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It is shown on the basis of an analysis of the equation2,, = 0 [A. A. Nepomnyashchii and Yu. A. 
Nepomnyashchii, JETP Lett. 21, 1 (1975); Sov. Phys. JETP 48,493 (1978)l that the nonzero c- 
number component (4) = $ (the condensate wave function) of the initial field operator 4, while 
involved in the criterion for superfluid ordering, is not the quantity that characterizes the field 
aspects of the macroscopic motion of the superfluid, and can be used as the order parameter in the 
effective Hamiltonian of the A-transition theory. The variable characterizing the analogy between 
the superfluid state (of the superfluid's long-wave coherent subsystem) and a classical field with a 
nonsingular pair Hamiltonian is the c component ($) = $ (the "macroscopic wave function") of 
some "effective" field alperator $, a component which corresponds to the choice I$ /  = ( p, /m) 'I2, 
which is in fact realized in the Ginzburg-Pitaevskii theory in both its original [V. I. Ginzburg and 
L. P. Pitaevskii, Sov. F'hys. JETP 7, 858 (1958); L. P. Pitaevskii, Sov. Phys. JETP 8, 282 (1959)l 
and modified [V. L. Ginzburg and A. A. Sobyanin, Sov. Phys. Usp. 19,773 (1976)l form. A field- 
theoretic description in terms of variables that are not linearly related to $ is made complicated by 
the infrared anharmonicity anomalies of the zero-point and thermal oscillations of the field 
modes: the nonanalyticity of the field Hamiltonian's coefficients, which characterizes specific 
properties of the condensate (first and foremost the divergence of the longitudinal static suscepti- 
bility at all T< Tc , but :not at T-Tc ) and the excitation gas (the second-sound pole). The infrared 
anomalies are due to the degeneracy of the superfluid state and the presence at T> 0 of an 
incoherent superfluid component; the equation 2,,(O) = 0 is a reflection of them in the variables 
$. It is shown that a similar situation arises in any phase transition connected with spontaneous 
continuous-symmetry breaking: it is necessary use in an effective Hamiltonian of the Ginzburg- 
Landau type some effective order parameter (2 )  = 5 instead of the original one (3) = x .  

PACS numbers: 67.40.Bz, 67.40.Db 

1. INTRODUCTION 

The vanishing, as a result of the infrared divergence of 
the diagrams,' of the anomalous self-energy part E,,(O) for 
any interaction potential Vp that is nonsingular at p-0 de- 
prives this quantity of its role as the principal characteristic 
of the superfluid state, a role which is assigned to it in many 
Bose-liquid investigations based on the use of the field-theor- 
etic method2 (at T = 0 the sound-speed c- [E12(0)]112 (Refs. 
2-5)," for T-T, the relaxation time 7--[2,,(0)]-' (Ref. 5), 
etc.). This role, which is similar to the role played by A in the 
theory of ~uperconductivity,~ is taken on by E,,(O) (a "ver- 
tex" with two ingoing lines) even in the first (Bogolyubov7) 
approximation (BA) of perturbation field theory,' in which 
2 , , (O)  = n Vo is the coefficiezt in the anomalous terms in the 
Bogolyubov Hamiltonian HB responsible for the "super- 
fluid reconstruction" of the spectrum for p-0. 

The equality 2, , (O)  = 0 has cast doubt on the main re- 
sults of the microscopic theory of superiluidity-the 
allowance for the arbitrarily strong repulsion (through the 
summation of the ladder diagrams2: 2 , , ( 0 ) ~ 4 ~ m - ' n ~  f,, 
c = [2,,(0)/m]"~) and the proof of the strictly hydrodynam- 
ic nature of the long-wave excitations of a Bose system with a 
condensate in the arbitrary case of strong interactions (by 
summing all the diagrams in the p-0, E = cp, c = (dP/ 
dp)'I2 long-wave asymptotic form8). In the alternative field- 
theoretic method that is free From an infrared divergence, 
namely, perturbation theory in the hydrodynamic variables 

H ($,$+ )-H(A,?) (Ref. 9): 

1 + - v ( r - r r )  $+ ( r )  ( r f  ) $ ( r ' )  1 ( r ,  dr dr i ,  2 
(1) 

(an improved version of which-one with a modified metric 
in the space of the states of H,, (n, ,&) (Refs. 10,ll)-does 
not contain ultraviolet divergence as well), while it gives ex- 
cellent results in the lowest orders of the perturbation theory 
(thus confirming, as is easy to verify, the Landau quantum 
( T  = 0) and two-fluid ( T >  0) hydrodynamics1'), raises fun- 
damental difficulties when solving the above-indicated gen- 
eral problems of the microtheory. Namely, the very condi- 
tion V,, < Vpu(p/po)-[d- '+" ((S> 0 and d is the 
dimensionality of the space)13 for the coincidence of the 
spectra of H ($,$+) and H (A,?) excludes a potential with a 
"hard core." The p-0 hydrodynamic asymptotic form ap- 
parently requires limitations of the type ($) $0, which are 
difficult to formulate in terms of2' f i  and ?. Analysis1 of the 
role of the infrared divergence, particularly of the limits of 
applicability of the usual methods of summing the field dia- 
grams, does not change the main results of the "naive" anal- 
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ysis performed with c = (4m0 fo)'12/m, c = (dP/dp)'12. 
They are merely rederived with allowance for the equation 
2,,(0) = 0 and supplemented by results that are at variance 
with the perturbation-theory approximations: a divergent 
nonpole correction to G ,  ( p a ) ,  (IS), nonanalytic terms in 
the expression (12) for2, ( p+O), exact formulas for the par- 
tial derivatives (8), (lo), etc. But the following questions re- 
main open: How does the "non-Bogolyubov" behavior of 
H,, (p--+O), the equality EI2(O) = 0 itself, manifest itself phy- 
sically directly? Where is the "physical source" of the viola- 
tion of the BA for p+O? Do we have a simple explanation of 
the equality 2,,(0) = 0 (as in the case of the equation 
p = 2, ,(0) - 2 , , (O)  (Ref. 16))? It is accidental that the quan- 
tities nVo, 4n-m-'no f,, etc.-incorrect approximations to 
2,2(0)-actually play in the corresponding models the role 
previously ascribed to ZI2(0) (and that the assumption that 
the 2, ( p) expansion is analytic is in accord with the acous- 
tic character of the spectrum)? And, finally, what can re- 
place the BA as the correct first approximation? These ques- 
tions are considered in the present paper. 

Particular note should be taken of another, perhaps, 
physically most interesting question connected with the ina- 
dequacy of the BA: What is the "microbasis" of the pro- 
found physical analogy, known from the phenomenological 
theory, between the superfluid state and a classical field? 
What can we use as a model for an effective field-theoretic 
description of a superfluid at T = 0 and its "coherent" (en- 
tropyless) component at T >  0, T z  T,? Without allowance 
for the infrared divergence, the role of such a model should 
be played by the BA-the first-order perturbatiofi field the- 
ory, which is "quasiclassical," in that it replaces a Bose sys- 
tem by a classical field with the same Hamiltonian 
H ($,$+)+H ($,$*) and quantized modes, and "harmonic," 
in that it neglects the anharmonicity of the zero-point and 
thermal oscillations of the normal modes. A similar situa- 
tion in fact obtains in the description in terms of the hydro- 
dynamic variables: the first-order hydrodynamic perturba- 
tion theory,9 which replaces a Bose system by an ideal fluid 
with the same Hamiltonian H (it,?)+H (n,v) and quantized 
modes, as given by 

H(^n, j) =H (n, v) + H* (k', v') +aint, 
,. .. .. .. ,. (3) 

n=n+nl, v=v+ v', <n)=n, <v)=v, 

is in fact the "model" for Landau's effective hydrodynamic 
description.I2 The Landau Hamiltonian 2 (it,?) which is the 
basis of a semiphenomenological long-wave ( p-0) descrip- 
tion at T = 0 in terms of the variables it and $: 

(the c numbers describe the macroscopic motion; the "opera- 
tor corrections," the zero-point oscillations, the exact spec- 
tra, and the exact interaction between the excitations), 
differs from the original H (it,?) only in that the parameters 
are renormalized as a result of the anharmonicity of the zero- 
point oscillations. 

The semiphenomenological Landau theory establishes 
the nature of superfluidity, but does not consider specifically 
the field character of the state. The field-theoretic general- 
ization of this theory in the region around T,, where it is 
especially important, is furnished by the Ginzburg-Pi- 
taevskii (GP) theory of the A transition.17 This theory is 
based on the idea, first developed in the Ginzburg-Landau 
theory of superconductivity,'8 that the c-number field-a 
distinctive macroscopic analog of the wave function of a par- 
ticle-can be considered to be the order parameter of the 
phase transition. The field-theoretic formulation of the mi- 
crotheory has its origin in London's idea,I9 based on an ana- 
logy with an ideal gas, that Bose condensation forms the 
microscopic basis of superfluidity, an idea which was real- 
ized by B ~ ~ o l ~ u b o v , ~  who, unlike London,I9 took account of 
the important role played in the phenomenon of superflui- 
dity by the interboson interaction by separating out the c- 
number component of the field operator $ = & + and 
Gagonalizing the quadratic part of the Hamiltonian 
HE = N Vo/2 V + H,($',$+). Belyaev2 used the representa- 
tion $ = 6 + 4' to construct a field perturbation theory 
(see also Ref. 20), and Gross2' and Pitaevskii2' have general- 
ized Bogolyubov's treatment to the case of an inhomogen- 
eous condensate, replacing 6 by $(r): 

The equation ZJ,(0) = 0 precludes the assumption that 
a($,$+)-H ($,$+) (or that a (A,?)-H (it,?), i.e., the as- 
sumption that the anharmonicity of the zero-point and ther- 
mal  oscillation^ 1:ads only to the renormalization of the pa- 
rameters o fH  ($,$+). Thus, the expansion (6) cannot be used 
as a model for the construction of an effective c-number 
field-theoretic description (in the way (3) and (5) are used). 

The problem of finding the microbasis of the field- 
theoretic description is complicated by another difficulty: 
the nonuniqueness of the choice of the A-transition order 
parameter.23 Whereas in the microscopic field theory the 
modulus of the order parameter is I $ (  = &, in the pheno- 
menological GP theory it is (p,/m)'12 (naturally, the con- 
densate separates out in the description in terms of the field 
variables, while the superfluid component separates out in 
the Landau hydrodynamics). The two difficulties are found 
to be interrelated when an attempt is made to remove them. 
In the present paper we carry out the modification of the BA 
that is required for the microscopic justification that must be 
given in the basic scheme of the effective field-theoretic de- 
scription. This allows us to uniquely establish the nature of 
the c-number field characterizing the superfluid state both at 
T-0 and T- T,.  This field turns out to be th_e c-numb$r 
component not of the original field operator $ = $ + *', 
$ = ($), I $ I  = 6 (the "condensate wave function" 
(CWF)), but of some effective operator 4 = 4 + $' with 
141 = (p s  /m)112 at T = 0 and T- T, ("macroscopic wave 
function" (MWF)), which supports the choice of the order 
parameter in the GP  theory. 

The situation considered has a general character in the 
theory of phase transitions connected with spontaneous con- 
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tinuous-symmetry breaking: in describing such transitions 
with the aid of an effective H[amiltonian of the Ginzburg- 
Landau type, we should, in contrast to the nondegenerate 
case, replace the original 2rder parameter x = (A) by some 
effective parameter f = (2). 

In Sec. 2 we establish a connection between the relation 
2,,(p+O)-tO and the divergence of the longitudinal static 
susceptibility xII (PA) to the perturbations of 1$1 or 
no = /$I2; the divergence ofxIl (0) @one of the manifestations 
of the radical difference between H ($,$*) and H (qh,$*) and, 
thus, between a($,$*) and k(n ,v)  (k(n,v)-H (n,v) 
= H ($,$*)). A qualitative ditierence between the two effec- 

tive characteristics of a Bose system (a difference that does 
not occur in the BA: H (n,v) == H ($,$*)) is not inconsistent 
with the nature of the characteristics: the long-wave limits of 
the two sets of variables n,v artd $,$* separate out different 
subsystems; the anomaly i n k  ($,$*) reflects a specific prop- 
erty of the field long-wave sutlsystem (the condensate). But 
the infrared anomaly in the Hamiltonian g($,$*) does not 
allow us to use this Hamiltonian as a basis for an effective 
field-theoretic description; to realize such a description we 
must find another Harniltonian. 

In Sec. 3 we show that the description of a fluctuating 
system with the aid of an effi~ctive nonfluctuating system 
separates out special "adequate" variables that are linearly 
connected with the "truly normal" modes. The use of special 
field variables, $ and $+, which are linearly connected with 
the variables A and i that are adequate in the long-wave re- 
gion, guarantees at T = 0 the elimination of the infrared 
anomaly-both in the perturbation theory and in the effec- 
tive description. We indicate the source of the infrared 
anomaly at T = 0: the divergence of the phase fluctuations 
as a result of the degeneracy of the ground state with spon- 
taneously broken phase gauge symmetry. Thus, the equation 
2, , (O)  = 0 has the same symmetry-related origin as the equa- 
tion16 8 , , ( O )  - Z12(0) = p ,  only it takes account of the an- 
harmonicity. The choice of $ is dictated by the necess_ity to 
"exclude" the divergent phase fluctuations: 141 = ( I $ /  2). 

In Secs. 4 and 5 we investigate the characteristics of the 
T >  0 case. Here we add a new source of infrared anomaly in 
the anharmonicity, the excitation gas. At low T the adequate 
field variable $, is found from the asymptotic expressions 
for the Green functions (Sec. 5; in contrast to the results 
given in the l i t e r a t ~ r e , ' ~ , ~ ~  the Bmmulas obtained here for the 
Green functions by the method described in Ref. 14 agree 
with the general relations obtained in the field theory and in 
two-velocity hydrodynamics25). The definition of $, for ex- 
citation differs somewhat from the-definition for stationary 
motion, in which I$, 1 = (p,,/m)'/2. The construction of 

= (qT ) near t, is similar to that asat T = P, but with the 
aid of the "lopg-wave" fie@ operator $, = ($),, instead of 
the original $: ) $ , I 2  = (I$, 12) =p,/m ((  ...), and (...),, 
denote long-wave ( p<Q ) and short-wave ( p > Q ) averaging); 
Q-x(T), x (T)  is the wave vector of the longitudinal correla- 
tions; the averaging ($),, actu.ally "separates out" the exci- 
tation gas; the use of the modulus IqhL 1 excludes the phase 
fluctuations (which are imporitant, since the region p 5 Q 
includes the region where the infrared anomaly is 
"formed"). The relation between $, and p, /m is proved (for 

an indication of the existence of this relation, see Ref. 23). A 
similar replacement of the original order parameter x = (A) 

by A 

an "adequate" parameter 
f = (2) , ( f  l 2  = ((AL 12) ,AL = (2), is necessary when we 
use a Hamiltonian of the Ginzburg-Landau type to describe 
any phase transition with a spontaneously broken contin- 
uous symmetry; whereas in terms of x the longitudinal sus- 
ceptibility diverges (i.e.,x 1 1  -'(0) = 0) at all T <  T,, in terms 
of2 the inverse susceptibilityx -'(0)-+0 only as T-T, , i.e., 
only as a result of the "softening" of the corresponding 
mode. 

The divergence of x - dm/dh I ,,, - h - ' I2 was first 
established by Vaks et  for the exchange-ferromagnet 
model. The general character of this result for T >  0 in the 
case of phase transitions into a degenerate state is pointed 
out in Ref. 27. As follows from the analysis of the equation 
2 , , (O)  = 0 in Sec. 2, the divergence o f x  l l  for a Bose system 
with a condensate is an exact result of the microtheory for all 
T>O; at T = 0 we havex I I  -ln(mc/h ). According to Ref. 27, 
the divergence o fx  l l  implies the inadequacy of the self-con- 
sistent theory of phase transitions even at temperatures far 
from the transition point; the adequacy is restored only for 
states with a nonequilibrium value of the order parameter 

At the same time, for many problems it is precisely the equi- 
librium (though slightly inhomogeneous) state that is of pri- 
mary interest-e.g., in the investigation of boundary effects 
for superfluid helium.23 The limitation (7) is particularly 
"troublesome" in the description of the A transition, where 
Gi- 1. The use of the adequate variable $, introduced in 
Secs. 3 and 4 frees us from the limitation (7). This removes an 
important objection against the $ theory of the A transi- 
t i ~ n , ~ ~  and also indicates that the choice of (p,/m)1/2 as the 
modulus of the order parameter is not an accident and is 
unique. 

In Sec. 6 we investigate the behavior of 2,,(p+O) at 
T>O. In accord with the complication introduced by the 
infrared anomaly, the character of the p dependence of 2,, 
turns out to be significantly more complicated; but, just as at 
T = 0, the equation Z12(0) = 0 is rigorously satisfied. 

In Appendix I we consider the manifestation of the in- 
frared anomaly of the anharmonicity in the "combined" var- 
iables (the field variables at high, and the "hydrodynamic" 
variables at low, momenta). The manifestation of this anom- 
aly reflects an important difference between the hydrody- 
namic and field long-wave subsystems (the characteristics of 
the condensate). 

In Appendix 2 we discuss the origin and the specific 
nature of the manifestation of the quasiparticle inertial prop- 
erties which determine the quantity p, = p - p, . 

2. DIVERGENCE OF THE LONGITUDINAL SUSCEPTIBILITY. 
THE EFFECTIVE FIELD HAMlLTONlAN 

1. In Ref. 1 a connection is noted between the exact 
multiray vertices yjth zero external momenta and the "ener- 
gy" (E '(n,, p) = ( H  -pit') (the volume V = 1)) derivatives; 
in particular, it is shown that 
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Since no and p are in fact related, the indicated derivatives 
have only a formal meaning. But they acquire a direct ther- 
modynamic meaning if we introduce an external field 
lil = - h ,Ao, 2, = iio+bo acting on the condensate (E '(no, p) 
can then be interpreted as a thermodynamic potential of two 
subsystems, in one of which-the condensate-the number 
no of particles is fixed, while in the other-the superconden- 
sate system-the chemical potential p is fixed1). The vanish- 
ing ofZ1,(O) then implies the divergence of the susceptibility 
to homogeneous perturbations of the condensate density: 

h h 

Indeed, let H(h , )  = H - h,Ao,hl+O. We then have 

E1(h1)  =E' [no(h l ) ,  y ( h i )  ]--hino, p(hi )  

dn' dn' 
( 1 )  - ( )  [no  ( h i )  -no]+ (au) [ p ( h J  - P I .  

!J n o  

Using (8) and the relations (see Ref. 1) 

and recognizing that nl(h,) + no(h,) = n' + no, we find 

1 - 1  1 = [ - Z I Z ( 0 ) ]  [ 1 + - - Z 1 2 ( 0 ) - - - -  hi. (11) 
no no dp  dno (En I 

from which we obtain the relation (9). 
The dependence of x1 (h ,) -- [ rz; '2 \?'(o) ] - on h ,+O 

can easily be found from the formula1 

Z I z  (p-+O) =AZ+O (c2 ,  p2) -- [nOlno ( P )  I ,  (12) 

which is valid at T = 0, as well as at low T> 0 if E and I p 1 are 
far from the second-sound pole (see (82)); 

(for T> 0, ~S~E,/~IT...-+ - T 8,," -.). Taking into account 
the asymptotic form of the spectrum ~ (p -0 )  for h, #O 

E =  [c2 (p2+2mh,n0ln) 1 1 ~  ( x ~ ? )  (01 -x$' (01 -p=hl) ,  

we find that 
mcZ 

~ , , ~ ( h , )  *II:~') ( 0 )  - (%)' mzcln- (T=O) ; 
hi 

More detailed information-about the anomaly in the 
longitudinal susceptibility x -X to inhomogeneous per- 
turbations of the condensate wave function ( I  $1)-is given by 
the divergent nonpole correction Gik ( p 4 )  [Eq. (15) of 
Ref. 1 I. Indeed, if we set q, = 0 in ($) = $ = nh'y, the sus- 
ceptikility to longitudinal perturbations U = $(h$(r) 
+ h.$+(r))dr corresponds to the commutator of the Hermi- 

tian parts of the operator 4' = 4 - 6 

while the susceptibility to transverse perturbations corre- 
sponds to the commutator of the anti-Hermitian parts: 

using the expression1 

G i k  ( P + O )  
no = [; mc2+0(r ,  p2) (a ' -~ 'p ' ) -~ -  [4AZ(p)  I-' (15) I 

we find for the longitudinal and transverse susceptibilities at 
T = 0 and at low T > 0 (i.e., for E and 1 pl far from the second- 
sound pole) the expressions3' 

(in (1 5)-(17), 0 (x) is a small quantity of the order ofx: cf. (22)); 

(19) 
On the other hand, within the framework of the BA 

It is also not difficult to express x and xi in terms of the 
Green functions gab ( p) = - (ab ) ( p < q,) of the method of 
"combined variables" (the "hydrodynamic variables" IT and 
q, in the long-wave region and the field variables in the short- 
wave region14): 

725 Sov. Phys. JETP 58 (4), October 1983 Yu. A. Nepornnyashchfi 725 



using the relation between Gik and gab (Ref. 28): 

( p , <go is a limitation on the n~omentum region of integra- 
tion (see (13)); the simple form ofgab (p )  for T = 0 in (23) was 
written under the assumption chat 

where p, is a characteristic infrared-anomaly momentum 
such that the quantities Zik (pc),170(pc),... or the field-dia- 
gram integrals 2~,P"Pc'(0),n{,PI'P.'(0), ... over the region 
p,  >p, exhibit a marked infrared divergence; for the model 
(27) V&(P, 18- 1, VJ7bP1'P='(0) - l (A2 ( p) 
znoVo(l - VdT,(p))'); hence (,see (19) and (27)) 

2. A number of "physical arguments" seem to indicate 
that the effective and original field Hamiltonians must be 
similar, i.e., that 2 ($,$*) -H ($,$*). If it were the case this 
would guarantee an effective .BA-based field-theoretic de- 
scription. All that can be seen here, however, is an indication 
of the existence of some adequate modification of the BA, 
which establishes the true microscopic meaning of the effec- 
tive field-theoretic description. 

The BA is an exact description for an ideal Bose gas- 
another (simplified) example of the quasiclassical field- 
theoretic approach 

~ o ( 6 ,  $ ) = ~ o ( $ ,  $ ' ) + H Z ( $ ,  $+) 

(the condensate is treated as a classical field with quantized 
modes). In view of this, one woi~ld think that the BA would 
be a good approximation to the "quasiharmonic" model, 
namely a "compressed" Bose system with weak interaction 

a=V(r=O)lpo2m-'-mpoI V,,I 1, p= (n/pO3)'"--1la"Bl 

(27) 
(po  is a characteristic momentum transfer) for which the 
anharmonicity corrections-the diagrams with "loops" (in- 
tegrations over internal m_omenta) are "suppressed" both in 
the variables 2, 8 and in $, $+: each "loop" contributes a 
factor a( 1. As is not difficult to verify, for the model (27) we 
have fi (n,v) ZH (n,v) (E (n) 1/2n2V, (see (4)). We can, 
through a simple generalization of (27), also take account of 
an arbitrarily strong short-range repulsion; if we "smooth 
out" the potential in H ($,$*) beforehand, i.e., if we take the 
ladders (the "corpuscular anharmonicity") into account be- 
fore allowing for the loops (the "field anharmonicity"), we 
haveherealso2 (n,v) =: H (n,v) = H ($,$*). Thevalidity ofthe 
relation* (n,v) - H (n,v) for anarbitrary condensate-contain- 
ing Bose system follows from the asymptotic form of the 

field Green functions Gik (p-+0).8*' If we assume that the 
hydrodynamic description ~ ( n , v )  is simply the part of the 
field description that remains after subtracting the "strictly 
field" properties, as obtained in the Ba ( ( $ I 2  = norr:n) 

it might seem that we could wr i te2  ($,$*) ZH ($,$*) for the 
model (27) and fi ($,$*)-H ($,$*) in the general case. 

The relation a ($,$*) - H ($,$*) is apparently support- 
ed also by the analogy between a condensate-containing 
Bose system and a crystal-the corpuscular version of the 
quasiclassical approximation (Fa = ra + i:, r, = (Fa )). In 
both cases it is natural to expect the state to be close to the 
harmonic approximation (fi-H) until the zero-point or 
thermal oscillations destroy the characteristic of the state 
(the "off-diagonal" or crystalline long-range orderl, i.e., so 
long as the condensate or the lattice is preserved (($) #O or 
(ra) 4) 

Also supporting the relation g($,$*) - H ($,$*) is the 
fact that the BA (the field H ($,$*) with quantized modes) 
reflects all the most important features of the superfluid 
state that are postulated or established in the semipheno- 
menological treatments: the hydrodynamic description for 
p-0, with H ($,$*) = H (n,v) (for nonstringent conditions 
on the potential, V, (Vo > 0, Vpo < 0) is the phonon-roton 
line); the Goldstone nature of sound; the quantization of the 
velocity circulationz2; the similarity to the condensate of 
noninteracting bosons5' with m # 0. 

Finally, the BA directly reflects the "gauge nature" of 
the il transition: J, satisfies the condition for a minimum 

minH(p) is attained at $ = aoei'+' , a, = (,u/v~)"~; in the long- 
wave limit H(p)($,$*) is analogous to the thermodynamic 
potentialf2 (T, p,$) ofthe Landau theory ofphase transitions 
(i.e., to the Ginzburg-Landau Hamiltonian): 

thus, the BA admits of a natural generalization to the case 
Trr: T, , where H'~)+*Y) = f2 (T, p,$). 

The gapless spectrum 

8: = [epo (sp0+2p)] Ih, ~~O=p~/2rn: p=V0a02=Xi2B(0): 

(30) 
which characterizes the Hamiltonian (29), differs essentially 
from its nondegenerate analog, with $ = Re$ (Goldstone's 
theorem), but x ,, (p) coincides with x (p) in the case when 
$ = Re$: 

Notice that the reciprocal correlation length x = r ,  ' at 
T = 0 is of the same order of magnitude as the characteristic 
momentum transfer p,(fi = 1) that determines the effective 
integration domain in the diagrams and as the characteristic 
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hydrodynamic momentum p, = mc, (see Sec. 3). 
But it is precisely when the superfluid state is portrayed 

as the result of spontaneous gauge-symmetry breaking that 
we most clearly see the inadequacy of the BA: according to 
(9) and (16), the formulax (0) = - $Z12(0) (see (3 1)) is exact 
(it is preserved when the anharmonicity is taken into ac- 
count). As follows from the general picture of phase transi- 
tions, the quantity x2 = 4m2,,(0) = - mXll (0) should be 
nonzero at all T <  T,, and should go to zero only when 
T-T, . But this contradicts the equation Z12(0) = 0. Thus, 
&($,$*) should differ qualitatively from H ($,$*), even for 
the model (27) (the formal expansion parameter a( 1 is coun- 
terbalanced by the infrared divergence; therefore, the "sin- 
gle-loop" approximation, for example, destroys even the lin- 
ear character of the spectrum for e). It is the "masking" 
of this circumstance that caused its neglect both at T = 024*6 
and at T=: T, -see, for example, Ref. 3 1, where 

(32) 
or Ref. 5, whereZ12(0) determines the proximity to the tran- 
sition point. The 2 ll (p-+O) singularity is neglected even in 
Forster's excellent monograph,32 where, in particular, it is 
asserted in connection with the relation no" (r) - Re$ that 
"there is no reason to expect ... unusual-length correlations 
(see (10.55e) in Ref. 32). 

- a *  

3. The qualitative difference between H ($,$+) and 
H (4,4+) is determined by the nonanalyticity ate,  lpl-+O of 
the exact field vertices-of the coefficients of the expansion 
of the effective action 3 ($,$*) in terms of the Fourier ampli- 
tudes of the field: eik ( p) enters into the quadratic part of 3,, 
r,,, in the higher-order terms (the "zeroth-order" vertices, 
on the other hand, are analytic), and the relation between 3 
and is given by the same formula that gives the relation 
between Sand H. The direct source of the nonanalyticities is 
the contribution of the pair Green functions 
$Gik ( p + pl)Gl, (Pl)d 4p,. The non-analytic term in 
2, ( p-0) isA2 (see (12), (13), and (19)); the nonanalyticity of 
r, and r4 can be seen, for example, from Fig. 1: in the dia- 
gram 

21za(0)  =X1,(0) -Xi? ( 0 )  -Xizb(0) =-noV, (Z,? ( 0 )  =noVo, . 
Z126(0) -aZn0VO) ; 

for the mode1 (27) the vertex T3(p), although it removes the 
divergence occurring in the presence of a zeroth-order ver- 
tex, has been constructed such that it counterbalances the 
arbitrarily small factor a characterizing each integration 
over a 4-momentum; it is clear from the diagram for 

FIG. 1. [In the 2 :, diagram we have left out the horizontal line between 
the vertices.] 

Z7 (0) = - n/mc2 that T, cannot be an analytic function of 
the 4-momenta. 

The existence of a qualitative difference between the 
two versions of the effective c-number description-the hy- 
drodynamic (n,v) and field-theoretic H($,$*) descrip- 
tions-is not in accord with the BA, in which they strictly 
agree (see (28)), but it does not itself contain any contradic- 
tion: the exact characteristics connected with H(n,v) and 
a ($,$*) pertain to different long-wave subsystems, the "hy- 
drodynamic" and "field" subsystems. They respectively de- 
scribe the fluctuations and the response to long-wave pertur- 
bations* of the various "longitudinal" variables: 
AL = ($+4)L, ~ e 4 ~  . In contrast tox  , the exact susceptibil- 
ity F,,(p-+O,O) to density perturbations is finite. It follows, 
for example, from the form (4) of (n,v) that F,,(p-tO), un- 
like Gik ( p) and x ( p), does not contain the nonpole diver- 
gent correction of (15) and (16): 

In the Gross method2' the "hydrodynamic" characteristics 
ii, , f, of a condensate with "adjacent" particles of low mo- 
menta (Ip(<qo) are compared with the field subsystem $,, 
$2. The characteristics of the subsystem manifest them- 
selves in the region q, 5pc  : the susceptibility to ;, perturba- 
tions is 

K?' ( p )  =g,~ ( p )  =F46 ( p )  +n~P''qo) ( P )  (34) 

(see (22) and (24) with allowance for the nondependence of 
Xi1 (P) on 90: 4ndyli (P) = Fk'(P) + ~bP"qu'(p) 
= F44( P) + &( P), i.e., 

It follows from ( lg ) ,  (35), and the fluctuation-dissipation 
theorem33 that at T >  0 the fluctuations of the Fourier com- 
ponents of Re$ (or )$I) and ri, diverge respectively like l/p 
and l/q,; the fluctuations do not diverge at T = 0. The ex- 
plicit form of a2(iiL ,V, ) (which differs substantially from 
that of H2(iiL ,f, ) in the region go 5pc  ) is given in Appendix 
1. 

In conclusion, let us note that, in contrast to the "tech- 
nical" manifestations of the infrared divergence (in the com- 
putation of the anharmonicity corrections and in the deriva- 
tion of the asymptotic form G, ( p a ) ) ,  such manifestations 
of this divergence as the existence of a qualitative difference 
between a ($,$*) and H ($,$*), the specific nature of the con- 
densate (a special subsystem in a Bose liquid), and the impqs- 
sibility of the use of the condensate wave function @ = ($) 
for an effective c-number description of the superfluid sate 
turn out in a sense to be "physical" (see also Ref. 33a, where 
the role played by the equation X12(0) = 0 in the establish- 
ment of the character of the response function for density 
perturbations is investigated). 
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3. "ADEQUATE" VARIABLES. THE EFFECTIVE C-NUMBER 
FIELD OF A SUPERFLUID. REASONS FOR THE 
"DISTINCTNESS'OF THE HYDRODYNAMIC VARIABLES 

1. The important differences between ($,$*) and 
H ($,$*), which are preserved even in the case (27) of an arbi- 
trarily small a (i.e., the qualitative deviations from the BA), 
appear in a condensate-containing Bose system not only at 
p 4 .  (The model (27) is convenient for revealing all effects 
such as the changes that occurs in the spectral curve in the 
presence of anomalous d i~pe r s ion ,~~  breaking of this curve 
and the appearance of a "plateau" of finite  dimension^,^^^^^ 
the formation of quasiparticle bound states,37336 the fact that 
the homogeneous phase becomes unstable when the roton 
minimum is lowered,38 the "drag effect" in a mixture of su- 
perfluids,39.40 the production of second sound at T >  0, or the 
"critical behavior" of the system in the vicinity of the A 
point; similar effects occur also in a crystal.) But the situa- 
tion at p-0 possesses a distinctive feature-the infrared- 
anharmonicity anomaly is ':nonin!ariantw under a change of 
variables: appearing when $ and $+ are used, it disappears 
on going over to the variables A and 8. It is noteworthy that 
the variables switch roles in the opposite limiting case (i.e., 
p-co): A and i correspond to an ultraviolet divergenc5 
which is absent in the description in which the variables $ 
and $+ are used. 

The formal origin of the "~nptual complementarity" of 
the two sets of variables A, i andl $,$+ can be seen even from 
the "quadratic" form of the original Hamiltonian 

for p-0 the second term is "more important;" for p+ w , the 
first term. A more detailed explanation is obtained when we 
compare the c-number expansions of H ($,$*) = H (n,v) in 
terms of the normal modes that diagonalize the quadratic 
parts of Hz: 

Both the field amplitudes (a, I and hydrodynamic ampli- 
tudes (B,) are "normal," but they differ by terms that are 
nonlinear in the amplitudes, and this makes the anharmonic 
vertices different. As p-0, the y vertices in H (Bp,B :) tend 
to zero, and do so faster than cf-p (the contribution from 
the term with nu2, i.e., with p2p3n,, pp2p,,, is - ( p / ~ , ) ~ / ~ ,  
that from the term with p2p3n,,, np2 n ,  is - ( p/ph )'I2, that 
from the term with p,p3np, np2rzP,np+ is - ( p / ~ , ) ~ ,  etc. (the 
terms from the expansion of the quantity Vn.l/nAn); 
ph = mcB (if Vp* - VO)); but the vertices in 
H ($,$*) = H (a,,a:) are finite, while those in H (a, ,a:) (T) 
even diverge like (p/ph )-lt2. On the other hand, in the case 

p-co the vertices in H(B,,B :) diverge, while those in 
H (ap,a:) and H (a, ,a:) tend to zero (together with V,, ). 

It can be seen that in a system with fluctuations we have 
as physically defined variables not just the "normal" varia- 
bles (diagonalizing H,), but also the "adequate" variables f 
"minimizing" the anharmonicity and eliminating the "non- 
invariant" anomalies (the refinement is in the terms nonlin- 
ear in amplitude); and H are closest when they are ex- 
pressed in terms of the variables 2: the anomalies in 2 (2) 
reflect only the invariant effects of the anharmonicity. Evi- 
dently, for a condensate-containing Bose system we have 

A A A .  

Z= (n, v (p-+O) ; 4, $ (p+m) ) . (38) 

Ifp, <ph = mc for a given Bose system ( ph is the momentum 
at which the hydrodynamic vertices y, which are growing as 
a result of the ultraviolet divergence, are no longer small), we 
find, choosing q, in accordance with (25), - , . -  

z L r =  ( I z L ,  u L )  ;ah= (<ah, G S h + )  (39) 

(by definition6' x, = XI,, <,oxp eiP',xsh = x - x,). 
We can now narrow down the adequate-variable con- 

cept by requiring that the adequate variables f be linearly 
related with the exact quasiparticle operators (the ''truly 
normal" modes); the variables 2 and 8 for p-0 (as well as $ 
and $+ for p-co in the case (27) in the lowest approximation 
in a) satisfy this definition as well. The indicated variables 
correspond to the most complete description of a fluctuating 
system with the aid of an effective nonfluctuating system or a 
system "with independently fluctuating normal modes." In 
terms of the other variables, fi gives, despite the accuracy of 
the vertices, only a rough agreement: the normal modes of 
the nonfluctuating analog do not coincide with the "truly 
normal" modes. Therefore, for example, the Feynman for- 
mula E, = p2/2mS ( p), although it follows strictly from the 
general form of@ (n,v) (as distinguished from (4) without the 
requirement that p-0)41: 

is nonetheless approximate (being exact only at p-0): its 
derivation essentially presupposes adequacy of n and v. In 
this connection, let us note that the postulates of quantum 
hydrodynamics that follow in the microtheory from the 
asymptotic forms*' G ,  (p-0) are not only the form (4), of 
@ = 2 (n,v), but also the adequacy of n and v. 

Thus, if we compare the hydrodynamic and field long- 
wave subsystems in a condensate-containing Bose system, 
the first subsystem comes out as the adequate one. 

2. The adequacy of the hydrodynamic variables for 
p 2 0 _  is not accidental. Their use in the microtheory 
H ($,$+)-H (A,$) actually implies the replacement of a dis- 
crete-density particle system 

n (r) = 6 (r-ro) (40) 
., 

by a "quantized" continuous medium" with continuous n(r) 
(i.e., with independent n, : the method of Ref. 9 is equivalent 
to that of Ref. 10 (see Ref. 11)). The fact that we can make 
such a substitution without changing the spectrum and the 
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important properties of the macroscopic motion (which are 
described by the equations of the hydrodynamics of an ideal 
fluid) reflects important characteristics of the superfluid 
state: 1) In contrast to what obtains in a classical fluid, sound 
with normal dispersion at T = 0 is not damped-departures 
from local equilibrium that lead to dissipation in the classi- 
cal approach are energetically forbidden ("frozen out"). 2) In 
contrast to the case of a normal Fermi liquid, the acoustic 
mode for p-0 does not have "competitors" of the pair-con- 
tinuum type. 3) The sound is collisionless at T = 0 (therefore, 
for example, for a tenuous gas (0  = ( n ~ ~ ) ' / ~ 4 1 )  the mini- 
mum phonon wavelength A,, is significantly shorter than 
the "mean free path" I-(nu2)-': A,, -fi/mc, -0141). 4) 
The continuation of the acoustic branch is not limited by the 
condition n 3  (the phonon-roton spectrum 
E; = [E:(E; + 2n V,)] 'I2 of the Hamiltonian H = H (n,v) 
( V, > 0, V,(, < 0, V,, -0) goes over into E: as p- w ). 

At the same time, in the superfluid state, too, the dis- 
creteness of the density (40) finds its distinctive manifesta- 
tion in the "field nature" of the velocity v = fim-'Vp, (28): 
the condition (40) appears in the quantization o f H  = H (n,v) 
as a consequence of (28) (the boundedness of the velocity 
potential O<p(r)<2a leads to the discreteness of its "canoni- 
cal partner" n(r)). The question then does not reduce to one 
of adequacy of the field variables for p+m ; the field nature 
of the velocity leads to remarkable distinctions of the state's 
long-wave properties, which are lost in the hydrodynamic 
formulation: 1) A situation in which the phase transition 
assumes the nature of a spontaneous breaking of the gauge 
symmetry. 2) A "Goldstone" origin of the sound-a situa- 
tion in which v is determined not by the momentum conser- 
vation law (the elasticity of the medium), but by the long- 
range phase correlations; at T = 0 the two mechanisms 
"duplicate" each other; the Goldstone (field) mechanism at 
T = 0 represents another departure from sound in a classical 
fluid; at T >  0 only the field mechanism is important in the 
"kinetic-equation" ( r T ( & < E T )  and quantum ( E ~ < E )  re- 
gions, but the two mechanisms operate together in the "colli- 
sional-hydrodynamic" (E<T,) region, the field mechanism 
predominating in first sound at low Tand in second sound at 
T- T, ( E ~  and rT are the energy and damping constant of 
the thermal excitations). 3) Quantization of the velocity cir- 
culation ($v.dr = nh /m)-by the vortex filaments. 4) "In- 
terference phenomena" at the fluid boundary, which are im- 
portant in connection with the problem of the v, jump in the 
vicinity of a solid b~undary . '~  

I? is worth noting that at T >  0 the superfluidity itself is 
a consequence of the "field nature" of the velocity (the 
"freezing out" of its "transverse" component v, )": a "con- 
tinuous medium," in which the velocity v is not limited by 
the condition (28), loses its superfluidity on going from T = 0 
to any T >  0 (since the transverse component v,,lp is not 
connected with n,, and enters into H (n,v) quadratically 
(&nmv:,), we have (v;,) = T/mn, i.e., the transverse mo- 
mentum density correlator (g:,) = Tmn; hence, using the 
relation between p, and (g;,) (Ref. 32), we find 
ps = mn - T-'(gi,) = 0. 

3. The fact that the velocity v = ( i )  has a field 

("phase") nature can be highlighted by giving the hydrody- 
namic variables A = n + A', i = v + i' (n = (A), v = (8)) a 
"field form:" we represent the c-number term in the expan- 
sion (5) 

a (̂ n, v^) =R (n, v) +a2 (2, 2) +@<nt , 

as a Hamiltonian of some classical field 

further, we identify g2(A1,8') with H,($',$'+) from the ex- 
pansion (41) of g($ + $',$* + $' + ). This gives $' as a lin- 
ear function of A '  and i f ,  in terms of the c numbers 
$' = 0 (n + nl)~ei(a +a ' )  - - $), i.e., 

nr (1) $ (r) =$ (r) +$' (I) = Y n ( r ) e i V ( ' ~  [ 1 + = + i i ' ( r ) ] ;  (42) 

in the homogeneous case 

Since we use only $, below (see (45)), we need not consider 
the difficulty (encountered when i(p) is determined from (2)) 
this definition to take account of the discreteness of the den- 
sity (40) of the Bose system43 (see footnote No. 6). We do not 
use the terms ~,,($',$'+) of higher order in $' from 
a($ + $',$* + $ I + ) :  they do not coincide with ain,(Ar,i') 
and, consequently, do not have any physical meaning; set- - - - - r +  ting HZ,,(Af = ,it)-H;,,($',$ ), we find 

a(;, G) =ar($ ,  $+) =a($ ,  v) +a2 ($', @+) +BL;  (44) 

the k in, vertices (in contrast to the gin, ones) tend to zero as 
p-0. The relations (42) and (43) allow us to introduce the 
"adequate field variable" 

8=<$L,  (45) 

The expression of the original Hamiltonian in terms of this 
variable,i.e., the transformation 

gives us a field perturbation theory that does not contain an 
infrared divergence. The Hamiltonian H,(& ,$it )is similar 
to H~($;,$;+ ), (6), but its coefficients contain $ = fi in- 
stead of $ = & and the "Bogolyubov operators," $, and 
$;, constructed for the diagonalization of H,($; ,$;+ )coin- 
cide exactly with the hydrodynamic operators B, and B ,+ 
(see (37)), and not just in the first-order approximation in the 
amplitude as in the case of the operators a, and a,f for 
H~($L ,a;+ ) (therefore, H in, does not give rise to an infrared 
anomaly). Consequently, the wave function in the "correct 
karmonic" approximation is determined by the condition 
B, # I !Po) = 0 instead of â ,,, I !P:) = 0; the state corre- 
sponds to the minimum of H(")$,,&) and not of 
H(p'($L $2 1, (29). 

The coefficient 5,,(0) = mc2 of the anomalous terms in 
B2(& ,$;+) (the exact irreducible two-ray vertex as ex- 
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pressed in terms of the variables $, ) evidently plays precise- 
ly the role, heretofore erroneously assigned toZ12(0) (Refs. 1, 
3-5), of the principal character ~stic of the superfluid recon- 
struction; for the model (27) we have 3,,(0) -,Z (0) = n Vo. 
Allowance for the anharmonisity leadkonly to the renTr- 
malizationoftheparametersofhr '(B '-H ', wherea ' andH ' 
are given by (44) and (46) respecttively). 

Thus, the profo2nd anaLo4y between a condensate-con- 
taining Bose system H = H ($,$+) and the classical field cor- 
responding to the original approximation for the model (27) 
and to an effective field-theoret LC description in the general 
case is brought out at T = 0 not in the original field variables 
4 = $ + $', but in the "adequate" variables q = $ + 
(q = $, = 4, = 4). As before, the field long-wav~ subsys- 
tem (the condensate) figures in tlie condition $ = ($) # O  for 
the field to have a quasiclassical character (i.e., for the exis- 
tence of an analogy between the field and a classical field), 
but the effective c-number field is determined by the hydro- 
dynamic long-wave subsystem $ = ($). ~ i k e  a (A, ,?, ), (4), 
the Hamiltonian 2 '(4, ,$: ) describes at T = 0 the macro- 
scopic motion of the system, the behavior in external fields 
(acting on n and v), the structure, spectrum, and interaction 
of the long-wave quasiparticle:~, though with addition of 
field characteristics. 

4. It is not difficult to verify that the immediate cause of 
the distinctness (adequacy) of the hydrodynamic variables 2 
and ? (or A, @;$) as p+O and, consequently, the source of the 
infrared anomaly of the anharmonicity, in any variables, is 
the infinite degeneracy of the state with broken gauge sym- 
metry with respect to the zeroth ( p  = 0) Fourier component 
of the phase p,  together with the phase fluctuation infrared 
divergence connected with this degeneracy. Using the nota- 
tion of the path-integration method, in which a Bose system 
appears as a fluctuating c-number field, let us compare the 
variables ($) = (fie'?) (CPIF) and (4)  = m e z ( , )  
(MWF). Since the distribution law is symmetric with respect 
to the sign of (p - (p)),  the phases of the CWF and the 
MWF coincide, ($) = I ($) le"'~) , so that the variables $ 
and $ differ only in absolute value. Although the dominant 
contribution to the difference J(n) - I ($)I is made by the 
short-wave fluctuations (the long-wave 

are suppressed by the smallness of the phase volumed 3p), it is 
precisely the divergent long-wave phase fluctuations which 
are responsible for the qualitative difference between the c- 
number characteristics ($) and (4) of the Bose system. The 
numerically small contribution made to ($) by the phase 
fluctuations turns out to be important in the expressions for 
the correlators ($$), ($I$$), etc. The "loops" formed by the 
phase lines diverge as the external momenta tend to zero (at 
T = 0 the "loop" formed by two lines diverges logarithmi- 
cally, the one formed by three lines diverge quadratically, 
and so on). Accordingly, the Green function 
g,, = - (q(x)q(xf)), q = (17) + Aq, + BT + Cp + ... 
( ~ = n - ( n ) )  contains, besides the pole term 
- (p(x)p (x')) = g,, (x - x'), the divergent correction 

f -1n p)  - (p 2(x)p '(x')) = gi, (x - x') (the other terms con- 

verge); the function (q(x)q(xf)q(x")) forms, together with the 
three-ray diagram with an irreducible vertex from 
H (n,v) = H (a,p ), a diagram with a "loop" of two or three 
lines, so that there terms -p3 lnp, etc., appear at the irredu- 
cible vertex besides the term -p2. A particular case of q is 
the original field 

It is clear that the transition to the adequate variable $+$ is 
possible only when all the terms that are nonlinear in p are 
discarded; the requirements of the standard commutation 
rules again lead to the equalities (42) and (43). Thus, the 
properties of the variable 4 are unique in regard to the sim- 
plicity of the Green functions and the vertices in that in any 
variables nonlinearly connected with the canonical pair a 
and q, the Green functions contain divergent nonpole correc- 
tions, while the irreducible vertices contain nonanalytic 
components. A rigorous proof of the assertion that the de- 
generacy in p is the sole source of the infrared anomaly of the 
anharmonicity at T = 0 follows from the field-theoretic ba- 
sis'.' of the quantum hydrodynamics (4). Notice that the ex- 
act vertices in the adequate and inadequate variables differ 
less by just small nonanalytic corrections, from the zeroth- 
order vertices (see (37)). Notice also that the infrared anoma- 
ly is a distinctive "appendix" to the Goldstone theorem: the 
conditions that create a gap in the spectrum despite the de- 
generacy in the phase (the singularity of the potential V,, , 
the external field, the phase symmetry of h ,) also remove the 
infrared anomaly. 

In the foregoing analysis we assumed ($) #O, which 
can be interpreted as the introduction of a field h < 0 that 
suppresses the homogeneous phase fluctuations ("fixes the 
phaseH)-the Bogolyubov quasi-averages: 

1 1 - 
H (h) =H+U, u = J (h@+h*lgs) dr  = - h V V (a,+ao'). 

2 

Is the infrared anomaly not also removed by a similar "lift- 
ing of the degeneracy?" We can, by considering that part of 
the Hamiltonian which describes the homogeneous fluctu- 
ations. 

(No = I (a,) l 2  = Vp/Vo,a, $ a  = (No +  AN^)^/^^"^+^+", 
S = Ih 1 V~ '~ / ,U~/ '  is a dimensionless external-field param- 
eter), verify that in the thermodynamic limit (No-+oo) the 
homogeneous fluctuations are negligible (and, thus, the 
phase is "fixed") when h - l/No+O 1 ( T  = 0); 
NoS>T/p (T>  0)): 
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whereas the removal of the infrared anomaly requires an 
external field of finite amplitude8) h > h, >p:/m. 

4. ON THE PHASE-TRANSITION ORDER PARAMETER 

1. A natural generalization H'@)-+O of the BA (29) is 
easily obtained for T >  0 by replacing ( $ I 2  in the potential 
v ( I $ 1  ') contained in 

H(p)=H(Q,+*p.)-p ~ + - + d ~ =  J = ~ ~ + V ( I ~ ~ I ' ) ,  
2m 

by l $ 1  + n > and also by taking account the thermodynamic 
potential L!,(T,p,$) of the excitation gas (including the zero- 
point oscillation energy 

and the dependence of nk and O l  on no = I$I2): 

At T- T, allowance for the thermal "smearing" ("deple- 
tion"( of the condensate, i.e., the substitution 
)$)2-+)q)2 + n;, is the main thing: here n;%no; Tc in the 
present approximation coincides with the degeneracy tem- 
perature To, of an ideal gas of N = p V/Vo bosons (in (47) 
no-+O, nk-tn): 

Near T, (cf. (3 1) at T = 0) 

1 m  
xs=- 2 [E ,O+~A ( T ,  y )  ] .= - p2f  x2 ( T )  ' 

x Z ( T )  = 4 m A ( T ,  y )  ; ' (50) 
xL=m/p2; x-poz%, 

as at T = 0, x(T)-po(T)-p, ( T )  = mc,(T) 

( E ~ + ~ = [ E ~ ~ ( E ~ ~ + ~ A  ( T ,  y ) )  ] ' h = p [ A  ( T ,  y ) l m ] " = c , ( T ) p ) .  

The ratio (determining Gi) of the fluctuations averaged in a 
volume radius equal to the correlation length r, -%- I )  to 
the square of the order parameter coincides here with the 
ratio of the number of supercondensate particles with mo- 
mentum p 5 tc to the number of particles in the condensate 

An'psxtT,/no ( T )  -a"'/IT- (GUT)  Ih, Gi-#a2". (51) 

Notice that ,y and Gi correspond to the same combinations 
of the parameters m, a, and B as in the nondegenerate case. 

It is just inside the fluctuation region T < ~ i - a ~ / ~  that 
the model (27) loses its small parameter: the parameter a ( T )  
characterizing the anharmonicity corrections increases as 
T-+T, as a result of the "softening" of the mode 

A212 x; 
FIG. 2. 

c, (T)  -c, r1I2; see, for example, the ratio of the contribu- 
tions of the diagrams in Fig. 2 at T-a2I3: 

A  no ( T )  VOZT.x3I ( x Z / m )  aIh 
a ( T )  - - --- %'I' 1. (52) 

Ziz n o ( T )  V o  

The same "fluctuation-region boundary" T-Gi-a2I3 cor- 
responds to the temperature at which the momentum 
X ( T ) - ~ ~ T " ~ ,  decreasing as T-T,, coincides in order of 
magnitude with the infrared-anomaly momentum p, 
(v&(~,) -  l , p , ( T - ~ ~ ) - a ' ~ ~ p ~ ;  theloop&-m2~,/pC is 
constructed from the Bogolyulov Green functions G;(p) 
corresponding to the Hamiltonian (47)). Notice that the rela- 
tion 

P C < %  ( T )  , (53) 

which is valid at the "boundaries of the fluctuation region," 
is maintained also inside the region (although the behavior of 
X(T) -T'" should change, the formula for the estimate of p, 

remains valid). 
2. The analysis carried out with $ = (4)  as the order 

parameter, just as at T = 0, the exact formula x '(0) = 0 
(see (50), wherex '(0) = - tc2(T)/m). But in the T >  0 case 
we cannot correct the situation by going over to * = (4)  (42) 
( 1  = (( '))'/'); here the divergence of the phase fluctu- 
ations is not the only source of the infrared anomalies in the 
anharmonicity; there arises, besides the "noninvariant" 
anomaly, an "invariant" anharmonicity anomaly connected 
with the excitation gas; here the3-expansion coefficients (the 
exact vertices) have anomalies-pole singularities character- 
izing sound in the excitation gas-in the variables n and q as 
well. In order to obtain g,($,**) without singularities, we 
must separate the entropyless (coherent) component of the 
superfluid from the excitation gas. If we consider the steady- 
state motion of the condensate relative to the stationary exci- 
tation gas, we can easily obtain an expression for the kinetic 
energy of the field 4 in the form p,v,2/2, p, = p - p, (see 
Sec. 5), which corresponds to 1v*l2/2m, where 

Hence it is natural to propose as a generalization for the 
"correct harmonic approximation" 

H ( Y )  (IT, o*) =H(o. P) -PJ v* 
the expression 
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Then, as is easy to see, the condition 71-, (Tc , p)  = 0 will give 
for Tc the same value as n,(Tc, p )  = 0 (at the point n, = 0, 
p, from (55) coincides with p); in the region T( 1 the coeffi- 
cientsz and 2 coincide with A and B to within a, so that the 
relations (50)-(53) are preserved, and the above-considered 
picture requires only the correc1:ion $+$. 

The assumption made above amounts to the assertion 
that the field 4 = $, ( / $ , I  = ?,/bs/m) plays at T>O the 
same role as played by $()$I = Jp/m) at T = 0: the linear 
combinations of the long-wave Fourier components of $, 
($T = (4,)) correspond to the "true" normal modes (the 
quasiparticle operators in the case when T-0); consequent- 
ly, the use of $, eliminates the infrared anomaly in *. Actu- 
ally, the above definition of $, requires some refinement in 
the case of temperatures far from. Tc : the field ("Goldstone") 
mode here is not the only "slow" mode; the oscillatory 
modes of the field interact with .the analogous modes of the 
excitation gas, so that the degrees of freedom that are sepa- 
rated in the steady-state motion ( ,~ /p  = 0) intermix. At low T 
the field mode corresponds to first sound, and the "normal- 
component" mode to second sound (the structures of both 
modes are determined by the as!rmptotic expression for the 
Green functions (see Sec. 5)). But near Tc (i.e., for 7.91) the 
coupling between the two subsystems (the c-number field 
and the excitation gas) is weak because of the large difference 
between the frequencies of the: sound velocities, second 
sound corresponding here to the Goldstone mode (the "un- 
shifted" Goldstone mode-fourth sound-is close in fre- 
quency to first sound when T+O and to second sound when 
T-tT,). The weakening of the calupling between the subsys- 
tems and the smallness of s/p for the "soft" Goldstone mode 
(the closeness to the steady-statec/p = 0 process) allow us to 
assume that, for 741, the adequate c-number field (the 
phase-transition order parameter) is 4, = ($,), with 

I$TI = J-. 
This result is confirmed by the fact that the definition 

I 4, ( = Jps/m (like 1 $ 1  = mi at T = 0) corresponds to 
the elimination of the long-wave phase fluctuations in the 
entire momentum region p Spc  , where the infrared anhar- 
monicity anomaly is formed. Incleed, in the momentum ( p )  
range characterizing the difference 

(see (47) and (55)), when p ) 7 t ( ~ ) ( : u ( ~ ) - m ) ,  the contribu- 
tions to n>(m) and p, are nearly equal and cancel each other 
(their difference in the integrand if; - - m2A 2/p4), and when 
p(x(T) the contribution on p, ( -p/m) is much smaller 
than the contribution to n k m ( - , m / p ) ;  consequently, if 
we represent n; and p, in the form of a sum of long-wave 
( p < Q )  and short-wave ( p  > Q )  contributions, i.e., if we set 

then, as is easy to verify, there exists a momentum Q-x(T) 
such that 

i.e., such that 

ps= [no+ (nTf ) m 

(for p - Q the contribution to nkm - p, is positive and not 
small; in comparing n krn and p, it is more convenient to use 
in place of (55) the formula 

where 

concerning the causes and manifestations of the "nonadditi- 
vity" of the quasiparticle masses in (58) see Appendix 2). 

Determining with the aid of th%quanti;ty Q contained in 
(57) the "long-wave field operator" $, = ($),,, (obtained by 
averaging the original operator 4 over the short-wave p > Q 
fluctuations), we find 

so that the phase fluctuations in the region p < Q-x(T), 
which includes p <pc (see (53)), are indeed eliminated from 
the definition of $, by I$, 1 = m. The explicit form of 
*,-the "adequate field operatorH-is similar to the form 
(42), (43) in the case T = 0: 

- 6 -1: A 

L-  nL exp ( i g L )  (61) 
h 

(the relation connecting 2, and is = fim -'V@, with 4, and 
$,t is similar to (2)). 

The above method of eliminating the infrared anoma- 
lies from the effective Hamiltonian *,($,$*) by choosing an 
adeqcate field variable 4 - 4, does not depend on the inter- 
action strength. A stongly interacting Bose system (real He4) 
differs from the mode1 (27) only in that I$,) differs essential- 
ly from 1 $ 1  in the region of low T (where n,/n 5 1) and the 
fluctuation region is broad (it encompasses the entire region 

1:Gi - 1). The foregoing analysis supports the choice of a 
field with modulus @& as the order parameter of the il 
transition in the GP  theory l7 (including its modification that 
takes into account phenomenologically the contribution of 
the fluctuations to the coefficients A,B, ..., i.e., the $ the- 
~ r y ~ ~ ) .  

3. The described situation is in many respects common 
to all phases transitions with spontaneously broken contin- 
uous symmetry: the infinite degeneracy leads to an infrared 
anomaly. In particular, it is easy to follow the analogy 
between theil transition and the ferromagnetic transition in 
the isotropic Heisenberg model; the analogy between $ and 
M (especially in the "planar model") is not affected in this 
scheme by the fact that SM-dr is conserved while S$dr is not, 
nor is it affected by the arbitrariness of the superfluid analog 
of the external magnetic field and by the special role played 
by v, = fim-'Vg, as a result of the connection with the 
broken Galilean symmetry (see Ref. 43a). 

In the general case we should distinguish between the 
original order parameter x ,  which is suitable for a renormal- 
ization-group analysis of the "microscopic Hamiltonian," 44 
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but which corresponds to "exotic" characteristics of the sys- 
tem because of the infrared anharmonicity anomaly (the di- 
vergence of the longitudinal susceptibility, e t~ . ) ,  on the one 
hand, and the "effective" order parameter 5, which is the 
only one that should figure in the effective Hamiltonian of 
the theory of phase transitions, on the other. The relation 
between x and 2 is similar to that in the case of theR transi- 
tion: 

A 

2=<2), f =(< 1 iL12))' exp {i(qL)), f =<f >, (62) 

the region L corresponds to p<Q-x(T), where x(T)  is the 
reciprocal correlation length.9' 

Notice that the superfluid (like the superconducting) 
state occupies a special place among states with broken con- 
tinuous symmetry. Here the order parameter is directly con- 
nected with the particles' translational degrees of freedom 
(which constitute all the thermodynamically important ones 
for a superfluid), and characterizes the wave nature of the 
particle motion at the macroscopic level, forming, similarly 
to the condensate of noninteracting bosons, a special macro- 
scopic field. Even for an ideal gas of bosons with m # 0 the c- 
number field equation contains fi, in contrast to the normal 
macroscopic fields (sound, radio waves, etc.). This is the ba- 
sis for the macroscopic manifestation of quantum relations 
(e.g., the macroscopic quantization of the angular momen- 
tum of a thin cylindrical layer). The case in which interaction 
occurs is different in that a field is formed as a result of an 
ordinary type of second-order phase transition with broken 
continuous symmetry, which gives rise to the following ad- 
ditional specific properties: a linear spectrum, superfluidity, 
the possibility of undamped motion (this particular manifes- 
tation of the quantum nature of matter has for decades pro- 
vided one of the profound motivations for the study of super- 
fluidity). As follows from the above analyses, in the case of 
interaction the coherent component does not coincide with 
the condensate; at T = 0 it is the entire fluid (its long-wave 
macroscopic degrees of freedom), and at T >  0 it is the "field 
component" (whose definition at temperatures far from Tc 
depends somewhat on d p ) .  Because of the presence of the 
infrared anomaly, only the use of the effective c-number field 
characteristic $ (the MWF)," and not t,b (the CWF), allows 
us to reveal the physically important analogy between the 
superfluid state and a classical nonlinear field, as well as the 
analogy between the R transition and a second-order phase 
transition with no degeneracy. 

5. THE EFFECTIVE c-NUMBER FIELD AT LOW T> 0 

Using the methodi4 of combined variables (21), let us 
compute the temperature corrections to the Green functions 
gob ( p), where a,b = (.rr,ip ) [Eq. (23)l. The interaction is, gen- 
erally speaking, not assumed to be weak; the only limitation 
on the model is the requirement pc Q h ,  owing to which we 
can choose q, in accordance with (25). The elements of the 
inverse matrix (g-I),, are the coefficients in the quadratic 
part of the acti0n3~(.rr,~ ), the "two-ray vertices." The condi- 
tion q 0 Q h  from (25) allows us to write simple expressions 

for the vertices that take account of the contribution of the 
"short-wave" ( p > q,) anharmonicity, i.e., for the 5 ?)-ex- 
pansion coefficients at T = 0 (see Ref. 14): 

where P(n,(r,r), p(r,r), v(~,T) is the local pressure, 
p(r,r)=p + iip - (Vp )'/2m, and E' is the frequency corre- 
sponding to the imaginary time T. 

The condition q,$p, excludes from the derivatives of P 
in 3 the infrared anomalies connected with the phase de- 
generacy, thus facilitating subsequently the computation of 
the excitation-gas-related anharmonicity for T >  0. The 
matrixg(p) from (65) coincides then with (23). On account of 
the conditions (25), the contribution 22- of the long-wave 
(p<%) anharmonicity to 2, at T = 0 can be neglected, i.e., 
S2 ,--Siqo'. On the other hand, it is precisely this contribution 
that is important at T >  0; the condition Tgcq, allows us to 
neglect the effect of temperature on the contribution of the 
anharmonicity of the modes with p>q,: 
3 P ) ( T ) z ~  ?'(T = O), (64). Because of the inequality (T/ 
cp,)(l, in computing the contribution of the modes with 
p<q, at T >  0 we need consider only the diagrams with the 
smallest number of integrations, i.e., the situation in the ar- 
bitrary case is the same as for the a( 1 model (27). Therefore, 
let us, for definiteness, return to the model (27), in which 

(the derivatives of P correspond to the BA); 
pc -phe-""(p,, -p,. Notice that the elimination of the 
"noninvariant"anharmonicity anomaly i n 3  ( T )  (qo%pc )does 
not prevent its being taken into account together with the 
"invariant" anomaly in the subsequent computation of 
2 2" PP) 

Using (66), we obtain, similarly to (64) and (65), the 
expression 

The corrections E,,, which makes S 2 ( ~ )  different from 

733 Sov. Phys. JETP 58 (4). October 1983 Yu. A. Nepomnyashchil 733 



3 P)(T) S 2 0 T  = O), are the res~llt of the interaction between 
the modes with p <go, an interaction whose vertices corre- 
spond to the nonquadratic term in S(qo) zS; the most impor- 
tant term 

(the vertex d ( p,,p,, - p,) = p,.p2/2m (see Fig. 3a)). 
In the single-loop approx;imation (Fig. 3b), after the 

summation over the frequencies we can set 
2,, = 2 Lb + 2 L i ,  where in the integrand 2 tb  contains the 
factor [ 1 + n, (E:, ) + n,(~:+ ,,, ), while 2 2 contains 
[n,(~;+ p, - ng(&;, ) ]  On, ( x )  = (e"/= - I)-').  In the region 
cp(Twe find 

3 c2 &I=&,I=O, X,,I= 16 n2 Pn; (69) 

II P n  d3pi ppt d n ~  ie' L (P) =-z pZ-- J -7 (2n) ( X-1 ~ & < + ~ , - e ~ ~ - i e r  

The dominant contribution to .Z,, ( p) is made by the inte- 
grals (70); their computation with logarithmic accuracy 
yields a nonanalytic-in T-correction to E;ZC, p, i.e., to 
the Bogolyubov sound velocity c, = (n ~ , / m ) " ~ :  

( y  is given by the relation E;=C, p( l  + yp2)). The formula 
(7 1) coincides with the result o'btained from the Andreev- 
Khalatnikov kinetic equation45: 

(A = 9/4 for the a(1 model). 
Although for the a( 1 mode:l each integration over mo- 

mentum contributes an additional small factor, with no di- 
vergences occurring in terms of the variables e, and a, the 
single-loop approximation for Z,, ( p) (T> 0) is not suitable 
for all p. Indeed, in the region c:p(T, (T, is the damping 
constant for the characteristic excitations at the given T )  we 
should take into account in the B" integrals the excitation 

FIG. 3. 

FIG. 4. 

damping constant that is greater than the Bogolyubov con- 
tribution in the denominator. At the same time, we should 
also not neglect the changes in the vertex (Fig. 4). Following 
Ref. 14 (see, however, footnote 1 I)), let us, using the explicit 
form of the Green functions associated with the vertex D in 
Eab ( p) (the Bogolyubov g = g, , but with allowance for the 
damping), separate out the two linear combinations (h, and 
g,) of the vertices (with different ray compositions) in terms 
of which we can express all the Zab ; in the combinations h, 
and g, the vertices are taken with factors obtained from the 
residues at the poles of the Green functions corresponding to 
the rays. The equation for D assumes the form of the kinetic 
equations for h, and g,, whose solutions yield (r-tit, 
E'% - i ~ )  

Notice that the result 

&(P, E = O )  =-pnpz/mZ, 

obtained from (73) in the lowest approximation in a is in fact 
exact: it corresponds to the exact formula for the system's 
kinetic energy (entering into the expression for 3 ) at T >  O- 
for constant condensate velocity v, = fim-'V (p ) : 

It follows from (74) that (75) is valid in the general case of 
steady-state motion (E = 0, p#O) as well; accordingly, the 
role of the longitudinal component of the field * = I $lei'9' 
is played here by 

With the aid of (67) and (73) we find 
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g en- --g,,=-ie [(I-eP.)/ 
16 P 

cl and c,, the first- and second-sound velocities with 
allowance for their temperature dependence, are computed 
from the equation for E = E ~ , ,  =cl,, p: 

The results (76) satisfies the Bogolyubov identity 

G, ,  ( p ,  e=O)=ngw(p, e=O) =mp/p8p2 , (78) 

and agrees exactly with the predictions of two-velocity hy- 
drodynamics: if we substitute into the equation25 

the thermodynamic characteristics of a gas of phonons with 
energy E, = c, p, we obtain for c,,, an equation that is equi- 
valent to (77). 11' 

It follows from the formulas (76) that the variables p 
and r a r e  linear combinations of the canonical variables P ,,, 
and Q of two oscillators-with frequencies equal to those 
of first and second sounds E = cl,, p: 

Indeed, for an oscillator, with 

we have 
eo eo2 

G ~ , ( E )  = - [ G ( e )  + G ( - e )  ]= - ( ~ ~ - e , Z + i 6 ) - ~ ,  
2 a  a 

1 
G p q ( e )  =-G,, ( 8 )  = - [ G  ( e )  -G ( - E )  ] =-ie ( E ~ - E ~ ~ +  i6) - l .  

25 

The formulas (80) follow directly from a comparison of (76) 
and (81). The variables P, and Q, characterize collisional- 
hydrodynamic sound in a system of quasiparticles, and can 
consequently be expressed in terms of the number density n, 
and velocity v, of the quasiparticles (the small correction 

characterizing the influence of the superfluid component 
can be neglected in the present case). In their turn n, and v, 
can be regarded as the mean values of operators connected 
with the quasiparticle creation and annihilation operators 
B ,+ and B, (this connection, which is similar to the formu- 
las (2) for the variables 2 and 6 for a particle system, is free of 
the mathematical difficulties associated with the 6 function, 
since the moment admissible here are clearly finite). In the 
approximation (76) both the oscillator modes turn out to be 
undamped (this corresponds to the local-equilibrium ap- 
proximation in the phenomenological approach). Tke for- 
~ u l a s  (80)  allow us to express the canonical variables P, and 
Q, of the quantum-hydzodynamk-sound oscillators in terms 
of @,+,fin, and v, (or B ,f and B,). On the other hand, the 
Fourier components of the effective field 6 are complex ca- 
nonical variables of the same os~illators,~and can+thus be 
expressed in terms of @, +, in, and 6, (or B ,f and B, ). No- 
tice that, in contrast to * = (*), the operator @ for T> 0 
itself has in the collisional-hydrodynamic region only a for- 
mal meaning oust like 2, and v, )-sound in an excitation 
gas is always classical: ~ ( k ,  T. The effective action (or the 
effective Hamiltonian), expressed in terms of the variables $, 
n, , and v, , does not contain singularities. 

6. ANOMALOUS SELF-ENERGY PART L?,(p) AT T> 0 

Using the relation between 2, and gab (Refs. 14 and 
28), we find (see (23) and (24)) 

(here we have taken account of the fact that g, = g:,g&' 
1 - 1 -  

= (g- IT, - - ( V O  + 2,,)r1); 

n(1-3pnA/4p) n.'p2 27 p,p, eZ 
=,+e [ I  - - I---.- 

mc2110T ( p )  1 + 2n0m [ 8 p;p c.'p2 A 1 

The expression for 2 r,(p) reflects both anharmonicity 
anomalies, the one connected with the phase degeneracy (cf. 
the T = 0 case1): 

(17 :( p) exhibits the main divergence 

at p-0 and nonanalyticity when E + cp+O), and the other 
the "invariant" anomaly caused by second sound (see 
2,,(p) in (73)); just as at T = 0, we have 2 (0) = 0. The 
formulas (82) and (83) go over into (84) as T - 4 ,  supplement- 
ing (84) (a result of Gavoret and Nozikes's analysiss with 
allowance made for the equation1 2,,(0) = 0 )  by a small non- 
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analytic correction in the term -E: 

igvn (-PI dno =-- ne 
&/no (p) = - - no (P) d1.l mc,Zno (PI . (85) 

The occurrence in [2 T, ( p )  - B T2 ( p )  1, at T >  0, of nonana- 
lytic terms that are not small at p a  indicates that a direct 
generalization of Gavoret and Nozikres's analysis8 to the 
T >  0 case is ineffective: the diffe:rence (2 T, - 2 T2 ) for T >  0 
can no longer be determined from its values for p-0, E = 0 
and p = 0, ~4.  The only cause of the complications is the 
appearance of second sound. Indeed, if allowance is made in 
gab ( p) for only the nonsingular contributions of the Xab ( p), 
i.e., for the Hab(p,& = 0) (see (73)), the expression for 
(2 TI - 2 T2) coincides with the! result obtained in a simple 
generalization of Gavoret and Nozikres's analysiss-the for- 
mula (84) in which we have made the substitutions 

and the correction in ~/mc$lZT(p) (cf. (85)). The validity of 
this result at E = 0 is apparent: ;it p a ,  E = 0 second sound 
does not affect Gavoret and Nozikres's analy~is ,~ which em- 
ploys only Galilean invariance. Notice, finally, that i f n  (0) (a 
factor in the E' term; see (84)) is equal to - n/mc2 at T  = 0, 
then the limit lZT ( p a )  is not defined at T  > 0 (since ITT ( p) 
contains an unbounded term (with a second-sound pole); see 
footnote 2 in Ref. 1). 

The singular terms in (2,, - 2,,) complicate the com- 
putation of the field Green functions G a (@), which of 
course also possess first- and second-sound poles, in com- 
parison with the corresponding computation in the T  = 0 
case (see (42) in Ref. 1); in coniputing the G : ( p a ) ,  it is 
convenient to use their connection, indicated in Refs. 14 and 
28, with the gab ( p). 

I express my profound gratitude to V. L. Ginzburg, D. 
A. Kirzhnits, L. P. Pitaevskii, and A. A. Sobyanin for their 
interest in the work and for their comments. 

APPENDIX 

1. The infrared anharmonicity arlomaly in the "combined" 
variables 

The infrared anharmonicity anomaly limits the possi- 
bility of an approximate identification (see Ref. 14) of the 
effective Hamiltonian k(ii ,  , tL ) expressed in terms of the 
"combined" variables (see (21)) with the hydrodynamic Lan- 
dau ~amiltonian k (n, ,vL ): in the region go Sp, both Ham- 
iltonians describe physically quite different long-wave sub- 
systems-the field subsystem $, (+hL = exp(i@, ), 
v, = h - ' V @ , )  and the hydrcldynamic subsystem n,, v, 
(*, = JI?L exp(ipL ), vr = fim- 'Vp, ), which respectively 
reflect at T  = 0 the properties of the condensate and the su- 
perfluid component (see Sec. 2); if the static susceptibilities 
(X  ,, (p-+O,O), F&+'"(p) (see (18) and (35) above)) to perturba- 
tions of the condensate I 1, ii, diverge, then the analogous 
characteristics of the superfluid component I 4, I, n, are fin- 
ite: - 

X I I  ( p ,  0) = (1/4n) FA, (p, 0) ==-1/4mcZ, 

and are given in the a< 1 case (27) by the BA: 

Let us compute explicity the quadratic part of 
%(ii, ,t, ) = &($,$*),It is easy to - relate the derivatives of P 
in the expression for S (qO'(r,p )=S lqo)(iiL ,@, )-the result of 
the path integration over $s, and $5 (2 1) (see (64) and (65))- 
with the derivatives of E (no, p) ,  a quantity that differs 
from the one investigated in Ref. 1 only by the limitation 
placed on the momentum range over which the integration is 
performed (i.e., by the requirement that p, > 9,); E '(qO) (no, p) 
characterizes directly the contribution made by the anhar- 
monicity of the short-wave modes to the effective action: 

A ~ ( ~ O ) = L \ S - A E ' ( W ) A ~ .  (A.1) 

With the aid of Ref. 1 we find 

The form o f 3  PI, as given in (64), (65) ( p < go, E' 5 cq,), allows 
us to find the hydrodynamic Green functions: 

the time here is real: r+it, E'- - i ~ .  
The nonpole term g,, , which increases as the limiting 

momentum go of the long-wave subsystem decreases, is quite 
noticeable against the background of the pole term, whose 
residue vanishes as p 4 .  The off-diagonal terms of2 deter- 
mine the Poisson bracket of %, and - ppa : 

The pole term in g, (A.3), corresponds to an oscillator 
with canonical variables R,, -IT,, dn/dno, - p,, (see 
(A.4)); the nonpole term shows that .R,, dn/dno does not ex- 
actly coincide with the canonical momentum R,, , and we 
should set 

where the quantity r,, commutes with - q$, ; the appear- 
ance of r,, in the Hamiltonian cannot change the result of 
the commutation of H (R,, , - ppa ) with ppa (expressed in 
terms of R,, ), so that, as before, 

Writing the Lagrangian in accordance with (64), (65), (A.2), 
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(AS), and (A.6): 

and assuming in the computation of 

that rpa does not depend on ppa, we find 

(the prime on 2 denotes summation over half-space). At the 
same time, in the BA 

If we neglect the singularities connected with the ap- 
pearance of second sound, the formulas (A.7) and (A.8) can 
be applied at T >  0 as well; the treatment of rpa as an inde- 
pendently fluctuating quantity yields then the correct result 
(which diverges as 9,-0 like [E?;'(O)] - I )  for the fluctu- 
ations of this quantity. 

In conclusion, let us discuss the contribution made to 3 
by the long-wave fluctuations with p < q0 (which were ne- 
glected i r~S(~. ' ) .  Thecoefficients of - the expansion o f3  ( ~ , p  )in 
powers of P = f i L  - ( f i L  ), p = pL _differ from the analo- 
gous coefficients in the expansion of S(qO) (a,p), i.e., from the 
field vertices, by corrections that are "hydrodynamic" dia- 
grams with integrations over p,<q,, in which the field ver- 
tices are connected by the "hydrodynamic" Green functions 
gab ( p,). It can be shown that in the general case these correc- 
tions possess at q o - 4  the same degree of divergence as the 
field vertices themselves, but in the case of the "two-ray" 
vertices the corrections are negligibly small (this latter fact 
can be proved by taking into consideration the field-theory 

for the sound velocity c = (d~/d,o)"~) .  Thus, al- 
though3 (a,p) #5(q0) (a,p ),in thequadraticapproximationat 
T =  0 we have S2(n,p)z3~4°'(~,p), SO that g (p)  (A.3), Z, 
(A. 7), and 3 (A. 8) are exact expressions (their dependence on 
q, arises only because of the presence of q, in the definitions 
of a and p). 

2. Peculiarities of the inertial properties of the quasiparticles 

Equation (58) raises a number of questions concerning 
the specific nature of the concepts "normal" and "super- 
fluid" component. The quasiparticle mass A = p ( d ~ ,  / 
dp)-', as the coefficient of proportionality between the qua- 
siparticle momentum and (group) velocity, turns out to be 
nonadditive in the analysis of a gas of quasiparticles in ther- 
mal equilibrium: 

IPI 
d3p fin, (e ( p )  - p ~ )  j Bn, ( e  ( p )  )EM, -*Jm I V I  2n) 

although it is, of course, additive for "condensation" of 
quasiparticles into a single p state. Thus, during the nondis- 
sipative "thermalization" of a quasiparticle condensate as a 
result of internal interactions, the mass and velocity of the 
quasiparticle gas change while the total momentum is kept 
unchanged. What is the source of this peculiarity of the iner- 
tial properties of the quasiparticles? 

The nonadditivity of the mass is all the more surprising, 
since additivity is assumed in the definition p, = p - p, 
itself. And the physical adequacy of the definition of p, can 
be confirmed by a direct microscopic computation: we can, 
by considering at T > 0 a Bose system with a moving conden- 
sate (using a generalization of the Belyaev technique2 (see 
Refs. 46 and 40)), easily obtain the system's total momentum 
P = ( p, V)V; similarly, from the form o f 2 p p  (74) we obtain 
E = 1  ,p, V 2, ( 75). In this case a quasiparticle gas with mass 
p, Vis entirely analogous to the particle gas in, for example, 
the computation of second sound at low Tas local-equilibri- 
um sound for a gas of phonons E = sp: 

Other questions arise. The Lagrangian, energy, and mo- 
mentum of the phonons are (neglecting the polarization) 
"isomorphic" to the case of free photons with c replaced by s; 
we can even introduce a conditional "phonon" pseudo-Eu- 
clidean metric (using "phonon" rules and clocks)-so long 
as the particles are free (and E = sp), the isomorphism cannot 
be destroyed, and the conditionality of the metric cannot be 
established. Why then does the isomorphism in the relation 
between the energy and the inertia ( p ,  = 4/3Ep,/s2) disap- 
pear? Further, what "symmetry character" does the quasi- 
particle mass A have, and how does this mass compare with 
the relativistic "excitation-energy mass" p r ~ / ~ 2  (i.e., is it 
very much smaller than A)? Finally, why does the quadratic 
quasiparticle dispersion law E -p2 "restore" the additivity 
(i.e., is the disappearance here of the difference between par- 
ticles and quasiparticles accidental)? 

The nonadditivity of the quasiparticle mass (in particu- 
lar, the coefficient 4/3 for phonons) is due to the "unusual" 
momentum transformation law p' = p used in the derivation 
of the formula for p, ; this transformation is implicitly car- 
ried out in the formula 

since the original expression is 

(A. 10) 

(the Gibbs distribution is given in the "moving " reference 

737 Sov. Phys. JETP 58 (4), October 1983 Yu. A. Nepomnyashchl( 737 



system K ', but the momentum P = p, V is computed in the 
stationary system K ). 
It is precisely the "usual" momentum transformation law 
p' = p - EV for particles which guarantees, as can easily be 
verified, the additivity: substituting 

diii pV d3p'=Ddp= I--- 
- d p p  

into (A. lo), we find 

d3p P=V J- ~ n n ,  ( E  (p) ) . 
(an) 

(A. 11) 

From where does the unusual quasiparticle-momentum 
transformation law p' = p arise when we have the usual for- 
mula E' = E - p-V for the energy? Why should there be dif- 
ferent transformation laws for particles and quasiparticles 
(and why should a special quasi particle-mass concept differ- 
ing from p = &/c2 arise) at all when the energy and momen- 
tum of any excitation (like the original energy and momen- 
tum) of the system form a Cvector? Actually, the E- and 
p-transformation laws for particles do not differ from those 
for quasiparticles: 

E'SE-pV,  p ' = p - ~ V / c ~ .  (A. 12) 

The whole difference lies in the fact that for particles p-E/ 
c2 = E (E=p(d~/dp)-l), while for quasiparticles PEE/ 

c2<E (which has been taken into account in the law p' =p).  
The two formulas (A.9) and (A. 11) can be reduced to one: 

The "symmetry meaning" of I% for quasiparticles is also 
clear from (A.13): it is the coefficient in the conditional 
transformation law for the momentum, i.e., the law that pre- 
serves the form of the energy dependence 

E'=E ( P f , n ) ,  ~ ~ : ~ = ~ - i i i V .  (A. 14) 

The relation E =p(p,,, = p) for particles corresponds to 
the principle of relativity: ~ ( p )  preserves its form under the 
transformations. Thus, the sou:rce of the peculiarity of the 
inertial properties of the quasiparrticles is the violation of the 
principle of relativity (there is a preferred rest frame for the 
medium), or, specifically, the deviation of the form of ~ ( p )  
from (c2p2 + m2c4)lI2, leading to a situation in which the "in- 
ertial mass" E =p(d~/dp)- '  (the coefficient in the condi- 
tional momentum transformation law (A. 14)) differs from 
the "energy mass" p = &/c2 (the coefficient in the true 
transformation law (A. 12)). The other differences-in parti- 
cular, in the character of the ''rest mass" mo2c2 = E ~ / c ~  -p2 

(for quasiparticles, mo2 z - p:'/c2 < 0)-are unimportant 
here. 

The violation of the principle of relativity explains the 
nonconservation in the general case of the velocity of the 

quasiparticle gas as a whole (in the case when momentum is 
conserved-as a result of homogeneity). 

The nonadditivity does not manifest itself in the case of 
the excitation condensate because the expression for P in the 
K system is not obtained by means of a transformation from 
another reference system (the distribution is given in K ). 

The quadratic dispersion law E = up2 "restores" the ad- 
ditivity because it imitates the relativistically invariant form 
E = (c2p2 + m2c4)1 '2~mc2 +p2/2m (m = 1/2a) (the con- 
stant is unimportant); a similar imitation does not occur in 
the case of phonons despite the profound analogy with pho- 
tons: s#c, where c is a chosen quantity. 

The destruction of the isomorphism between phonons 
and photons is due to the fact that the velocity V of a moving 
gas in thermal equilibrium is fixed by the walls, i.e., is deter- 
mined, in essence, by the interaction of the quasiparticles 
with the surrounding matter (even if the interaction is arbi- 
trarily weak-just strong enough for the establishment of 
equilibrium); the concept of mass of a gas in thermal equilib- 
rium is beyond the scope of the free-quasiparticle model: the 
true metric essentially manifests itself; within the framework 
of the conditional "phonon" pseudo-Euclidean metric the 
velocity of the "center-of-mass system" K, differs from the 
wall velocity Vl = Ps2/Eph = 4/3 V. The mass per unit vol- 
ume M = E,, /s2 = 3/4pn,  the distribution constructed by 
transforming from K not being strictly a Gibbs distribution 
in either K '  or K,. 

That the metric dictated by free photons is the true one 
is manifest precisely by the fact that the metric is conserved, 
and is, in general, found to be universal when allowance is 
made for the interaction of the electromagnetic field with the 
matter; the symmetry (covariance) of the equations points to 
the true special principle of relativity; the "photon" rules 
and clocks, in contrast to the "phonon" ones, turn out to be 
true rules and clocks. Similarly, if we construct the theory of 
massless spin-2 particles in flat space-time, requiring that 
the "source" of the field be any energy (Ti, )-such a theory 
coincides with the general theory of relativity in which we 
have artificially carried out the splitting gik = gyk + pi, and 
we interpret the Einstein pseudotensor 8, as the field-ener- 
gy tensor T:k (the result of the variation in the metric g?,)- 
then the preference of the original flat metric turns out to be 
experimentally unprovable (like the preference of the "labo- 
ratory reference system" in electrodynamics); the symmetry 
of the equations written without the splitting of g, (general 
covariance) points to the true general principle of relativity, 
to the curvature of a physically observable metric. But for 
phonons the medium has its rest frame chosen for it, which is 
manifested in the inertial properties of a moving thermalized 
gas. 

In a certain (very limited) sense, the additivity of the 
quasiparticle mass can be "saved" by not identifying the gas 
velocity with the velocity of the system K '; although the en- 
ergy distribution E' in K ' has the Gibbs form, this system is 
not the "rest frame" of the gas-the distribution, together 
with ~ ' ( p ) ,  is not isotropic: E' = ~ ( p )  - p.V = ~ ( p ' )  - pf.V, 
and even in K the quasiparticle distribution differs from the 
"moving Gibbs distribution" of particles-we do not have 
the factor D attached to d 3p. The "saving of the additivity" 
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means that we must assign the velocity V, = P/M to thegas. 
But a profound analogy with particles cannot be achieved 
even at this price: K, is also not a rest frame everywhere 
within the range of the transformation law p, = p (the mo- 
mentum distribution is not isotropic: 
nG (E') = n, [E( p) p.V] = nG [E( p,) - p-V]); in the case of 
phonons V, and Mare  preserved during the thermalization 
of the quasiparticle condensate (the manifestation of the con- 
ditional "phonon" principle of relativity), but this is general- 
ly not realized. 

"In Ref. 6 the expression for G,, (p-0) is constructed under the assump- 
tion that Zlz(0) + O  even though this actually contradicts the result (dM/ 
dh ) - I  = 0 obtained there in a renormalization-group analysis; 

"Thus, in the general case of a Bose system with a condensate ($) #O the 
Landau quantum hydrodynamics can be justified only with the aid of the 
field method2 (see Gavoret and NoziBres's result,' as corrected with 
allowance for 8,, = 0 in Ref. 1); in the other methods we restrict our- 
selves in the justification to the use of the either the simplest "quasihar- 
monic" model (see (27) and, for example, Refs. 10 and 1 l), or a more 
general, but still additional, assumption: in the method of "combined" 
variables14 (see (21)) the condition p, <ph (see (25)) is in fact required for 
the derivation of the asymptotic formulas for G,, ( p-0); here the deriva- 
tion does not take into consideration the long-wave anharqonicity (of 
the oscillations with p(gO), a contribution which is small only when 
pc <qo<ph : as qOSpc decreases, the smallness of the phase volume is 
compensated for by the vertex divergence due to the infrared anomaly of 
the field anharmonicity (see Appendix 1). In Ref. 15 the Landau quan- 
tum hydrodynamics is justified under the assumption of the existence of 
a "two-particle" condensate" ($$) #O. 

3'~onnected with the square-law divergence ofx, (p,O) is the well-known 
power-law decrease of the fluctuation correlator for the field 
i i=&+@: 

(which corresponds to a momentum distribution N, = (8, + 8, ) - l/p 
( T  = 0), - l/p2(T> 0) for the particles). The divergence of x (p,O) indi- 
cates that at T> 0 the correlator for the fluctuations of the Hermitian part 
(or modulus) of the field also falls off according to a power law: 

4'The indicated states of a Bose system at T 4  (the superfluid state and 
crystalline state with localized particles) are the extreme cases of a family 
of possible "intermediate" states combining both types of long-range 
order: on the one hand, the nonlinear field can acquire a periodic struc- 
ture (the anharmonicity then limits to a certain extent the rate of intersite 
particle tunneling; the shear elasticity here "gets accustomed" to the 
presence of the superfluid componentz9), and, on the other, the lattice 
with localized particles is not destroyed upon the appearance of defects 
of low concentration, even when these defects are not localized at T = 0 
(Ref. 30). More "exoticn-far removed from their classical analogs-are 
the states of a Bose system at T - 4 :  a fluid without-a single-particle 
condensate ((Y) = 0) but with a two-particle one (($$) #O)  also obeys 
the laws of Landau's quantum hydr~d~namics '~ ;  a fluid with 
p, (T = 0) <p, or it is not superfluid at all: p, ( T  = 0) = 0. 

"Let us add a number of "details" imitating in the BA the properties of 
real He-11: lowering of the roton minimum, crystallization, and vanish- 
ing of the anomalous dispersion with increase of P; the appearance of an 
anomaly in (i.e., enhancement of) the "short-range order the increase of 
T." A straight-forward allowance for the energy of the zero-point oscil- 
lations in the Vo( /  V, -pol case allows us to obtain a "self-constricted" 
state within the framework of th_e BA. A 

''Formally, the independence of 4, and $, needs to be stated more pre- 
Gsely. For examp!e, PL = (ri, , iL  ), where 4, ,i, are connected with 
$, ,@, +, just as A; f are connected with tC;$+, (2); but the differences 
between A, ,i, and 6, ,i, are unimportant in the case when qo).p,. 

Let us note also another way of introducing P into the description of a 
condensate-containing Bosesystem: the use in (2) of A = A, + A,,, 
i = jL + jshL an? not 9 = $, + tjsh, as the initia! splitting; here 
.% = (A, ,i, ;qSh ,$dh + ), $sh is connected with A,, and$, by formulas of 
the type (2), and i, is given by the relation j, = f(riCiL ;t VLRC.). NO- 
tice that a definition (of the type (2)) of S, in terms of $, , $,+, or j, does 

not present any difficulties connected with the "6-function" character 
of n(r), since the n, (r) are smooth functions. 

7'In view of this fact, the nonfield interpretations of the equations of an 
ideal fluid as applied to He-11, such as Tkachenko's in terpre ta t i~n~~ 
(which admits of a nonsingular rotation), are doubtful. 

"In a field h # O  all the divergences at p t O  [ofx, (p,O), x (p,O), and of the 
coefficients in 2, (expressed in terms of a,, a' , ) I  disappear, with the 
p = 0 mode corresponding to stable, and not neutral, equilibrium. There 
exists thus an operator$, (a Bogolyubovcombination of the operators 8; 
and 8; + (8; = ria - (8,))) such that Y t )  = 0. But if h < h, ,  all the 
system's characteristics for p S p ,  strongly differ, as before, from the 
characeristics obtained in the Ba Cy from x ;, B, from a,, etc.). 
Notice further that as T 4  the field h need not be used in the determin- 
ation of the state with the broken symmetry. Although the ground state 
of the system at h = 0 is symmetric (($) = 0), a "narrow packet" 
($) #O with ((A@)') =A - ' < 1 possesses such a small energy uncertain- 
ty AE-6Np-A 'p/N that it spreads in the case when N 4 m  for an 
indefinitely lonr! time: 7-WAE-NWuA (AE coincides in order of 
magnitude with the energy in a field b that guarantees the relation 
(1463') = A  -I). 

 he iffictive ~axniltonian can be understood in the sense that it takes 
into accou_nt only the short-wave anharmonicity (p-go) - Hi"". With 
the aid of Higo' we can next compute the long-wave anharmonicity (first 
and foremost, the contribution to the thermodynamic potential of the 
fluctuations (treated as independent quantities) from H PI). In the varia- 
bles i the long-wave contribution is small everywhere, except the fluctu- 
ation region. But in the original variables x it is everywhere important 
(the region p 5p, makes a nonanalytic contribution). 

'''Let us note that the term MWF pertains to quantum properties at the 
macroscopic level (the nondissipative motion, the quantization of the 
velocity circulation, the macroscopic quantization of angular momen- 
tum, etc.), associates with matter an equation containing, and yet is not 
a "genuine" wave function: interference among probability amplitudes 
will always remain in the microworld; from the point of view of mea- 
surements the MWF is simply a classical field. 

"'The data presented in Ref. 14, 

and, consequently, 

(see the formulas (19.39) and (19.42) in Ref. 14) are at variance with the 
exact relation (74), with the Bogolyubov identity (78), and with the equa- 
tion (79) of two-velocity hydrodynamics. 
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