisfied (at sufficiently 
small L ), so that the phonons remain weakly damped. Only 
this section will be considered in the present paper. 

Regarding 8, as a small correction to G ; ' in (27), we 
substitute (3 1) in (26). The result of the integration is of the 
form 

1 (Sf2x) (R+2L-iMw) t i p  (R+2L) 
HR(p, o)=- In 1 

4nip (S+2x) ( R f  2L-iMo) -ip (Rf2L) 

The square roots and the logarithms in (32) denote the 
branches of those functions which are analytic in the plane, 
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with a cut along the negative real axis, and take on real val- 
ues on the positive real axis, with R > 0 andS> 0 on this axis. 
It can be shown that at Im w > 0 the quantity ZTR of (32) 
satisfies the inequalities 

d 
(Re o)- Im IIR(p, 0 )  (0, Re oZO, 

d x 

by virtue of whichr, has no values on the real negative axis 
at Im w > 0. An expression for ZR that is analytic in the 
upper w half-plane can therefore be obtained by substituting 
(32) in (29) and (28) and choosing the power-law branch in 
(28) with a cut along this semiaxis. 

At 

max(2Lo, Mo2, p2) <x2<xo2 min (2L/MSp, 1) 

it follows from (28), (29), and (32) that 

and a > 0 we have 

xR(P, o )  =l12gI (Ai-l/v-l) -3/gqAi-L/V(A+i/3A2p2)ln(A/x02) 

-it (v/a) ~ ( l - ~ ) "  [8nIl:' (p, o) ] l-i/v, 

n;' (p, o) =nn (p, a )  Lo. (34) 

The cuts of the powers and of the logarithm in (33) and (34) 
are taken along the negative real axis. 

At w = 0 Eq. (34) takes the form 

P v ZR (p, 0) =-qp2 In - - 8, - x('-")/' (5) " -  . (35) 
XO a 

The first term in the right-hand side of (35) can be regarded 
as the first term of the expansion ofp2(p/x,) - ', by identify- 
ing the parameter g introduced in (33) with the Fisher index. 
Its value coincides with the result of the E-e~pansion.~ The 
second term in (35) is equal, accurate to the factor a' - ' Iv ,  to 
the expression obtained in Ref. 8. 

In the case of relaxation dynamics [M = 0 in (30)] it 
follows from (30) that 

The influence of the multiparticle processes at small w andp 
reduces thus to a renormalization of the coefficient ofpZ and 
of the damping constant L. The expression for the renormal- 
ized constant 

can be regarded, in accord with the results obtained in the 
method of the dynamic renormalization group,4 as an expan- 
sion of the power-law relation 

L=L (xolx) "9. 

We have then for the relaxation dynamic index z 

which is close to the result of the &-expansion for the model 
without conservation laws4: 

z=2+cq, c=6 In '1,-1-0,73. 

It follows from (33) and (34) that smallness of 8, com- 
pared with G ,  ' is ensured in the corresponding regions by 
the inequality 

max (2Lo, Mo2, p2, x2) BxoZe-2'11. (36) 

When the condition (36) is satisfied the analytic continuation 
(18) of C ( K )  is given by 

where rR is determined by (29) with 17, from (32), and the 
cut of the function raised to the power a/v is taken along the 
negative real axis. If the expression in the left-hand side of 
(36) is much smaller than x i  and a > 0, we have 

n v 
%-- [ (n+8) u]~/'-'I IIR (k, o )  la/ '  exp 

2 a 

We note that the condition (36) allows us to neglect the 
exponent in the power-law functions. To find GR and CR 
outside the region where this neglect is impossible, we must 
take into account the terms of the next order in rij,, in Eqs. 
(3)-(S), terms that introduce corrections proportional to gZ 
into rR (29) and {, (12). The contribution of these correc- 
tions to g is only of the order ofg3, but their contribution to 
the exponents CY and Y, which is proportional to {,, is of the 
order of? and must be taken into account in order to satisfy 
the scaling relations between the critical exponents. 

5 4. SCATTERING SPECTRA AND DAMPING OF SOUND 

The results can be used to interpret dynamic critical 
phenomena in the vicinity of second-order structural phase 
transitions, such as the anomalous damping of sound and 
critical scattering of light and of neutrons. The spectral in- 
tensity of the scattering of light and neutrons by soft optical 
phonons is determined by the imaginary parts of the func- 
tions GR and CR . It is convenient to express the function GR 
in terms of parameters that characterize the line shape of the 
soft mode: 

M-*G,-I (p, O) =S22+v2pZ-2i~~-02+ vZZR(p, a ) ,  
U ~ = M - ~ ,  Q=UZ, r=cZL. 
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It follows from (33) that at 0>max(2r, up) there exists 
in the first-order spectrum, besides the soft mode, a quadru- 
pole-scattering peak with intensity 

I, (p, (a) ma- '  Im G R ( p ,  o )  :a-1/2g1S20'Q-4a)-' Im A'-"'. 

Its width is of the order of max (2 r ,  up) and the intensity at 
the maximum is 

QoZ UP '" -1 
I1 (p, 0) -671 F{ 1 + (%)I ] + I) Isrl 

whereI,, = ( 2 0  )-'is the intensity at thesoft-modemax- 
imum. 

For the spectral intensity of the second-order scattering 

I , (  k, w) .no-'CR(k, o )  

we obtain a > 0 from (37) the following approximate expres- 
sions: 

11. (a,  vk),>max SF, Vr-') :. 

I :  (ii. a) (vk) o I - '  In 
( o + ~ k ) ~ + 4 r ~  =lv I (~.~-uk)~+4P'I ' 

III. vkaF4Qi 
a j  lo l<Q,  

Iz (k, o) WQ-~" (a2- i8r2)  -I; 

b) 1 o 1 >2Q, the same as in Ib. 
IV. vk4QcI'i 

a )  I o l e Q ,  
I? (k, o )  ~ Q - " " ~ , / x ~ + ~ ' "  (x+I); 

Z=9-'b - [ ( ~ + ~ ~ t : ) ' ~ + i ]  lh, t r = r w ;  

b) Ieiar, 
o2 I/, lo1 

lo (k, o )  = I o a t  [( + -) + -1 
16r2 y, wvmr: 4r . 

b) i) 4 >I', the same as in :[V b 

In cases I and I1 the shape of the spectra can be intepreted in 
terms of phonon processes. In ii process without a change in 
the number of phonons, the conservation laws are of the 
form 

while in a process with excitation (or absorption) of a pair of 
critical phonons 

The process (38) has threshold w,,, = vk, which is reached 
at 

p2max (k, x )  , (p,k) (40) 

while the process (38) hasa thresholdwmin = ( 4 0  + v2k ')'I2 

at 

~ ~ = p ~ e ' / ~ k .  (41) 

In case I the spectral intensity displays the existence of these 
thresholds, since the photons near these thresholds are well 
defined excitations (0 (pi ) > r ,  w > r  ). In case I1 the dispersion 
of the group velocity u(p) = v2p/0 (p) of the phonons excited 
near the merging thresholds wmi, =wmax = vk becomes 
small enough for them to form phonon packets that are not 
smeared out during the free path time r -'. Indeed, for the 
smearing time of a packet with momentum q-pi we have 
from (40) 

The group velocity of such packets, u(q)--,vk/k, coincides 
with the phase velocity wk/k of the external excitations. 
The packets satisfy thus the phase-resonance condition that 
causes an rapid growth of the damping at w --, vk. The pres- 
ence of a peak in the spectral intensity can be interpreted as 
the result of excitation in the gas of phonon wave packets 
analogous to second sound in a gas of acoustic phonons. 

In the interpretation of the singularities of the spectra in 
cases 111-V it must be recognized that relations (38) and (39) 
are satisfied accurate to the reciprocal free path time of the 
phonons r .  In case I11 this causes smearing of the lower 
threshold by an amount of the order of r ,  where as at high 
frequencies Iw 1 > 2 0  this smearing, just as in Ib, can be ne- 
glected. When condition IV is satisfied the phonons excited 
in the process (39) at Iw 1 4 2  turn out to be overdamped, 
0 (pi ) 5 r. Scattering by them leads to the appearance of a 
central peak of width proportional to the reciprocal relaxa- 
tion time 0 2r -I.  In the processes (38) there can be excited 
weakly damped phonons with arbitrarily large momenta, 
and this leads to the presence of a tail in the spectral intensity 
at frequencies higher than the reciprocal free path time of 

FIG. 1. Spectral intensity of second-order scattering. The Roman 
numbers denote the corresponding equations in the text. The plot I1 per- 
tains to 2T/vk  = 10W3. The dashed curves in cases IVa and Va show the 
Lorentzians with theequivalent half-widths, 3 . 5 0  'r -' and0.8v2k 'T -', 
respectively. 
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these phonons, w > T. In V, just as in iI, the condition (42) 
may be satisfied for the excited phonons, but by virtue of 
v k < r  excitations of second-sound type are relaxing. Their 
relaxation can be regarded as heat transfer in the gas of 
phonon packets, with a characteristic time t ,  = 4T/v2k 
that determines the width of the central peak. The integral 
intensity of the central peak in cases I11 and IV is propor- 
tional to the heat capacity: I cc L.2"'" cc T - " , and in case V we 
have I a (vk ) - "Iv. The spectral intensities for some of the 
considered cases (at n = 1) are shown in Fig. 1. 

The expressions presented above for the spectral inten- 
sity, with the exception of cases 11, IVb, and Vb, can be rep- 
resented in the scaling form: 

Iz ( k ,  0 )  = ~ - ~ / ' t f  fmt, x l k ) ,  t-x-' 

The dynapic index z (Ref. 3), however, has different values. 
Thus, z = 2 in IVa and Va, z = 1 in I and IIb, and z = 0 in 
IIIa. 

In the region where the influence of the elastic degrees 
of freedom on the order-parameter fluctuations can be ne- 
g l e~ ted ,~  the function 12(k,w) determines also the damping 
decrement of the longitudinal sound at T >  T, . Indeed, in 
this region the self-energy part of the temperature propaga- 
tor of the acoustic phonons, by virtue of the presence of stric- 
tion interaction of the type uii4;li4;li constitutes a sum of dia- 
grams having two corners and proportional to the 
temperature correlator C (K ). As a result, the correction to 
the dynamic bulk elastic modulus B (k,w) turns out to be pro- 
portional to C, (k,w), so that we have for the bulk-viscosity 
coefficent 7, ( k , ~ )  

and for the longitudinal-coefficient damping coefficient 
a, (a) we obtain 

where c, is the speed of the longitudinal sound. At c, < v 
and a > 0 we have from I-V the following: 

1. r < Q :  
a )  o<<I'c,/v, a, ( a )  ~ o ' Q - ~ "  rl; 
b) I'cL/v<<a<QcL/v, a, ( a )  moQ-"/'. 

2 .  Q < r c L / v :  
2) O < < Q ~ ~ - ~ ,  ~ o ~ Q - ~ ~ ~ ~  r; 
b) QT-'<o<Qc, /u ,  a ,  ( w )  mo1-"/2v; 
C) Q C , I U < W < < ~ C ~ I U ,  ( o )  mOl-a/2V ( c ~ I v < I ) .  

The presently available theoretical results on sound 
damping near structural phase transitions correspond to re- 
gion 2a (Ref. 10). The value of the critical exponent 

p = zv + a z 2v + a obtained in Ref. 10 for the contribution 
made to a, (w) from the longitudinal viscosity coefficient 
7, ( 0 , ~ )  agrees, accurate to 7, with the resplt 2a. A frequency 
dispersion of a(w) analogous to 2a, b, c, was observed near a 
structural phase transition in KMnF,. " 

Expessions I-V for the sectral intensity 12(k,o) permit 
at least a qualitative description of a number of singularities 
observed in the second-order scattering spectra in the vicini- 
ty of structural phase transitions. Thus, in displacive phase 
transitions with weakly damped soft mode the characteristic 
feature of the scattering spectra at T >  T, is, according to Ib 
and IIIb, the presence of a maximum of two-phonon scatter- 
ing at a frequency on the order of 2a .  Such peaks, having an 
asymmetric shape that agrees qualitatively with Ib, were ac- 
tually observed in Hg,(Cl, Br, -, ),. Another feature of the 
second-order spectrum is the presence of a rather broad and 
slowly growing (la 7-" ) central peak. It appears that the 
anomalous temperature dependence of such a peak will take 
place in a sufficiently large temperature range only for crys- 
tals with relaxation dynamics ( O < r  already in the effective- 
field region) (see IVa). By way of example we cite the experi- 
mental observation13 of quasielastic scattering in an order- 
disorder transition in NH,Cl, with a temperature depen- 
dence that agrees with IVa. 

The authors thank V. L. ~okrovsk i  for a discussion of 
the work and for a number of helpful remarks. 

"~esides the order-parameter fluctuations there are also other slow (hy- 
drodynamic) motions (sound, heat conduction) with characteristic fre- 
quencies much lower than t, I. We disregard here their interaction with 
the order parameter. 
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